
41. Locality and The Fast File System
Operating System: Three Easy Pieces
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Unix operating system

 The Good Thing

 Simple and supports the basic abstractions.

 Easy to use file system.

 The Problem

 Terrible performance
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Problem of Unix operating system

 Unix file system treated the disk as a random-access memory.

 Example of random-access blocks with Four files.

 Data blocks for each file can accessed by going back and forth the disk, 

because they are are contiguous.

 File b and d is deleted.

 File E is created with free blocks. (spread across the block)

 Other Problem is the original block size was too small(512 bytes)
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FFS: Disk Awareness is the solution

 FFS is Fast File system designed by a group at Berkeley.

 The design of FFS is that file system structures and allocation polices 

to be “disk aware” and improve performance.

 Keep same API with file system. (open(), read(), write(), etc)

 Changing the internal implementation.
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Organizing Structure: The Cylinder Group

 FFS divides the disk into a bunch of groups. (Cylinder Group)

 Modern file system call cylinder group as block group. 

 These groups are uses to improve seek performance.

 By placing two files within the same group.

 Accessing one after the other will not be long seeks across the disk. 

 FFS needs to allocate files and directories within each of these groups. 
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Organizing Structure: The Cylinder Group (Cont.)

 Data structure for each cylinder group.

 A copy of the super block(S) for reliability reason.

 inode bitmap(ib) and data bitmap(db) to track free inode and data 

block. 

 inodes and data block are same to the previous very-simple file 

system(VSFS).
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How To Allocate Files and Directories?

 Policy is “keep related stuff together”

 The placement of directories

 Find the cylinder group with a low number of allocated directories and a 

high number of free inodes. 

 Put the directory data and inode in that group.

 The placement of files.

 Allocate data blocks of a file in the same group as its inode

 It places all files in the same group as their directory
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FFS Locality for SEER Traces.
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 How “far away” file accesses were 

from one another in the directory tree.

 7% of file accesses to the same file

 Nearly 40% of file accesses in the same 

directory

 25% of file accesses were two distances

proc/src/foo.c

proc/src/bar.c

the distance of two file access is 1

proc/src/foo.c

proc/obj/foo.o

the distance of two file access is 2



The Large-File Exception
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 General policy of file placement

 Entierly fill the block group it is first place within

 Hurt file-access locality from “related” file being placed

 For large files, chunks are spread across the disk

 Hurt performance, but it can be addressed by choosing chunk size

 Amortization: reducing overhead by doing more work
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Amortization: How Big Do Chunks Have To Be?

 Computation of the size of chunk

 Desire 50% of peak disk performance

 half of time seeking and 

half of time trasferring

 Disk bandwidth: 40 MB/s

 Positioning time: 10ms


40 𝑀𝐵

𝑠𝑒𝑐
∙
1024 𝐾𝐵

1 𝑀𝐵
∙

1 𝑠𝑒𝑐

1000 𝑚𝑠
∙ 10 𝑚𝑠 = 409.6 𝐾𝐵

 Transfer only 409.6 KB every time 

seeking

 99% of peak performance on 3.69MB 

chunk size
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The Large-File Exception in FSS

 A simple approach based on the structure of inode

 Each subsequent indirect blocks, and all the blocks it pointed to, placed 

in a different block group.

 Every 1024 blocks (4MB) of the file in a separate group
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 Internal fragmentation

 Sub-blocks

 Ex) Create a file with 1 KB : use two sub-blocks, not an entire 4-KB blocks

 Parameterization

 Track buffer

 Long file names

 Enabling more expressive names in the file system 

 Symbolic link

A few other Things about FFS
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