
27. Interlude: Thread API
Operating System: Three Easy Pieces

1Youjip Won

Thread Creation

 How to create and control threads?

 thread: Used to interact with this thread.

 attr: Used to specify any attributes this thread might have.

 Stack size, Scheduling priority, …

 start_routine: the function this thread start running in.

 arg: the argument to be passed to the function (start routine)

 a void pointer allows us to pass in any type of argument.

2Youjip Won

#include <pthread.h>

int

pthread_create(pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

Thread Creation (Cont.)

 If start_routine instead required another type argument, the

declaration would look like this:

 An integer argument:

 Return an integer:

3Youjip Won

int

pthread_create(…, // first two args are the same

void* (*start_routine)(int),

int arg);

int

pthread_create(…, // first two args are the same

int (*start_routine)(void*),

void* arg);

Example: Creating a Thread

4Youjip Won

#include <pthread.h>

typedef struct __myarg_t {

int a;

int b;

} myarg_t;

void *mythread(void *arg) {

myarg_t *m = (myarg_t *) arg;

printf(“%d %d\n”, m->a, m->b);

return NULL;

}

int main(int argc, char *argv[]) {

pthread_t p;

int rc;

myarg_t args;

args.a = 10;

args.b = 20;

rc = pthread_create(&p, NULL, mythread, &args);

…

}

Wait for a thread to complete

 thread: Specify which thread to wait for

 value_ptr: A pointer to the return value

 Because pthread_join() routine changes the value, you need to pass in a

pointer to that value.

5Youjip Won

int pthread_join(pthread_t thread, void **value_ptr);

Example: Waiting for Thread Completion

6Youjip Won

1 #include <stdio.h>

2 #include <pthread.h>

3 #include <assert.h>

4 #include <stdlib.h>

5

6 typedef struct __myarg_t {

7 int a;

8 int b;

9 } myarg_t;

10

11 typedef struct __myret_t {

12 int x;

13 int y;

14 } myret_t;

15

16 void *mythread(void *arg) {

17 myarg_t *m = (myarg_t *) arg;

18 printf(“%d %d\n”, m->a, m->b);

19 myret_t *r = malloc(sizeof(myret_t));

20 r->x = 1;

21 r->y = 2;

22 return (void *) r;

23 }

24

Example: Waiting for Thread Completion (Cont.)

7Youjip Won

25 int main(int argc, char *argv[]) {

26 int rc;

27 pthread_t p;

28 myret_t *m;

29

30 myarg_t args;

31 args.a = 10;

32 args.b = 20;

33 pthread_create(&p, NULL, mythread, &args);

34 pthread_join(p, (void **) &m); // this thread has been

// waiting inside of the

// pthread_join() routine.

35 printf(“returned %d %d\n”, m->x, m->y);

36 return 0;

37 }

Example: Dangerous code

 Be careful with how values are returned from a thread.

 When the variable r returns, it is automatically de-allocated.

8Youjip Won

1 void *mythread(void *arg) {

2 myarg_t *m = (myarg_t *) arg;

3 printf(“%d %d\n”, m->a, m->b);

4 myret_t r; // ALLOCATED ON STACK: BAD!

5 r.x = 1;

6 r.y = 2;

7 return (void *) &r;

8 }

Example: Simpler Argument Passing to a Thread

 Just passing in a single value

9Youjip Won

1 void *mythread(void *arg) {

2 int m = (int) arg;

3 printf(“%d\n”, m);

4 return (void *) (arg + 1);

5 }

6

7 int main(int argc, char *argv[]) {

8 pthread_t p;

9 int rc, m;

10 pthread_create(&p, NULL, mythread, (void *) 100);

11 pthread_join(p, (void **) &m);

12 printf(“returned %d\n”, m);

13 return 0;

14 }

Locks

 Provide mutual exclusion to a critical section

 Interface

 Usage (w/o lock initialization and error check)

 No other thread holds the lock  the thread will acquire the lock and enter

the critical section.

 If another thread hold the lock  the thread will not return from the call until

it has acquired the lock.

10Youjip Won

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

pthread_mutex_t lock;

pthread_mutex_lock(&lock);

x = x + 1; // or whatever your critical section is

pthread_mutex_unlock(&lock);

Locks (Cont.)

 All locks must be properly initialized.

 One way: using PTHREAD_MUTEX_INITIALIZER

 The dynamic way: using pthread_mutex_init()

11Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int rc = pthread_mutex_init(&lock, NULL);

assert(rc == 0); // always check success!

Locks (Cont.)

 Check errors code when calling lock and unlock

 An example wrapper

 These two calls are used in lock acquisition

 trylock: return failure if the lock is already held

 timelock: return after a timeout

12Youjip Won

// Use this to keep your code clean but check for failures

// Only use if exiting program is OK upon failure

void Pthread_mutex_lock(pthread_mutex_t *mutex) {

int rc = pthread_mutex_lock(mutex);

assert(rc == 0);

}

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_timelock(pthread_mutex_t *mutex,

struct timespec *abs_timeout);

Locks (Cont.)

 These two calls are also used in lock acquisition

 trylock: return failure if the lock is already held

 timelock: return after a timeout or after acquiring the lock

13Youjip Won

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_timelock(pthread_mutex_t *mutex,

struct timespec *abs_timeout);

Condition Variables

 Condition variables are useful when some kind of signaling must take

place between threads.

 pthread_cond_wait:

 Put the calling thread to sleep.

 Wait for some other thread to signal it.

 pthread_cond_signal:

 Unblock at least one of the threads that are blocked on the condition variable

14Youjip Won

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

Condition Variables (Cont.)

 A thread calling wait routine:

 The wait call releases the lock when putting said caller to sleep.

 Before returning after being woken, the wait call re-acquire the lock.

 A thread calling signal routine:

15Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t init = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&init, &lock);

pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);

initialized = 1;

pthread_cond_signal(&init);

pthread_mutex_unlock(&lock);

Condition Variables (Cont.)

 The waiting thread re-checks the condition in a while loop, instead of

a simple if statement.

 Without rechecking, the waiting thread will continue thinking that the

condition has changed even though it has not.

16Youjip Won

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t init = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&init, &lock);

pthread_mutex_unlock(&lock);

Condition Variables (Cont.)

 Don’t ever to this.

 A thread calling wait routine:

 A thread calling signal routine:

 It performs poorly in many cases.  just wastes CPU cycles.

 It is error prone.

17Youjip Won

while(initialized == 0)

; // spin

initialized = 1;

Compiling and Running

 To compile them, you must include the header pthread.h

 Explicitly link with the pthreads library, by adding the –pthread flag.

 For more information,

18Youjip Won

prompt> gcc –o main main.c –Wall -pthread

man –k pthread

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

19Youjip Won

