
18. Paging: Introduction
Operating System: Three Easy Pieces

1Youjip Won

Concept of Paging

 Paging splits up address space into fixed-zed unit called a page.

 Segmentation: variable size of logical segments(code, stack, heap, etc.)

 With paging, physical memory is also split into some number of

pages called a page frame.

 Page table per process is needed to translate the virtual address to

physical address.

2Youjip Won

Advantages Of Paging

 Flexibility: Supporting the abstraction of address space effectively

 Don’t need assumption how heap and stack grow and are used.

 Simplicity: ease of free-space management

 The page in address space and the page frame are the same size.

 Easy to allocate and keep a free list

3Youjip Won

Example: A Simple Paging

 128-byte physical memory with 16 bytes page frames

 64-byte address space with 16 bytes pages

4Youjip Won

0

16

32

48

64

(page 0 of
the address space)

(page 1)

(page 2)

(page 3)

A Simple 64-byte Address Space

0

16

reserved for OS

page 3 of AS

(unused)

page 0 of AS

(unused)

page 2 of AS

64-Byte Address Space Placed In Physical Memory

(unused)

page 1 of AS

32

48

64

80

96

112

128

page frame 0 of
physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

Address Translation

 Two components in the virtual address

 VPN: virtual page number

 Offset: offset within the page

 Example: virtual address 21 in 64-byte address space

5Youjip Won

Va5 Va4 Va3 Va2 Va1 Va0

VPN offset

0 1 0 1 0 1

VPN offset

Example: Address Translation

 The virtual address 21 in 64-byte address space

6Youjip Won

0 1 0 1 0 1

VPN offset

1 1 0 1 0 1

PFN offset

1

Virtual
Address

Physical
Address

Address
Translation

Where Are Page Tables Stored?

 Page tables can get awfully large

 32-bit address space with 4-KB pages, 20 bits for VPN

 4𝑀𝐵 = 220 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ∗ 4 𝐵𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑔𝑒 𝑡𝑎𝑏𝑙𝑒 𝑒𝑛𝑡𝑟𝑦

 Page tables for peach process are stored in memory.

7Youjip Won

Example: Page Table in Kernel Physical Memory

8Youjip Won

0

16

page table
3 7 5 2

page 3 of AS

(unused)

page 0 of AS

(unused)

page 2 of AS

Physical Memory

(unused)

page 1 of AS

32

48

64

80

96

112

128

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

What Is In The Page Table?

 The page table is just a data structure that is used to map the virtual

address to physical address.

 Simplest form: a linear page table, an array

 The OS indexes the array by VPN, and looks up the page-table entry.

9Youjip Won

Common Flags Of Page Table Entry

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read from,

written to, or executed from

 Present Bit: Indicating whether this page is in physical memory or on

disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since it was

brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been

accessed

10Youjip Won

Example: x86 Page Table Entry

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

11Youjip Won

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G PA
T

D A

P
C
D

P
W

T

U
/S

R
/W P

An x86 Page Table Entry(PTE)

Paging: Too Slow

 To find a location of the desired PTE, the starting location of the

page table is needed.

 For every memory reference, paging requires the OS to perform one

extra memory reference.

12Youjip Won

Accessing Memory With Paging

13Youjip Won

1 // Extract the VPN from the virtual address

2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3

4 // Form the address of the page-table entry (PTE)

5 PTEAddr = PTBR + (VPN * sizeof(PTE))

6

7 // Fetch the PTE

8 PTE = AccessMemory(PTEAddr)

9

10 // Check if process can access the page

11 if (PTE.Valid == False)

12 RaiseException(SEGMENTATION_FAULT)

13 else if (CanAccess(PTE.ProtectBits) == False)

14 RaiseException(PROTECTION_FAULT)

15 else

16 // Access is OK: form physical address and fetch it

17 offset = VirtualAddress & OFFSET_MASK

18 PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19 Register = AccessMemory(PhysAddr)

A Memory Trace

 Example: A Simple Memory Access

 Compile and execute

 Resulting Assembly code

14Youjip Won

int array[1000];

...

for (i = 0; i < 1000; i++)

array[i] = 0;

prompt> gcc –o array array.c –Wall –o

prompt>./array

0x1024 movl $0x0,(%edi,%eax,4)

0x1028 incl %eax

0x102c cmpl $0x03e8,%eax

0x1030 jne 0x1024

A Virtual(And Physical) Memory Trace

15Youjip Won

Page Table[39]

Page Table[1]

1024

1074

1124

1174

1224

P
a
g
e
 T

a
b
le

(P
A
)

C
o
d
e
(P

A
)

4096

4146

4196

1024

1074

1124

C
o
d
e
(V

A
)

0 10 20 30 40 50

A
rr
a
y(

PA
)

7232

7282

7132

A
rr
a
y(

V
A
)

40000

40050

40100

m
o
v

m
o
v

i
n
c

c
m
p

j
n
e

Memory Access

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

16Youjip Won

