
39. File and Directories
Operating System: Three Easy Pieces

1Youjip Won

Persistent Storage

 Keep a data intact even if there is a power loss.

 Hard disk drive

 Solid-state storage device

 Two key abstractions in the virtualization of storage

 File

 Directory

2Youjip Won

File

 A linear array of bytes

 Each file has low-level name as inode number

 The user is not aware of this name.

 Filesystem has a responsibility to store data persistently on disk.

3Youjip Won

Directory

 Directory is like a file, also has a low-level name.

 It contains a list of (user-readable name, low-level name) pairs.

 Each entry in a directory refers to either files or other directories.

 Example)

 A directory has an entry (“foo”, “10”)

 A file “foo” with the low-level name “10”

4Youjip Won

Directory Tree (Directory Hierarchy)

5Youjip Won

/

foo

bar.t
xt

bar

foobar

bar.t
xt

An Example Directory Tree

root directory
Valid files (absolute pathname) :
/foo/bar.txt
/bar/foo/bar.txt

Valid directory :
/
/foo
/bar
/bar/bar
/bar/foo/

Sub-directories

Creating Files

 Use open() system call with O_CREAT flag.

 O_CREAT : create file.

 O_WRONLY : only write to that file while opened.

 O_TRUNC : make the file size zero (remove any existing content).

 open() system call returns file descriptor.

 File descriptor is an integer, and is used to access files.

6Youjip Won

int fd = open(“foo”, O_CREAT | O_WRONLY | O_TRUNC);

Reading and Writing Files

 An Example of reading and writing ‘foo’ file

 echo : redirect the output of echo to the file foo

 cat : dump the contents of a file to the screen

7Youjip Won

prompt> echo hello > foo

prompt> cat foo

hello

prompt>

How does the cat program access the file foo ?

We can use strace to trace the system calls made by a program.

Reading and Writing Files (Cont.)

 open(file descriptor, flags)

 Return file descriptor (3 in example)

 File descriptor 0, 1, 2, is for standard input/ output/ error.

 read(file descriptor, buffer pointer, the size of the buffer)

 Return the number of bytes it read

 write(file descriptor, buffer pointer, the size of the buffer)

 Return the number of bytes it write

8Youjip Won

prompt> strace cat foo

…

open(“foo”, O_RDONLY|O_LARGEFILE) = 3

read(3, “hello\n”, 4096) = 6

write(1, “hello\n”, 6) = 6 // file descriptor 1: standard out

hello

read(3, “”, 4096) = 0 // 0: no bytes left in the file

close(3) = 0

…

prompt>

Reading and Writing Files (Cont.)

 Writing a file (A similar set of read steps)

 A file is opened for writing (open()).

 The write() system call is called.

 Repeatedly called for larger files

 close()

9Youjip Won

Reading And Writing, But Not Sequentially

 An open file has a current offset.

 Determine where the next read or write will begin reading from or writing

to within the file.

 Update the current offset

 Implicitly: A read or write of N bytes takes place, N is added to the current

offset.

 Explicitly: lseek()

10Youjip Won

Reading And Writing, But Not Sequentially (Cont.)

 fildes : File descriptor

 offset : Position the file offset to a particular location within the file

 whence : Determine how the seek is performed

11Youjip Won

off_t lseek(int fildes, off_t offset, int whence);

If whence is SEEK_SET, the offset is set to offset bytes.

If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes.

If whence is SEEK_END, the offset is set to the size of the

file plus offset bytes.

From the man page:

Writing Immediately with fsync()

 The file system will buffer writes in memory for some time.

 Ex) 5 seconds, or 30

 Performance reasons

 At that later point in time, the write(s) will actually be issued to the

storage device.

 Write seem to complete quickly.

 Data can be lost (e.g., the machine crashes).

12Youjip Won

Writing Immediately with fsync() (Cont.)

 However, some applications require more than eventual guarantee.

 Ex) DBMS requires force writes to disk from time to time.

 off_t fsync(int fd)

 Filesystem forces all dirty (i.e., not yet written) data to disk for the file

referred to by the file description.

 fsync() returns once all of theses writes are complete.

13Youjip Won

Writing Immediately with fsync() (Cont.)

 An Example of fsync().

 In some cases, this code needs to fsync() the directory that contains

the file foo.

14Youjip Won

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);

assert (fd > -1)

int rc = write(fd, buffer, size);

assert (rc == size);

rc = fsync(fd);

assert (rc == 0);

Renaming Files

 rename(char* old, char *new)

 Rename a file to different name.

 It implemented as an atomic call.

 Ex) Change from foo to bar:

 Ex) How to update a file atomically:

15Youjip Won

prompt> mv foo bar // mv uses the system call rename()

int fint fd = open("foo.txt.tmp", O_WRONLY|O_CREAT|O_TRUNC);

write(fd, buffer, size); // write out new version of file

fsync(fd);

close(fd);

rename("foo.txt.tmp", "foo.txt");

Getting Information About Files

 stat(), fstat(): Show the file metadata

 Metadata is information about each file.

 Ex) Size, Low-level name, Permission, …

 stat structure is below:

16Youjip Won

struct stat {

dev_t st_dev; /* ID of device containing file */

ino_t st_ino; /* inode number */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device ID (if special file) */

off_t st_size; /* total size, in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last status change */

};

Getting Information About Files (Cont.)

 To see stat information, you can use the command line tool stat.

 File system keeps this type of information in a inode structure.

17Youjip Won

prompt> echo hello > file

prompt> stat file

File: ‘file’

Size: 6 Blocks: 8 IO Block: 4096 regular file

Device: 811h/2065d Inode: 67158084 Links: 1

Access: (0640/-rw-r-----) Uid: (30686/ root) Gid: (30686/ remzi)

Access: 2011-05-03 15:50:20.157594748 -0500

Modify: 2011-05-03 15:50:20.157594748 -0500

Change: 2011-05-03 15:50:20.157594748 -0500

Removing Files

 rm is Linux command to remove a file

 rm call unlink() to remove a file.

18Youjip Won

prompt> strace rm foo

…

unlink(“foo”) = 0 // return 0 upon success

…

prompt>

Why it calls unlink()? not “remove or delete”

We can get the answer later.

Making Directories

 mkdir(): Make a directory

 When a directory is created, it is empty.

 Empty directory have two entries: . (itself), .. (parent)

19Youjip Won

prompt> ls –a

./ ../

prompt> ls -al

total 8

drwxr-x--- 2 remzi remzi 6 Apr 30 16:17 ./

drwxr-x--- 26 remzi remzi 4096 Apr 30 16:17 ../

prompt> strace mkdir foo

…

mkdir(“foo”, 0777) = 0

prompt>

Reading Directories

 A sample code to read directory entries (like ls).

 The information available within struct dirent

20Youjip Won

int main(int argc, char *argv[]) {

DIR *dp = opendir("."); // open current directory

assert(dp != NULL);

struct dirent *d;

while ((d = readdir(dp)) != NULL) // read one directory entry

{

// print outthe name and inode number of each file

printf("%d %s\n", (int) d->d_ino, d->d_name);

}

closedir(dp); // close current directory

return 0;

}

struct direct {

char d_name[256]; /* filename */

ino_t d_ino; /* inode number */

off_t d_off; /* offset to the next direct */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file */

}

Deleting Directories

 rmdir(): Delete a directory.

 Require that the directory be empty.

 If you call rmdir()to a non-empty directory, it will fail.

 I.e., Only has “.” and “..” entries.

21Youjip Won

Hard Links

 link(old pathname, new one)

 Link a new file name to an old one

 Create another way to refer to the same file

 The command-line link program : ln

22Youjip Won

prompt> echo hello > file

prompt> cat file

hello

prompt> ln file file2 // create a hard link, link file to file2

prompt> cat file2

hello

Hard Links (Cont.)

 The way link works:

 Create another name in the directory.

 Refer it to the same inode number of the original file.

 The file is not copied in any way.

 Then, we now just have two human names (file and file2) that both

refer to the same file.

23Youjip Won

Hard Links (Cont.)

 The result of link()

 Two files have same inode number, but two human name (file, file2).

 There is no difference between file and file2.

 Both just links to the underlying metadata about the file.

24Youjip Won

prompt> ls -i file file2

67158084 file /* inode value is 67158084 */

67158084 file2 /* inode value is 67158084 */

prompt>

Hard Links (Cont.)

 Thus, to remove a file, we call unlink().

 reference count

 Track how many different file names have been linked to this inode.

 When unlink() is called, the reference count decrements.

 If the reference count reaches zero, the filesystem free the inode and related

data blocks.  truly “delete” the file

25Youjip Won

prompt> rm file

removed ‘file’

prompt> cat file2 // Still access the file

hello

Hard Links (Cont.)

 The result of unlink()

 stat() shows the reference count of a file.

26Youjip Won

prompt> echo hello > file /* create file*/

prompt> stat file

... Inode: 67158084 Links: 1 ... /* Link count is 1 */

prompt> ln file file2 /* hard link file2 */

prompt> stat file

... Inode: 67158084 Links: 2 ... /* Link count is 2 */

prompt> stat file2

... Inode: 67158084 Links: 2 ... /* Link count is 2 */

prompt> ln file2 file3 /* hard link file3 */

prompt> stat file

... Inode: 67158084 Links: 3 ... /* Link count is 3 */

prompt> rm file /* remove file */

prompt> stat file2

... Inode: 67158084 Links: 2 ... /* Link count is 2 */

prompt> rm file2 /* remove file2 */

prompt> stat file3

... Inode: 67158084 Links: 1 ... /* Link count is 1 */

prompt> rm file3

Symbolic Links (Soft Link)

 Symbolic link is more useful than Hard link.

 Hard Link cannot create to a directory.

 Hard Link cannot create to a file to other partition.

 Because inode numbers are only unique within a file system.

 Create a symbolic link: ln -s

27Youjip Won

prompt> echo hello > file

prompt> ln –s file file2 /* option –s : create a symbolic link, */

prompt> cat file2

hello

Symbolic Links (Cont.)

 What is different between Symbolic link and Hard Link?

 Symbolic links are a third type the file system knows about.

 The size of symbolic link (file2) is 4 bytes.

 A symbolic link holds the pathname of the linked-to file as the data of the link

file.

28Youjip Won

prompt> stat file

... regular file ...

prompt> stat file2

... symbolic link ... // Actually a file it self of a different type

prompt> ls -al

drwxr-x--- 2 remzi remzi 29 May 3 19:10 ./

drwxr-x--- 27 remzi remzi 4096 May 3 15:14 ../ // directory

-rw-r----- 1 remzi remzi 6 May 3 19:10 file // regular file

lrwxrwxrwx 1 remzi remzi 4 May 3 19:10 file2 -> file // symbolic link

Symbolic Links (Cont.)

 If we link to a longer pathname, our link file would be bigger.

29Youjip Won

prompt> echo hello > alongerfilename

prompt> ln -s alongerfilename file3

prompt> ls -al alongerfilename file3

-rw-r----- 1 remzi remzi 6 May 3 19:17 alongerfilename

lrwxrwxrwx 1 remzi remzi 15 May 3 19:17 file3 -> alongerfilename

Symbolic Links (Cont.)

 Dangling reference

 When remove a original file, symbolic link points noting.

30Youjip Won

prompt> echo hello > file

prompt> ln -s file file2

prompt> cat file2

hello

prompt> rm file // remove the original file

prompt> cat file2

cat: file2: No such file or directory

Making and Mounting a File System

 mkfs tool : Make a file system

 Write an empty file system, starting with a root directory, on to a disk

partition.

 Input:

 A device (such as a disk partition, e.g., /dev/sda1)

 A file system type (e.g., ext3)

31Youjip Won

Making and Mounting a File System (Cont.)

 mount()

 Take an existing directory as a target mount point.

 Essentially paste a new file system onto the directory tree at that point.

 Example)

 The pathname /home/users/ now refers to the root of the newly-mounted

directory.

32Youjip Won

prompt> mount –t ext3 /dev/sda1 /home/users

prompt> ls /home/users

a b

Making and Mounting a File System (Cont.)

 mount program: show what is mounted on a system.

 ext3: A standard disk-based file system

 proc: A file system for accessing information about current processes

 tmpfs: A file system just for temporary files

 AFS: A distributed file system

33Youjip Won

/dev/sda1 on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

/dev/sda5 on /tmp type ext3 (rw)

/dev/sda7 on /var/vice/cache type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

AFS on /afs type afs (rw)

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

34Youjip Won

