
28. Locks
Operating System: Three Easy Pieces

1Youjip Won

Locks: The Basic Idea

 Ensure that any critical section executes as if it were a single atomic

instruction.

 An example: the canonical update of a shared variable

 Add some code around the critical section

2Youjip Won

balance = balance + 1;

1 lock_t mutex; // some globally-allocated lock ‘mutex’

2 …

3 lock(&mutex);

4 balance = balance + 1;

5 unlock(&mutex);

Locks: The Basic Idea

 Lock variable holds the state of the lock.

 available (or unlocked or free)

 No thread holds the lock.

 acquired (or locked or held)

 Exactly one thread holds the lock and presumably is in a critical section.

3Youjip Won

The semantics of the lock()

 lock()

 Try to acquire the lock.

 If no other thread holds the lock, the thread will acquire the lock.

 Enter the critical section.

 This thread is said to be the owner of the lock.

 Other threads are prevented from entering the critical section while the

first thread that holds the lock is in there.

4Youjip Won

Pthread Locks - mutex

 The name that the POSIX library uses for a lock.

 Used to provide mutual exclusion between threads.

 We may be using different locks to protect different variables  Increase

concurrency (a more fine-grained approach).

5Youjip Won

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

2

3 Pthread_mutex_lock(&lock); // wrapper for pthread_mutex_lock()

4 balance = balance + 1;

5 Pthread_mutex_unlock(&lock);

Building A Lock

 Efficient locks provided mutual exclusion at low cost.

 Building a lock need some help from the hardware and the OS.

6Youjip Won

Evaluating locks – Basic criteria

 Mutual exclusion

 Does the lock work, preventing multiple threads from entering a critical

section?

 Fairness

 Does each thread contending for the lock get a fair shot at acquiring it

once it is free? (Starvation)

 Performance

 The time overheads added by using the lock

7Youjip Won

Controlling Interrupts

 Disable Interrupts for critical sections

 One of the earliest solutions used to provide mutual exclusion

 Invented for single-processor systems.

 Problem:

 Require too much trust in applications

 Greedy (or malicious) program could monopolize the processor.

 Do not work on multiprocessors

 Code that masks or unmasks interrupts be executed slowly by modern CPUs

8Youjip Won

1 void lock() {

2 DisableInterrupts();

3 }

4 void unlock() {

5 EnableInterrupts();

6 }

Why hardware support needed?

 First attempt: Using a flag denoting whether the lock is held or not.

 The code below has problems.

9Youjip Won

1 typedef struct __lock_t { int flag; } lock_t;

2

3 void init(lock_t *mutex) {

4 // 0  lock is available, 1  held

5 mutex->flag = 0;

6 }

7

8 void lock(lock_t *mutex) {

9 while (mutex->flag == 1) // TEST the flag

10 ; // spin-wait (do nothing)

11 mutex->flag = 1; // now SET it !

12 }

13

14 void unlock(lock_t *mutex) {

15 mutex->flag = 0;

16 }

Why hardware support needed? (Cont.)

 Problem 1: No Mutual Exclusion (assume flag=0 to begin)

 Problem 2: Spin-waiting wastes time waiting for another thread.

 So, we need an atomic instruction supported by Hardware!

 test-and-set instruction, also known as atomic exchange

10Youjip Won

Thread1 Thread2

call lock()
while (flag == 1)

interrupt: switch to Thread 2
call lock()
while (flag == 1)

flag = 1;

interrupt: switch to Thread 1

flag = 1; // set flag to 1 (too!)

Test And Set (Atomic Exchange)

 An instruction to support the creation of simple locks

 return(testing) old value pointed to by the ptr.

 Simultaneously update(setting) said value to new.

 This sequence of operations is performed atomically.

11Youjip Won

1 int TestAndSet(int *ptr, int new) {

2 int old = *ptr; // fetch old value at ptr

3 *ptr = new; // store ‘new’ into ptr

4 return old; // return the old value

5 }

A Simple Spin Lock using test-and-set

 Note: To work correctly on a single processor, it requires a preemptive

scheduler.

12Youjip Won

1 typedef struct __lock_t {

2 int flag;

3 } lock_t;

4

5 void init(lock_t *lock) {

6 // 0 indicates that lock is available,

7 // 1 that it is held

8 lock->flag = 0;

9 }

10

11 void lock(lock_t *lock) {

12 while (TestAndSet(&lock->flag, 1) == 1)

13 ; // spin-wait

14 }

15

16 void unlock(lock_t *lock) {

17 lock->flag = 0;

18 }

Evaluating Spin Locks

 Correctness: yes

 The spin lock only allows a single thread to entry the critical section.

 Fairness: no

 Spin locks don’t provide any fairness guarantees.

 Indeed, a thread spinning may spin forever.

 Performance:

 In the single CPU, performance overheads can be quire painful.

 If the number of threads roughly equals the number of CPUs, spin locks

work reasonably well.

13Youjip Won

Compare-And-Swap

 Test whether the value at the address(ptr) is equal to expected.

 If so, update the memory location pointed to by ptr with the new value.

 In either case, return the actual value at that memory location.

14Youjip Won

1 int CompareAndSwap(int *ptr, int expected, int new) {

2 int actual = *ptr;

3 if (actual == expected)

4 *ptr = new;

5 return actual;

6 }

Compare-and-Swap hardware atomic instruction (C-style)

1 void lock(lock_t *lock) {

2 while (CompareAndSwap(&lock->flag, 0, 1) == 1)

3 ; // spin

4 }

Spin lock with compare-and-swap

Compare-And-Swap (Cont.)

 C-callable x86-version of compare-and-swap

15Youjip Won

1 char CompareAndSwap(int *ptr, int old, int new) {

2 unsigned char ret;

3

4 // Note that sete sets a ’byte’ not the word

5 __asm__ __volatile__ (

6 " lock\n"

7 " cmpxchgl %2,%1\n"

8 " sete %0\n"

9 : "=q" (ret), "=m" (*ptr)

10 : "r" (new), "m" (*ptr), "a" (old)

11 : "memory");

12 return ret;

13 }

Load-Linked and Store-Conditional

 The store-conditional only succeeds if no intermittent store to the address

has taken place.

 success: return 1 and update the value at ptr to value.

 fail: the value at ptr is not updates and 0 is returned.

16Youjip Won

1 int LoadLinked(int *ptr) {

2 return *ptr;

3 }

4

5 int StoreConditional(int *ptr, int value) {

6 if (no one has updated *ptr since the LoadLinked to this address) {

7 *ptr = value;

8 return 1; // success!

9 } else {

10 return 0; // failed to update

11 }

12 }

Load-linked And Store-conditional

Load-Linked and Store-Conditional (Cont.)

17Youjip Won

1 void lock(lock_t *lock) {

2 while (1) {

3 while (LoadLinked(&lock->flag) == 1)

4 ; // spin until it’s zero

5 if (StoreConditional(&lock->flag, 1) == 1)

6 return; // if set-it-to-1 was a success: all done

7 otherwise: try it all over again

8 }

9 }

10

11 void unlock(lock_t *lock) {

12 lock->flag = 0;

13 }

Using LL/SC To Build A Lock

1 void lock(lock_t *lock) {

2 while (LoadLinked(&lock->flag)||!StoreConditional(&lock->flag, 1))

3 ; // spin

4 }

A more concise form of the lock() using LL/SC

Fetch-And-Add

 Atomically increment a value while returning the old value at a

particular address.

18Youjip Won

1 int FetchAndAdd(int *ptr) {

2 int old = *ptr;

3 *ptr = old + 1;

4 return old;

5 }

Fetch-And-Add Hardware atomic instruction (C-style)

Ticket Lock

 Ticket lock can be built with fetch-and add.

 Ensure progress for all threads.  fairness

19Youjip Won

1 typedef struct __lock_t {

2 int ticket;

3 int turn;

4 } lock_t;

5

6 void lock_init(lock_t *lock) {

7 lock->ticket = 0;

8 lock->turn = 0;

9 }

10

11 void lock(lock_t *lock) {

12 int myturn = FetchAndAdd(&lock->ticket);

13 while (lock->turn != myturn)

14 ; // spin

15 }

16 void unlock(lock_t *lock) {

17 FetchAndAdd(&lock->turn);

18 }

So Much Spinning

 Hardware-based spin locks are simple and they work.

 In some cases, these solutions can be quite inefficient.

 Any time a thread gets caught spinning, it wastes an entire time slice

doing nothing but checking a value.

20Youjip Won

How To Avoid Spinning?
We’ll need OS Support too!

A Simple Approach: Just Yield

 When you are going to spin, give up the CPU to another thread.

 OS system call moves the caller from the running state to the ready state.

 The cost of a context switch can be substantial and the starvation

problem still exists.

21Youjip Won

1 void init() {

2 flag = 0;

3 }

4

5 void lock() {

6 while (TestAndSet(&flag, 1) == 1)

7 yield(); // give up the CPU

8 }

9

10 void unlock() {

11 flag = 0;

12 }

Lock with Test-and-set and Yield

Using Queues: Sleeping Instead of Spinning

 Queue to keep track of which threads are waiting to enter the lock.

 park()

 Put a calling thread to sleep

 unpark(threadID)

 Wake a particular thread as designated by threadID.

22Youjip Won

Using Queues: Sleeping Instead of Spinning

23Youjip Won

1 typedef struct __lock_t { int flag; int guard; queue_t *q; } lock_t;

2

3 void lock_init(lock_t *m) {

4 m->flag = 0;

5 m->guard = 0;

6 queue_init(m->q);

7 }

8

9 void lock(lock_t *m) {

10 while (TestAndSet(&m->guard, 1) == 1)

11 ; // acquire guard lock by spinning

12 if (m->flag == 0) {

13 m->flag = 1; // lock is acquired

14 m->guard = 0;

15 } else {

16 queue_add(m->q, gettid());

17 m->guard = 0;

18 park();

19 }

20 }

21 …

Lock With Queues, Test-and-set, Yield, And Wakeup

Using Queues: Sleeping Instead of Spinning

24Youjip Won

22 void unlock(lock_t *m) {

23 while (TestAndSet(&m->guard, 1) == 1)

24 ; // acquire guard lock by spinning

25 if (queue_empty(m->q))

26 m->flag = 0; // let go of lock; no one wants it

27 else

28 unpark(queue_remove(m->q)); // hold lock (for next thread!)

29 m->guard = 0;

30 }

Lock With Queues, Test-and-set, Yield, And Wakeup (Cont.)

Wakeup/waiting race

 In case of releasing the lock (thread A) just before the call to park()

(thread B)  Thread B would sleep forever (potentially).

 Solaris solves this problem by adding a third system call: setpark().

 By calling this routine, a thread can indicate it is about to park.

 If it happens to be interrupted and another thread calls unpark before

park is actually called, the subsequent park returns immediately instead

of sleeping.

25Youjip Won

1 queue_add(m->q, gettid());

2 setpark(); // new code

3 m->guard = 0;

4 park();

Code modification inside of lock()

Futex

 Linux provides a futex (is similar to Solaris’s park and unpark).

 futex_wait(address, expected)

 Put the calling thread to sleep

 If the value at address is not equal to expected, the call returns immediately.

 futex_wake(address)

 Wake one thread that is waiting on the queue.

26Youjip Won

Futex (Cont.)

 Snippet from lowlevellock.h in the nptl library

 The high bit of the integer v: track whether the lock is held or not

 All the other bits : the number of waiters

27Youjip Won

1 void mutex_lock(int *mutex) {

2 int v;

3 /* Bit 31 was clear, we got the mutex (this is the fastpath) */

4 if (atomic_bit_test_set(mutex, 31) == 0)

5 return;

6 atomic_increment(mutex);

7 while (1) {

8 if (atomic_bit_test_set(mutex, 31) == 0) {

9 atomic_decrement(mutex);

10 return;

11 }

12 /* We have to wait now. First make sure the futex value

13 we are monitoring is truly negative (i.e. locked). */

14 v = *mutex;

15 …

Linux-based Futex Locks

Futex (Cont.)

28Youjip Won

16 if (v >= 0)

17 continue;

18 futex_wait(mutex, v);

19 }

20 }

21

22 void mutex_unlock(int *mutex) {

23 /* Adding 0x80000000 to the counter results in 0 if and only if

24 there are not other interested threads */

25 if (atomic_add_zero(mutex, 0x80000000))

26 return;

27 /* There are other threads waiting for this mutex,

28 wake one of them up */

29 futex_wake(mutex);

30 }

Linux-based Futex Locks (Cont.)

Two-Phase Locks

 A two-phase lock realizes that spinning can be useful if the lock is

about to be released.

 First phase

 The lock spins for a while, hoping that it can acquire the lock.

 If the lock is not acquired during the first spin phase, a second phase is

entered,

 Second phase

 The caller is put to sleep.

 The caller is only woken up when the lock becomes free later.

29Youjip Won

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

30Youjip Won

