
36. I/O Devices
Operating System: Three Easy Pieces

1Youjip Won

I/O Devices

 I/O is critical to computer system to interact with systems.

 Issue :

 How should I/O be integrated into systems?

 What are the general mechanisms?

 How can we make the efficiently?

2Youjip Won

Structure of input/output (I/O) device

3Youjip Won

CPU Memory

Graphics

Prototypical System Architecture

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, STAT, USB)

CPU is attached to the main memory of the system via some kind of memory bus.

Some devices are connected to the system via a general I/O bus.

I/O Architecture

 Buses

 Data paths that provided to enable information between CPU(s), RAM, and

I/O devices.

 I/O bus

 Data path that connects a CPU to an I/O device.

 I/O bus is connected to I/O device by three hardware components: I/O po

rts, interfaces and device controllers.

4Youjip Won

 Canonical Devices has two important components.

 Hardware interface allows the system software to control its operation.

 Internals which is implementation specific.

Canonical Device

5Youjip Won

Command Data

Canonical Device

Registers:

Micro-controller(CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status
interface

internals

Hardware interface of Canonical Device

 status register

 See the current status of the device

 command register

 Tell the device to perform a certain task

 data register

 Pass data to the device, or get data from the device

6Youjip Won

By reading and writing above three registers,
the operating system can control device behavior.

Hardware interface of Canonical Device (Cont.)

 Typical interaction example

7Youjip Won

while (STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command

while (STATUS == BUSY)

; //wait until device is done with your request

Polling

 Operating system waits until the device is ready by repeatedly

reading the status register.

 Positive aspect is simple and working.

 However, it wastes CPU time just waiting for the device.

 Switching to another ready process is better utilizing the CPU.

8Youjip Won

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO”

interrupts

 Put the I/O request process to sleep and context switch to another.

 When the device is finished, wake the process waiting for the I/O by

interrupt.

 Positive aspect is allow to CPU and the disk are properly utilized.

9Youjip Won

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt

1 1 1 1 1

: task 11 : task 22

Polling vs interrupts

 However, “interrupts is not always the best solution”

 If, device performs very quickly, interrupt will “slow down” the system.

 Because context switch is expensive (switching to another process)

10Youjip Won

If a device is fast  poll is best.
If it is slow  interrupts is better.

CPU is once again over-burdened

 CPU wastes a lot of time to copy the a large chunk of data from

memory to the device.

11Youjip Won

1 1 1 1 C C C 2 2 2 2 2 1 1 1CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C : copy data from memory

DMA (Direct Memory Access)

 Copy data in memory by knowing “where the data lives in memory,

how much data to copy”

 When completed, DMA raises an interrupt, I/O begins on Disk.

12Youjip Won

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1CPU

DMA

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

Disk

: task 11 : task 22

C : copy data from memory

Device interaction

 How the OS communicates with the device?

 Solutions

 I/O instructions: a way for the OS to send data to specific device registers.

 Ex) in and out instructions on x86

 memory-mapped I/O

 Device registers available as if they were memory locations.

 The OS load (to read) or store (to write) to the device instead of main

memory.

13Youjip Won

Device interaction (Cont.)

 How the OS interact with different specific interfaces?

 Ex) We’d like to build a file system that worked on top of SCSI disks, IDE

disks, USB keychain drivers, and so on.

 Solutions: Abstraction

 Abstraction encapsulate any specifics of device interaction.

14Youjip Won

File system Abstraction

 File system specifics of which disk class it is using.

 Ex) It issues block read and write request to the generic block layer.

15Youjip Won

The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]

Problem of File system Abstraction

 If there is a device having many special capabilities, these capabilities

will go unused in the generic interface layer.

 Over 70% of OS code is found in device drivers.

 Any device drivers are needed because you might plug it to your system.

 They are primary contributor to kernel crashes, making more bugs.

16Youjip Won

A Simple IDE Disk Driver

 Four types of register

 Control, command block, status and error

 Memory mapped IO

 in and out I/O instruction

17Youjip Won

 Control Register:

Address 0x3F6 = 0x80 (0000 1RE0): R=reset, E=0 means "enable interrupt”

 Command Block Registers:

Address 0x1F0 = Data Port

Address 0x1F1 = Error

Address 0x1F2 = Sector Count

Address 0x1F3 = LBA low byte

Address 0x1F4 = LBA mid byte

Address 0x1F5 = LBA hi byte

Address 0x1F6 = 1B1D TOP4LBA: B=LBA, D=drive

Address 0x1F7 = Command/status

18Youjip Won

 Status Register (Address 0x1F7):

7 6 5 4 3 2 1 0

BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR

 Error Register (Address 0x1F1): (check when Status ERROR==1)

7 6 5 4 3 2 1 0

BBK UNC MC IDNF MCR ABRT T0NF AMNF

 BBK = Bad Block

 UNC = Uncorrectable data error

 MC = Media Changed

 IDNF = ID mark Not Found

 MCR = Media Change Requested

 ABRT = Command aborted

 T0NF = Track 0 Not Found

 AMNF = Address Mark Not Found

19Youjip Won

 Wait for drive to be ready. Read Status Register (0x1F7) until drive is not busy and REA

DY.

 Write parameters to command registers. Write the sector count, logical block address

(LBA) of the sectors to be accessed, and drive number (master=0x00 or slave=0x10, as I

DE permits just two drives) to command registers (0x1F2-0x1F6).

 Start the I/O. by issuing read/write to command register. Write READ—WRITE comman

d to command register (0x1F7).

 Data transfer (for writes): Wait until drive status is READY and DRQ (drive request for d

ata); write data to data port.

 Handle interrupts. In the simplest case, handle an interrupt for each sector transferred;

more complex approaches allow batching and thus one final interrupt when the entire t

ransfer is complete.

 Error handling. After each operation, read the status register. If the ERROR bit is on, rea

d the error register for details.

20Youjip Won

static int ide_wait_ready() {

while (((int r = inb(0x1f7)) & IDE_BSY) ||

!(r & IDE_DRDY))

; // loop until drive isn’t busy

}

21Youjip Won

static void ide_start_request(struct buf *b) {

ide_wait_ready();

outb(0x3f6, 0); // generate interrupt

outb(0x1f2, 1); // how many sectors?

outb(0x1f3, b->sector & 0xff); // LBA goes here ...

outb(0x1f4, (b->sector >> 8) & 0xff); // ... and here

outb(0x1f5, (b->sector >> 16) & 0xff); // ... and here!

outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((b->sector>>24)&0x0f));

if(b->flags & B_DIRTY){

outb(0x1f7, IDE_CMD_WRITE); // this is a WRITE

outsl(0x1f0, b->data, 512/4); // transfer data too!

} else {

outb(0x1f7, IDE_CMD_READ); // this is a READ (no data)

}

}

22Youjip Won

void ide_rw(struct buf *b) {

acquire(&ide_lock);

for (struct buf **pp = &ide_queue; *pp; pp=&(*pp)->qnext)

; // walk queue

*pp = b; // add request to end

if (ide_queue == b) // if q is empty

ide_start_request(b); // send req to disk

while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)

sleep(b, &ide_lock); // wait for completion

release(&ide_lock);

}

23Youjip Won

void ide_intr() {

struct buf *b;

acquire(&ide_lock);

if (!(b->flags & B_DIRTY) && ide_wait_ready(1) >= 0)

insl(0x1f0, b->data, 512/4); // if READ: get data

b->flags |= B_VALID;

b->flags &= B̃_DIRTY;

wakeup(b); // wake waiting process

if ((ide_queue = b->qnext) != 0) // start next request

ide_start_request(ide_queue); // (if one exists)

release(&ide_lock);

}

24Youjip Won

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

25Youjip Won

