
21. Swapping: Mechanisms
Operating System: Three Easy Pieces

1Youjip Won

Beyond Physical Memory: Mechanisms

 Require an additional level in the memory hierarchy.

 OS need a place to stash away portions of address space that currently

aren’t in great demand.

 In modern systems, this role is usually served by a hard disk drive

2Youjip Won

Mass Storage(hard disk, tape, etc...)

Main Memory

Cache

Registers

Memory Hierarchy in modern system

Single large address for a process

 Always need to first arrange for the code or data to be in memory

when before calling a function or accessing data.

 To Beyond just a single process.

 The addition of swap space allows the OS to support the illusion of a

large virtual memory for multiple concurrently-running process

3Youjip Won

Swap Space

 Reserve some space on the disk for moving pages back and forth.

 OS need to remember to the swap space, in page-sized unit

4Youjip Won

Proc 0
[VPN 0]

Proc 1
[VPN 2]

Proc 1
[VPN 3]

Proc 2
[VPN 0]

Physical
Memory

PFN 0 PFN 1 PFN 2 PFN 3

Proc 0
[VPN 1]

Proc 0
[VPN 2]

[Free]
Proc 1
[VPN 0]

Proc 1
[VPN 1]

Proc 3
[VPN 0]

Proc 2
[VPN 1]

Proc 3
[VPN 1]

Swap
Space

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Physical Memory and Swap Space

Present Bit

 Add some machinery higher up in the system in order to support

swapping pages to and from the disk.

 When the hardware looks in the PTE, it may find that the page is not

present in physical memory.

5Youjip Won

Value Meaning

1 page is present in physical memory

0 The page is not in memory but rather on disk.

What If Memory Is Full ?

 The OS like to page out pages to make room for the new pages the

OS is about to bring in.

 The process of picking a page to kick out, or replace is known as page-

replacement policy

6Youjip Won

The Page Fault

 Accessing page that is not in physical memory.

 If a page is not present and has been swapped disk, the OS need to swap

the page into memory in order to service the page fault.

7Youjip Won

 PTE used for data such as the PFN of the page for a disk address.

Page Fault Control Flow

i

8Youjip Won

Operating System

Secondary Storage

Load M

Virtual Address

Page Table

1. Reference

6. reinstruction

2.Trap

3. Check storage whether page is exist.

Page Frame

Page Frame

Page Frame

...

Page Frame

4. Get the page

5. Reset Page Table.

When the OS receives a page fault, it looks in the PTE and issues the request to disk.

Page Fault Control Flow – Hardware

9Youjip Won

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)

8: else RaiseException(PROTECTION_FAULT)

Page Fault Control Flow – Hardware

10Youjip Won

9: else // TLB Miss

10: PTEAddr = PTBR + (VPN * sizeof(PTE))

11: PTE = AccessMemory(PTEAddr)

12: if (PTE.Valid == False)

13: RaiseException(SEGMENTATION_FAULT)

14: else

15: if (CanAccess(PTE.ProtectBits) == False)

16: RaiseException(PROTECTION_FAULT)

17: else if (PTE.Present == True)

18: // assuming hardware-managed TLB

19: TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

20: RetryInstruction()

21: else if (PTE.Present == False)

22: RaiseException(PAGE_FAULT)

Page Fault Control Flow – Software

11Youjip Won

1: PFN = FindFreePhysicalPage()

2: if (PFN == -1) // no free page found

3: PFN = EvictPage() // run replacement algorithm

4: DiskRead(PTE.DiskAddr, pfn) // sleep (waiting for I/O)

5: PTE.present = True // update page table with present

6: PTE.PFN = PFN // bit and translation (PFN)

7: RetryInstruction() // retry instruction

 The OS must find a physical frame for the soon-be-faulted-in page to

reside within.

 If there is no such page, waiting for the replacement algorithm to run and

kick some pages out of memory.

When Replacements Really Occur

 OS waits until memory is entirely full, and only then replaces a page

to make room for some other page

 This is a little bit unrealistic, and there are many reason for the OS to keep

a small portion of memory free more proactively.

 Swap Daemon, Page Daemon

 There are fewer than LW pages available, a background thread that is

responsible for freeing memory runs.

 The thread evicts pages until there are HW pages available.

12Youjip Won

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

13Youjip Won

