
31. Semaphore
Operating System: Three Easy Pieces

1Youjip Won

Semaphore: A definition

 An object with an integer value

 We can manipulate with two routines; sem_wait() and sem_post().

 Initialization

 Declare a semaphore s and initialize it to the value 1

 The second argument, 0, indicates that the semaphore is shared between

threads in the same process.

2Youjip Won

1 #include <semaphore.h>

2 sem_t s;

3 sem_init(&s, 0, 1); // initialize s to the value 1

Semaphore: Interact with semaphore

 sem_wait()

 If the value of the semaphore was one or higher when called

sem_wait(), return right away.

 It will cause the caller to suspend execution waiting for a subsequent post.

 When negative, the value of the semaphore is equal to the number of

waiting threads.

3Youjip Won

1 int sem_wait(sem_t *s) {

2 decrement the value of semaphore s by one

3 wait if value of semaphore s is negative

4 }

Semaphore: Interact with semaphore (Cont.)

 sem_post()

 Simply increments the value of the semaphore.

 If there is a thread waiting to be woken, wakes one of them up.

4Youjip Won

1 int sem_post(sem_t *s) {

2 increment the value of semaphore s by one

3 if there are one or more threads waiting, wake one

4 }

Binary Semaphores (Locks)

 What should X be?

 The initial value should be 1.

5Youjip Won

1 sem_t m;

2 sem_init(&m, 0, X); // initialize semaphore to X; what should X be?

3

4 sem_wait(&m);

5 //critical section here

6 sem_post(&m);

Thread Trace: Single Thread Using A Semaphore

Value of Semaphore Thread 0 Thread 1

1

1 call sema_wait()

0 sem_wait() returns

0 (crit sect)

0 call sem_post()

1 sem_post() returns

6Youjip Won

Thread Trace: Two Threads Using A Semaphore

Value Thread 0 State Thread 1 State

1 Running Ready

1 call sem_wait() Running Ready

0 sem_wait() retruns Running Ready

0 (crit set: begin) Running Ready

0 Interrupt; Switch → T1 Ready Running

0 Ready call sem_wait() Running

-1 Ready decrement sem Running

-1 Ready (sem < 0)→sleep sleeping

-1 Running Switch → T0 sleeping

-1 (crit sect: end) Running sleeping

-1 call sem_post() Running sleeping

0 increment sem Running sleeping

0 wait(T1) Running Ready

0 sem_post() returns Running Ready

0 Interrupt; Switch → T1 Ready Running

0 Ready sem_wait() retruns Running

0 Ready (crit sect) Running

0 Ready call sem_post() Running

1 Ready sem_post() returns Running

7Youjip Won

Semaphores As Condition Variables

 What should X be?

 The value of semaphore should be set to is 0.

8Youjip Won

1 sem_t s;

2

3 void *

4 child(void *arg) {

5 printf("child\n");

6 sem_post(&s); // signal here: child is done

7 return NULL;

8 }

9

10 int

11 main(int argc, char *argv[]) {

12 sem_init(&s, 0, X); // what should X be?

13 printf("parent: begin\n");

14 pthread_t c;

15 pthread_create(c, NULL, child, NULL);

16 sem_wait(&s); // wait here for child

17 printf("parent: end\n");

18 return 0;

19 }

A Parent Waiting For Its Child

parent: begin

child

parent: end

The execution result

Thread Trace: Parent Waiting For Child (Case 1)

 The parent call sem_wait() before the child has called sem_post().

9Youjip Won

Value Parent State Child State

0 Create(Child) Running (Child exists; is runnable) Ready

0 call sem_wait() Running Ready

-1 decrement sem Running Ready

-1 (sem < 0)→sleep sleeping Ready

-1 Switch→Child sleeping child runs Running

-1 sleeping call sem_post() Running

0 sleeping increment sem Running

0 Ready wake(Parent) Running

0 Ready sem_post() returns Running

0 Ready Interrupt; Switch→Parent Ready

0 sem_wait() retruns Running Ready

Thread Trace: Parent Waiting For Child (Case 2)

 The child runs to completion before the parent call sem_wait().

10Youjip Won

Value Parent State Child State

0 Create(Child) Running (Child exists; is runnable) Ready

0 Interrupt; switch→Child Ready child runs Running

0 Ready call sem_post() Running

1 Ready increment sem Running

1 Ready wake(nobody) Running

1 Ready sem_post() returns Running

1 parent runs Running Interrupt; Switch→Parent Ready

1 call sem_wait() Running Ready

0 decrement sem Running Ready

0 (sem<0)→awake Running Ready

0 sem_wait() retruns Running Ready

The Producer/Consumer (Bounded-Buffer) Problem

 Producer: put() interface

 Wait for a buffer to become empty in order to put data into it.

 Consumer: get() interface

 Wait for a buffer to become filled before using it.

11Youjip Won

1 int buffer[MAX];

2 int fill = 0;

3 int use = 0;

4

5 void put(int value) {

6 buffer[fill] = value; // line f1

7 fill = (fill + 1) % MAX; // line f2

8 }

9

10 int get() {

11 int tmp = buffer[use]; // line g1

12 use = (use + 1) % MAX; // line g2

13 return tmp;

14 }

The Producer/Consumer (Bounded-Buffer) Problem

12Youjip Won

1 sem_t empty;

2 sem_t full;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 sem_wait(&empty); // line P1

8 put(i); // line P2

9 sem_post(&full); // line P3

10 }

11 }

12

13 void *consumer(void *arg) {

14 int i, tmp = 0;

15 while (tmp != -1) {

16 sem_wait(&full); // line C1

17 tmp = get(); // line C2

18 sem_post(&empty); // line C3

19 printf("%d\n", tmp);

20 }

21 }

22 …

First Attempt: Adding the Full and Empty Conditions

The Producer/Consumer (Bounded-Buffer) Problem

 Imagine that MAX is greater than 1 .

 If there are multiple producers, race condition can happen at line f1.

 It means that the old data there is overwritten.

 We’ve forgotten here is mutual exclusion.

 The filling of a buffer and incrementing of the index into the buffer is a critical

section.

13Youjip Won

21 int main(int argc, char *argv[]) {

22 // …

23 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with…

24 sem_init(&full, 0, 0); // … and 0 are full

25 // …

26 }

First Attempt: Adding the Full and Empty Conditions (Cont.)

A Solution: Adding Mutual Exclusion

14Youjip Won

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 sem_wait(&mutex); // line p0 (NEW LINE)

9 sem_wait(&empty); // line p1

10 put(i); // line p2

11 sem_post(&full); // line p3

12 sem_post(&mutex); // line p4 (NEW LINE)

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 sem_wait(&mutex); // line c0 (NEW LINE)

20 sem_wait(&full); // line c1

21 int tmp = get(); // line c2

22 …

Adding Mutual Exclusion (Incorrectly)

A Solution: Adding Mutual Exclusion (Cont.)

 Imagine two thread: one producer and one consumer.

 The consumer acquire the mutex (line c0).

 The consumer calls sem_wait() on the full semaphore (line c1).

 The consumer is blocked and yield the CPU.

 The consumer still holds the mutex!

 The producer calls sem_wait() on the binary mutex semaphore (line p0).

 The producer is now stuck waiting too. a classic deadlock.

15Youjip Won

22 sem_post(&empty); // line c3

23 sem_post(&mutex); // line c4 (NEW LINE)

24 printf("%d\n", tmp);

25 }

26 }

Adding Mutual Exclusion (Incorrectly) (Cont.)

Finally, A Working Solution

16Youjip Won

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 sem_wait(&empty); // line p1

9 sem_wait(&mutex); // line p1.5 (MOVED MUTEX HERE…)

10 put(i); // line p2

11 sem_post(&mutex); // line p2.5 (… AND HERE)

12 sem_post(&full); // line p3

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 sem_wait(&full); // line c1

20 sem_wait(&mutex); // line c1.5 (MOVED MUTEX HERE…)

21 int tmp = get(); // line c2

22 sem_post(&mutex); // line c2.5 (… AND HERE)

23 …

Adding Mutual Exclusion (Correctly)

Finally, A Working Solution

17Youjip Won

23 sem_post(&empty); // line c3

24 printf(“%d\n”, tmp);

25 }

26 }

27

28 int main(int argc, char *argv[]) {

29 // …

30 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with …

31 sem_init(&full, 0, 0); // ... and 0 are full

32 sem_init(&mutex, 0, 1); // mutex=1 because it is a lock

33 // …

34 }

Adding Mutual Exclusion (Correctly)

Reader-Writer Locks

 Imagine a number of concurrent list operations, including inserts and

simple lookups.

 insert:

 Change the state of the list

 A traditional critical section makes sense.

 lookup:

 Simply read the data structure.

 As long as we can guarantee that no insert is on-going, we can allow many

lookups to proceed concurrently.

18Youjip Won

This special type of lock is known as a reader-write lock.

A Reader-Writer Locks

 Only a single writer can acquire the lock.

 Once a reader has acquired a read lock,

 More readers will be allowed to acquire the read lock too.

 A writer will have to wait until all readers are finished.

19Youjip Won

1 typedef struct _rwlock_t {

2 sem_t lock; // binary semaphore (basic lock)

3 sem_t writelock; // used to allow ONE writer or MANY readers

4 int readers; // count of readers reading in critical section

5 } rwlock_t;

6

7 void rwlock_init(rwlock_t *rw) {

8 rw->readers = 0;

9 sem_init(&rw->lock, 0, 1);

10 sem_init(&rw->writelock, 0, 1);

11 }

12

13 void rwlock_acquire_readlock(rwlock_t *rw) {

14 sem_wait(&rw->lock);

15 …

A Reader-Writer Locks (Cont.)

20Youjip Won

15 rw->readers++;

16 if (rw->readers == 1)

17 sem_wait(&rw->writelock); // first reader acquires writelock

18 sem_post(&rw->lock);

19 }

20

21 void rwlock_release_readlock(rwlock_t *rw) {

22 sem_wait(&rw->lock);

23 rw->readers--;

24 if (rw->readers == 0)

25 sem_post(&rw->writelock); // last reader releases writelock

26 sem_post(&rw->lock);

27 }

28

29 void rwlock_acquire_writelock(rwlock_t *rw) {

30 sem_wait(&rw->writelock);

31 }

32

33 void rwlock_release_writelock(rwlock_t *rw) {

34 sem_post(&rw->writelock);

35 }

A Reader-Writer Locks (Cont.)

 The reader-writer locks have fairness problem.

 It would be relatively easy for reader to starve writer.

 How to prevent more readers from entering the lock once a writer is

waiting?

21Youjip Won

The Dining Philosophers

 Assume there are five “philosophers” sitting around a table.

 Between each pair of philosophers is a single fork (five total).

 The philosophers each have times where they think, and don’t need any forks, and

times where they eat.

 In order to eat, a philosopher needs two forks, both the one on their left and the

one on their right.

 The contention for these forks.

22Youjip Won

P1
f1

P0

P4

f0

f4
P3

f3

P2

f2

The Dining Philosophers (Cont.)

 Key challenge

 There is no deadlock.

 No philosopher starves and never gets to eat.

 Concurrency is high.

 Philosopher p wishes to refer to the for on their left  call left(p).

 Philosopher p wishes to refer to the for on their right  call right(p).

23Youjip Won

while (1) {

think();

getforks();

eat();

putforks();

}

// helper functions

int left(int p) { return p; }

int right(int p) {

return (p + 1) % 5;

}

Basic loop of each philosopher Helper functions (Downey’s solutions)

The Dining Philosophers (Cont.)

 We need some semaphore, one for each fork: sem_t forks[5].

 Deadlock occur!

 If each philosopher happens to grab the fork on their left before any

philosopher can grab the fork on their right.

 Each will be stuck holding one fork and waiting for another, forever.

24Youjip Won

1 void getforks() {

2 sem_wait(forks[left(p)]);

3 sem_wait(forks[right(p)]);

4 }

5

6 void putforks() {

7 sem_post(forks[left(p)]);

8 sem_post(forks[right(p)]);

9 }

The getforks() and putforks() Routines (Broken Solution)

A Solution: Breaking The Dependency

 Change how forks are acquired.

 Let’s assume that philosopher 4 acquire the forks in a different order.

 There is no situation where each philosopher grabs one fork and is stuck

waiting for another. The cycle of waiting is broken.

25Youjip Won

1 void getforks() {

2 if (p == 4) {

3 sem_wait(forks[right(p)]);

4 sem_wait(forks[left(p)]);

5 } else {

6 sem_wait(forks[left(p)]);

7 sem_wait(forks[right(p)]);

8 }

9 }

How To Implement Semaphores

 Build our own version of semaphores called Zemaphores

26Youjip Won

1 typedef struct __Zem_t {

2 int value;

3 pthread_cond_t cond;

4 pthread_mutex_t lock;

5 } Zem_t;

6

7 // only one thread can call this

8 void Zem_init(Zem_t *s, int value) {

9 s->value = value;

10 Cond_init(&s->cond);

11 Mutex_init(&s->lock);

12 }

13

14 void Zem_wait(Zem_t *s) {

15 Mutex_lock(&s->lock);

16 while (s->value <= 0)

17 Cond_wait(&s->cond, &s->lock);

18 s->value--;

19 Mutex_unlock(&s->lock);

20 }

21 …

How To Implement Semaphores (Cont.)

 Zemaphore don’t maintain the invariant that the value of the semaphore.

 The value never be lower than zero.

 This behavior is easier to implement and matches the current Linux

implementation.

27Youjip Won

22 void Zem_post(Zem_t *s) {

23 Mutex_lock(&s->lock);

24 s->value++;

25 Cond_signal(&s->cond);

26 Mutex_unlock(&s->lock);

27 }

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

28Youjip Won

