
41. Locality and The Fast File System
Operating System: Three Easy Pieces

1Youjip Won

Unix operating system

 The Good Thing

 Simple and supports the basic abstractions.

 Easy to use file system.

 The Problem

 Terrible performance

2Youjip Won

S Inodes Data

Data structures

Problem of Unix operating system

 Unix file system treated the disk as a random-access memory.

 Example of random-access blocks with Four files.

 Data blocks for each file can accessed by going back and forth the disk,

because they are are contiguous.

 File b and d is deleted.

 File E is created with free blocks. (spread across the block)

 Other Problem is the original block size was too small(512 bytes)

3Youjip Won

A1 A2 B1 B2 C1 C2 D1 D2

A1 A2 C1 C2

A1 A2 E1 E2 C1 C2 E3 E4

FFS: Disk Awareness is the solution

 FFS is Fast File system designed by a group at Berkeley.

 The design of FFS is that file system structures and allocation polices

to be “disk aware” and improve performance.

 Keep same API with file system. (open(), read(), write(), etc)

 Changing the internal implementation.

4Youjip Won

Organizing Structure: The Cylinder Group

 FFS divides the disk into a bunch of groups. (Cylinder Group)

 Modern file system call cylinder group as block group.

 These groups are uses to improve seek performance.

 By placing two files within the same group.

 Accessing one after the other will not be long seeks across the disk.

 FFS needs to allocate files and directories within each of these groups.

5Youjip Won

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Organizing Structure: The Cylinder Group (Cont.)

 Data structure for each cylinder group.

 A copy of the super block(S) for reliability reason.

 inode bitmap(ib) and data bitmap(db) to track free inode and data

block.

 inodes and data block are same to the previous very-simple file

system(VSFS).

6Youjip Won

S ib db Inodes Data

How To Allocate Files and Directories?

 Policy is “keep related stuff together”

 The placement of directories

 Find the cylinder group with a low number of allocated directories and a

high number of free inodes.

 Put the directory data and inode in that group.

 The placement of files.

 Allocate data blocks of a file in the same group as its inode

 It places all files in the same group as their directory

7Youjip Won

FFS Locality for SEER Traces.

8Youjip Won

Path Difference

100%

80%

60%

40%

20%

0%
0 2 4 6 8 10

C
u
m

u
la

ti
ve

 F
re

q
u
e
n
cy

Trace

Randomx

 How “far away” file accesses were

from one another in the directory tree.

 7% of file accesses to the same file

 Nearly 40% of file accesses in the same

directory

 25% of file accesses were two distances

proc/src/foo.c

proc/src/bar.c

the distance of two file access is 1

proc/src/foo.c

proc/obj/foo.o

the distance of two file access is 2

The Large-File Exception

9Youjip Won

 General policy of file placement

 Entierly fill the block group it is first place within

 Hurt file-access locality from “related” file being placed

 For large files, chunks are spread across the disk

 Hurt performance, but it can be addressed by choosing chunk size

 Amortization: reducing overhead by doing more work

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

0 1 2 3 4
5 6 7 8 9

G: block group

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

0 1 2 3 4 5 6 79 0

Amortization: How Big Do Chunks Have To Be?

 Computation of the size of chunk

 Desire 50% of peak disk performance

 half of time seeking and

half of time trasferring

 Disk bandwidth: 40 MB/s

 Positioning time: 10ms


40 𝑀𝐵

𝑠𝑒𝑐
∙
1024 𝐾𝐵

1 𝑀𝐵
∙

1 𝑠𝑒𝑐

1000 𝑚𝑠
∙ 10 𝑚𝑠 = 409.6 𝐾𝐵

 Transfer only 409.6 KB every time

seeking

 99% of peak performance on 3.69MB

chunk size

10Youjip Won

Lo
g
 (
C
h
u
n
k
 S

iz
e
 N

e
e
d
e
d
)

Percent Bandwidth (Desired)

The Large-File Exception in FSS

 A simple approach based on the structure of inode

 Each subsequent indirect blocks, and all the blocks it pointed to, placed

in a different block group.

 Every 1024 blocks (4MB) of the file in a separate group

11Youjip Won

S ib db Inodes Data

inode

12 direct

blocks

....

S ib db Inodes Data

indirect

blocks

....

 Internal fragmentation

 Sub-blocks

 Ex) Create a file with 1 KB : use two sub-blocks, not an entire 4-KB blocks

 Parameterization

 Track buffer

 Long file names

 Enabling more expressive names in the file system

 Symbolic link

A few other Things about FFS

12Youjip Won

