
21. Swapping: Mechanisms
Operating System: Three Easy Pieces
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Beyond Physical Memory: Mechanisms

 Require an additional level in the memory hierarchy.

 OS need a place to stash away portions of address space that currently 

aren’t in great demand.

 In modern systems, this role is usually served by a hard disk drive
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Single large address for a process

 Always need to first arrange for the code or data to be in memory 

when before calling a function or accessing data.

 To Beyond just a single process.

 The addition of swap space allows the OS to support the illusion of a 

large virtual memory for multiple concurrently-running process
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Swap Space

 Reserve some space on the disk for moving pages back and forth.

 OS need to remember to the swap space, in page-sized unit
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Present Bit

 Add some machinery higher up in the system in order to support 

swapping pages to and from the disk.

 When the hardware looks in the PTE, it may find that the page is not 

present in physical memory.
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Value Meaning

1 page is present in physical memory

0 The page is not in memory but rather on disk.



What If Memory Is Full ? 

 The OS like to page out pages to make room for the new pages the 

OS is about to bring in.

 The process of picking a page to kick out, or replace is known as page-

replacement policy
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The Page Fault

 Accessing page that is not in physical memory.

 If a page is not present and has been swapped disk, the OS need to swap 

the page into memory in order to service the page fault.
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 PTE used for data such as the PFN of the page for a disk address.

Page Fault Control Flow

i
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Page Fault Control Flow – Hardware
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1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)

8: else RaiseException(PROTECTION_FAULT)



Page Fault Control Flow – Hardware
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9: else // TLB Miss

10: PTEAddr = PTBR + (VPN * sizeof(PTE))

11: PTE = AccessMemory(PTEAddr)

12: if (PTE.Valid == False) 

13: RaiseException(SEGMENTATION_FAULT)

14: else

15: if (CanAccess(PTE.ProtectBits) == False)

16: RaiseException(PROTECTION_FAULT)

17: else if (PTE.Present == True)

18: // assuming hardware-managed TLB

19: TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

20: RetryInstruction()

21: else if (PTE.Present == False) 

22: RaiseException(PAGE_FAULT)



Page Fault Control Flow – Software
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1: PFN = FindFreePhysicalPage()

2: if (PFN == -1) // no free page found

3: PFN = EvictPage() // run replacement algorithm

4: DiskRead(PTE.DiskAddr, pfn) // sleep (waiting for I/O)

5: PTE.present = True // update page table with present

6: PTE.PFN = PFN // bit and translation (PFN)

7: RetryInstruction() // retry instruction

 The OS must find a physical frame for the soon-be-faulted-in page to 

reside within.

 If there is no such page, waiting for the replacement algorithm to run and 

kick some pages out of memory.



When Replacements Really Occur

 OS waits until memory is entirely full, and only then replaces a page 

to make room for some other page

 This is a little bit unrealistic, and there are many reason for the OS to keep 

a small portion of memory free more proactively.

 Swap Daemon, Page Daemon

 There are fewer than LW pages available, a background thread that is 

responsible for freeing memory runs.

 The thread evicts pages until there are HW pages available.
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 Disclaimer: This lecture slide set was initially developed for Operating System course in 

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book 

written by Remzi and Andrea at University of Wisconsin.
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