
26. Concurrency: An Introduction
Operating System: Three Easy Pieces

1Youjip Won



Thread

 A new abstraction for a single running process

 Multi-threaded program

 A multi-threaded program has more than one point of execution.

 Multiple PCs (Program Counter)

 They share the share the same address space.

2Youjip Won



Context switch between threads

 Each thread has its own program counter and set of registers.

 One or more thread control blocks(TCBs) are needed to store the state 

of each thread.

 When switching from running one (T1) to running the other (T2),

 The register state of T1 be saved.

 The register state of T2 restored.

 The address space remains the same.

3Youjip Won



 There will be one stack per thread.

The stack of the relevant thread

4Youjip Won

Stack (1)
16KB

15KB
(free)

Stack (2)

(free)

Heap

Program Code
0KB

1KB

2KB

Stack (1)
16KB

15KB

(free)

Heap

Program Code
0KB

1KB

2KB

The code segment:
where instructions live

The heap segment: 
contains malloc’d data 
dynamic data structures 
(it grows downward)

(it grows upward)
The stack segment: 
contains local variables 
arguments to routines, 
return values, etc.

A Single-Threaded
Address Space

Two threaded
Address Space



 Example with two threads

 counter = counter + 1 (default is 50)

 We expect the result is 52. However,

Race condition

5Youjip Won

OS Thread1 Thread2 PC %eax counter

before critical section

mov 0x8049a1c, %eax

add $0x1, %eax

100

105

108

0

50

51

50

50

50

interrupt

save T1’s state

restore T2’s state

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

100

105

108

113

0

50

51

51

50

50

50

51

interrupt

save T2’s state

restore T1’s state

mov %eax, 0x8049a1c

108

113

51

51

50

51

(after instruction)



Critical section

 A piece of code that accesses a shared variable and must not be 

concurrently executed by more than one thread.

 Multiple threads executing critical section can result in a race condition.

 Need to support atomicity for critical sections (mutual exclusion)

6Youjip Won



Locks

 Ensure that any such critical section executes as if it were a single 

atomic instruction (execute a series of instructions atomically).

7Youjip Won

1    lock_t mutex;

2    . . .

3    lock(&mutex);

4    balance = balance + 1;

5    unlock(&mutex);

Critical section



 Disclaimer: This lecture slide set was initially developed for Operating System course in 

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book 

written by Remzi and Andrea at University of Wisconsin.

8Youjip Won


