
33. Event-based Concurrency (Advanced)
Operating System: Three Easy Pieces

1Youjip Won

Event-based Concurrency

 A different style of concurrent programming

 Used in GUI-based applications, some types of internet servers.

 The problem that event-based concurrency addresses is two-fold.

 Managing concurrency correctly in multi-threaded applications.

 Missing locks, deadlock, and other nasty problems can arise.

 The developer has little or no control over what is scheduled at a given

moment in time.

2Youjip Won

The Basic Idea: An Event Loop

 The approach:

 Wait for something (i.e., an “event”)to occur.

 When it does, check what type of event it is.

 Do the small amount of work it requires.

 Example:

3Youjip Won

1 while(1){

2 events = getEvents();

3 for(e in events)

4 processEvent(e); // event handler

5 }

How exactly does an event-based server determine
which events are taking place.

A canonical event-based server (Pseudo code)

An Important API: select() (or poll())

 Check whether there is any incoming I/O that should be attended to.

 select()

 Lets a server determine that a new packet has arrived and is in need of

processing.

 Let the service know when it is OK to reply.

 timeout

 NULL: Cause select() to block indefinitely until some descriptor is ready.

 0: Use the call to select() to return immediately.

4Youjip Won

int select(int nfds,

fd_set * restrict readfds,

fd_set * restrict writefds,

fd_set * restrict errorfds,

struct timeval * restrict timeout);

Using select()

 How to use select() to see which network descriptors have

incoming messages upon them.

5Youjip Won

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <sys/types.h>

5 #include <unistd.h>

6

7 int main(void) {

8 // open and set up a bunch of sockets (not shown)

9 // main loop

10 while (1) {

11 // initialize the fd_set to all zero

12 fd_set readFDs;

13 FD_ZERO(&readFDs);

14

15 // now set the bits for the descriptors

16 // this server is interested in

17 // (for simplicity, all of them from min to max)

18 …

Simple Code using select()

Using select()(Cont.)

6Youjip Won

18 int fd;

19 for (fd = minFD; fd < maxFD; fd++)

20 FD_SET(fd, &readFDs);

21

22 // do the select

23 int rc = select(maxFD+1, &readFDs, NULL, NULL, NULL);

24

25 // check which actually have data using FD_ISSET()

26 int fd;

27 for (fd = minFD; fd < maxFD; fd++)

28 if (FD_ISSET(fd, &readFDs))

29 processFD(fd);

30 }

31 }

Simple Code using select() (Cont.)

Why Simpler? No Locks Needed

 The event-based server cannot be interrupted by another thread.

 With a single CPU and an event-based application.

 It is decidedly single threaded.

 Thus, concurrency bugs common in threaded programs do not manifest

in the basic event-based approach.

7Youjip Won

A Problem: Blocking System Calls

 What if an event requires that you issue a system call that might

block?

 There are no other threads to run: just the main event loop

 The entire server will do just that: block until the call completes.

 Huge potential waste of resources

8Youjip Won

In event-based systems: no blocking calls are allowed.

A Solution: Asynchronous I/O

 Enable an application to issue an I/O request and return control

immediately to the caller, before the I/O has completed.

 Example:

 An Interface provided on Max OS X

 The APIs revolve around a basic structure, the struct aiocb or AIO control

block in common terminology.

9Youjip Won

struct aiocb {

int aio_fildes; /* File descriptor */

off_t aio_offset; /* File offset */

volatile void *aio_buf; /* Location of buffer */

size_t aio_nbytes; /* Length of transfer */

};

A Solution: Asynchronous I/O (Cont.)

 Asynchronous API:

 To issue an asynchronous read to a file

 If successful, it returns right away and the application can continue with its

work.

 Checks whether the request referred to by aiocbp has completed.

 An application can periodically pool the system via aio_error().

 If it has completed, returns success.

 If not, EINPROGRESS is returned.

10Youjip Won

int aio_read(struct aiocb *aiocbp);

int aio_error(const struct aiocb *aiocbp);

A Solution: Asynchronous I/O (Cont.)

 Interrupt

 Remedy the overhead to check whether an I/O has completed

 Using UNIX signals to inform applications when an asynchronous I/O

completes.

 Removing the need to repeatedly ask the system.

11Youjip Won

Another Problem: State Management

 The code of event-based approach is generally more complicated to

write than traditional thread-based code.

 It must package up some program state for the next event handler to use

when the I/O completes.

 The state the program needs is on the stack of the thread.  manual

stack management

12Youjip Won

Another Problem: State Management (Cont.)

 Example (an event-based system):

 First issue the read asynchronously.

 Then, periodically check for completion of the read.

 That call informs us that the read is complete.

 How does the event-based server know what to do?

13Youjip Won

int rc = read(fd, buffer, size);

rc = write(sd, buffer, size);

Another Problem: State Management (Cont.)

 Solution: continuation

 Record the needed information to finish processing this event in some

data structure.

 When the event happens (i.e., when the disk I/O completes), look up the

needed information and process the event.

14Youjip Won

What is still difficult with Events.

 Systems moved from a single CPU to multiple CPUs.

 Some of the simplicity of the event-based approach disappeared.

 It does not integrate well with certain kinds of systems activity.

 Ex. Paging: A server will not make progress until page fault completes (implicit

blocking).

 Hard to manage overtime: The exact semantics of various routines changes.

 Asynchronous disk I/O never quite integrates with asynchronous network I/O

in as simple and uniform a manner as you might think.

15Youjip Won

ASIDE: Unix Signals

 Provide a way to communicate with a process.

 HUP (hang up), INT(interrupt), SEGV(segmentation violation), and etc.

 Example: When your program encounters a segmentation violation, the

OS sends it a SIGSEGV.

16Youjip Won

#include <stdio.h>

#include <signal.h>

void handle(int arg) {

printf("stop wakin’ me up...\n");

}

int main(int argc, char *argv[]) {

signal(SIGHUP, handle);

while (1)

; // doin’ nothin’ except catchin’ some sigs

return 0;

}

A simple program that goes into an infinite loop

ASIDE: Unix Signals (Cont.)

 You can send signals to it with the kill command line tool.

 Doing so will interrupt the main while loop in the program and run the

handler code handle().

17Youjip Won

prompt> ./main &

[3] 36705

prompt> kill -HUP 36705

stop wakin’ me up...

prompt> kill -HUP 36705

stop wakin’ me up...

prompt> kill -HUP 36705

stop wakin’ me up...

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

18Youjip Won

