
20. Advanced Page Tables
Operating System: Three Easy Pieces

1Youjip Won

 We usually have one page table for every process in the system.

 Assume that 32-bit address space with 4KB pages and 4-byte page-table

entry.

Paging: Linear Tables

2Youjip Won

Page table size =
𝟐𝟑𝟐

𝟐𝟏𝟐
∗ 𝟒𝑩𝒚𝒕𝒆 = 𝟒𝑴𝑩𝐲𝐭𝐞

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry

entry

entry

Page Table of
Process A

4B
4KB

Page table are too big and thus consume too much memory.

 Page table are too big and thus consume too much memory.

 Assume that 32-bit address space with 16KB pages and 4-byte page-table

entry.

Paging: Smaller Tables

3Youjip Won

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry

entry

entry

Page Table of
Process A

4B
16KB

𝟐𝟑𝟐

𝟐𝟏𝟔
∗ 𝟒 = 𝟏𝑴𝑩 per page table

Big pages lead to internal fragmentation.

 Single page table for the entries address space of process.

Problem

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

4Youjip Won

code

heap

stack

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Allocate

Virtual Address
Space

Physical Memory

A 16KB Address Space with 1KB Pages

PFN valid prot present dirty

10 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

 Most of the page table is unused, full of invalid entries.

Problem

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

5Youjip Won

code

heap

stack

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Allocate

Virtual Address
Space

Physical Memory

A 16KB Address Space with 1KB Pages

PFN valid prot present dirty

10 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

Hybrid Approach: Paging and Segments

 In order to reduce the memory overhead of page tables.

 Using base not to point to the segment itself but rather to hold the

physical address of the page table of that segment.

 The bounds register is used to indicate the end of the page table.

6Youjip Won

Simple Example of Hybrid Approach

 Each process has three page tables associated with it.

 When process is running, the base register for each of these segments

contains the physical address of a linear page table for that segment.

7Youjip Won

Seg VPN Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seg value Content

00 unused segment

01 code

10 heap

11 stack

32-bit Virtual address space with 4KB pages

TLB miss on Hybrid Approach

 The hardware get to physical address from page table.

 The hardware uses the segment bits(SN) to determine which base and

bounds pair to use.

 The hardware then takes the physical address therein and combines it with

the VPN as follows to form the address of the page table entry(PTE) .

8Youjip Won

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

02: VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

03: AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

 Hybrid Approach is not without problems.

 If we have a large but sparsely-used heap, we can still end up with a lot of

page table waste.

 Causing external fragmentation to arise again.

Problem of Hybrid Approach

9Youjip Won

Multi-level Page Tables

 Turns the linear page table into something like a tree.

 Chop up the page table into page-sized units.

 If an entire page of page-table entries is invalid, don’t allocate that page

of the page table at all.

 To track whether a page of the page table is valid, use a new structure,

called page directory.

10Youjip Won

Multi-level Page Tables: Page directory

11Youjip Won

201PBTR

Linear Page Table Multi-level Page Table

v
a
li
d

p
ro

t

PFN

1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

1 rw 86

1 rw 15

P
FN

2
0
1

P
FN

2
0
2

P
FN

2
0
3

1 201

0 -

0 -

1 203

The Page Directory
P
FN

2
0
0

v
a
li
d

PFN

1 rx 12

1 rx 13

0 - -

1 rw 100

P
FN

2
0
1

v
a
li
d

p
ro

t

PFN

[Page 1 of PT:Not Allocated]

[Page 2 of PT: Not Allocated]

0 - -

0 - -

1 rw 86

1 rw 15

P
FN

2
0
4

200PBTR

Linear (Left) And Multi-Level (Right) Page Tables

Multi-level Page Tables: Page directory entries

 The page directory contains one entry per page of the page table.

 It consists of a number of page directory entries(PDE).

 PDE has a valid bit and page frame number(PFN).

12Youjip Won

Multi-level Page Tables: Advantage & Disadvantage

 Advantage

 Only allocates page-table space in proportion to the amount of address

space you are using.

 The OS can grab the next free page when it needs to allocate or grow a

page table.

 Disadvantage

 Multi-level table is a small example of a time-space trade-off.

 Complexity.

13Youjip Won

Multi-level Page Table: Level of indirection

 A multi-level structure can adjust level of indirection through use of

the page directory.

 Indirection place page-table pages wherever we would like in physical

memory.

14Youjip Won

 To understand the idea behind multi-level page tables better, let’s do

an example.

A Detailed Multi-Level Example

15Youjip Won

Flag Detail

Address space 16 KB

Page size 64 byte

Virtual address 14 bit

VPN 8 bit

Offset 6 bit

Page table entry 28(256)

code

code

(free)

(free)

heap

heap

(free)

(free)

stack

stack A 16-KB Address Space With 64-byte Pages

0000 0000

0000 0001
...

1111 1111

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

A Detailed Multi-Level Example: Page Directory Idx

 The page directory needs one entry per page of the page table

 it has 16 entries.

 The page-directory entry is invalid Raise an exception (The access is

invalid)

16Youjip Won

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index

A Detailed Multi-Level Example: Page Table Idx

 The PDE is valid, we have more work to do.

 To fetch the page table entry(PTE) from the page of the page table

pointed to by this page-directory entry.

 This page-table index can then be used to index into the page table

itself.

17Youjip Won

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index Page Table Index

More than Two Level

 In some cases, a deeper tree is possible.

18Youjip Won

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

offsetVPN

More than Two Level : Page Table Index

 In some cases, a deeper tree is possible.

19Youjip Won

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs

VPN

log2 128 = 7

Page Table IndexPage Directory Index

More than Two Level : Page Directory

 If our page directory has 214entries, it spans not one page but 128.

 To remedy this problem, we build a further level of the tree, by

splitting the page directory itself into multiple pages of the page

directory.

20Youjip Won

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offsetVPN

PD Index 0 PD Index 1 Page Table Index

Multi-level Page Table Control Flow

21Youjip Won

01: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

02: (Success,TlbEntry) = TLB_Lookup(VPN)

03: if(Success == True) //TLB Hit

04: if(CanAccess(TlbEntry.ProtectBits) == True)

05: Offset = VirtualAddress & OFFSET_MASK

06: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

07: Register = AccessMemory(PhysAddr)

08: else RaiseException(PROTECTION_FAULT);

09: else // perform the full multi-level lookup

 (1 lines) extract the virtual page number(VPN)

 (2 lines) check if the TLB holds the transalation for this VPN

 (5-8 lines) extract the page frame number from the relevant TLB entry, and

form the desired physical address and access memory

Multi-level Page Table Control Flow

22Youjip Won

11: else

12: PDIndex = (VPN & PD_MASK) >> PD_SHIFT

13: PDEAddr = PDBR + (PDIndex * sizeof(PDE))

14: PDE = AccessMemory(PDEAddr)

15: if(PDE.Valid == False)

16: RaiseException(SEGMENTATION_FAULT)

17: else // PDE is Valid: now fetch PTE from PT

 (11 lines) extract the Page Directory Index(PDIndex)

 (13 lines) get Page Directory Entry(PDE)

 (15-17 lines) Check PDE valid flag. If valid flag is true, fetch Page Table

entry from Page Table

The Translation Process: Remember the TLB

23Youjip Won

18: PTIndex = (VPN & PT_MASK) >> PT_SHIFT

19: PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

20: PTE = AccessMemory(PTEAddr)

21: if(PTE.Valid == False)

22: RaiseException(SEGMENTATION_FAULT)

23: else if(CanAccess(PTE.ProtectBits) == False)

24: RaiseException(PROTECTION_FAULT);

25: else

26: TLB_Insert(VPN, PTE.PFN , PTE.ProtectBits)

27: RetryInstruction()

Inverted Page Tables

 Keeping a single page table that has an entry for each physical page

of the system.

 The entry tells us which process is using this page, and which virtual

page of that process maps to this physical page.

24Youjip Won

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

25Youjip Won

