
42. Crash Consistency: FSCK and Journaling
Operating System: Three Easy Pieces

1Youjip Won

Crash Consistency

2Youjip Won

Crash Consistency

 Unlike most data structure, file system data structures must persist

 They must survive over the long haul, stored on devices that retain data

despite power loss.

 One major challenge faced by a file system is how to update

persistent data structure despite the presence of a power loss or

system crash.

 We’ll begin by examining the approach taken by older file systems.

 fsck(file system checker)

 journaling(write-ahead logging)

3Youjip Won

A Detailed Example (1)

 Workload

 Append of a single data block(4KB) to an existing file

 open()  lseek()  write()  close()

 Before append a single data block

 single inode is allocated (inode number 2)

 single allocated data block (data block 4)

 The inode is denoted I[v1]

4Youjip Won

I[v1]

Da

Inode
Bitmap

8bit, 1/inode

Data
Bitmap

8bit, 1/data block

Inodes
8 total, spread
across 4 block

Data Blocks
8 total

A Detailed Example (2)

 Inside of I[v1] (inode, before update)

 Size of the file is 1 (one block allocated)

 First direct pointer points to block4 (Da)

 All 3 other direct pointers are set to null(unused)

5Youjip Won

owner : remzi

permissions : read-only

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

I[v1]

Da

Inode
Bitmap

8bit, 1/inode

Data
Bitmap

8bit, 1/data block

Inodes
8 total, spread
across 4 block

Data Blocks
8 total

A Detailed Example (3)

 After update

 Data bitmap is updated

 Inode is updated (I[v2])

 New data block is allocated (Db)

6Youjip Won

owner : remzi

permissions : read-only

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

I[v2]

Da Db

Inode
Bitmap

8bit, 1/inode

Data
Bitmap

8bit, 1/data block

Inodes
8 total, spread
across 4 block

Data Blocks
8 total

A Detailed Example (end)

 To achieve the transition, the system perform three separate writes to

the disk.

 One each of inode I[v2]

 Data bitmap B[v2]

 Data block (Db)

 These writes usually don’t happen immediately

 dirty inode, bitmap, and new data will sit in main memory

 page cache or buffer cache

 If a crash happens after one or two of these write have taken place,

but not all three, the file system could be left in a funny state

7Youjip Won

Crash Scenario (1)

 Imagine only a single write succeeds; there are thus three possible

outcomes

1. Just the data block(Db) is written to disk

 The data is on disk, but there is no inode

 Thus, it is as if the write never occurred

 This case is not a problem at all

2. Just the updated inode(I[v2]) is written to disk

 The inode points to the disk address (5, Db)

 But, the Db has not yet been written there

 We will read garbage data(old contents of address 5) from the disk

 Problem : file-system inconsistency

8Youjip Won

Crash Scenario (2)

 Imagine only a single write succeeds; there are thus three possible

outcomes (Cont.)

3. Just the updated bitmap (B[v2]) is written to disk

 The bitmap indicates that block 5 is allocated

 But there is no inode that points to it

 Thus, the file system is inconsistent again

 Problem : space leak, as block 5 would never be used by the file system

9Youjip Won

Crash Scenario (3)

 There are also three more crash scenarios. In these cases, two writes

succeed and the last one fails

1. The inode(I[v2]) and bitmap(B[v2]) are written to disk, but not data(Db)

 The file system metadata is completely consistent

 Problem : Block 5 has garbage in it

2. The inode(I[v2]) and the data block(Db) are written, but not the

bitmap(B[v2])

 We have the inode pointing to the correct data on disk

 Problem : inconsistency between the inode and the old version of the

bitmap(B1)

10Youjip Won

Crash Scenario (end)

 There are also three more crash scenarios. In these cases, two writes

succeed and the last one fails (Cont.)

3. The bitmap(B[v2]) and data block(Db) are written, but not the inode(I[v2])

 Problem : inconsistency between the inode and the data bitmap

 We have no idea which file it belongs to

11Youjip Won

The Crash Consistency Problem

 What we’d like to do ideally is move the file system from on

consistent state to another atomically

 Unfortunately, we can’t do this easily

 The disk only commits one write at a time

 Crashes or power loss may occur between these updates

 We call this general problem the crash-consistency problem

12Youjip Won

Solution #1: The File System Checker

13Youjip Won

The File System Checker (1)

 The File System Checker (fsck)

 fsck is a Unix tool for finding inconsistencies and repairing them.

 fsck check super block, Free block, Inode state, Inode links, etc.

 Such an approach can’t fix all problems

 example : The file system looks consistent but the inode points to garbage

data.

 The only real goal is to make sure the file system metadata is internally

consistent.

14Youjip Won

The File System Checker (2)

 Basic summary of what fsck does:

 Superblock

 fsck first checks if the superblock looks reasonable

 Sanity checks : file system size > number of blocks allocated

 Goal : to find suspect superblock

 In this case, the system may decide to use an alternate copy of the superblock

 Free blocks

 fsck scans the inodes, indirect blocks, dobule indirect blocks,

 The only real goal is to make sure the file system metadata is internally

consistent.

15Youjip Won

The File System Checker (3)

 Basic summary of what fsck does: (Cont.)

 Inode state

 Each inode is checked for corruption or other problem

 Example : type checking(regular file, directory, symbolic link, etc)

 If there are problems with the inode fields that are not easily fixed.

 The inode is considered suspect and cleared by fsck

 Inode Links

 fsck also verifies the link count of each allocated inode

 To verify the link count, fsck scans through the entire directory tree

 If there is a mismatch between the newly–calculated count and that found

within an inode, corrective action must be taken

 Usually by fixing the count with in the inode

16Youjip Won

The File System Checker (4)

 Basic summary of what fsck does: (Cont.)

 Inode Links (Cont.)

 If an allocated inode is discovered but no directory refers to it, it is moved to

the lost+found directory

 Duplicates

 fsck also checks for duplicated pointers

 Example : Two different inodes refer to the same block

 If on inode is obviously bad, it may cleared

 Alternately, the pointed-to block could be copied

17Youjip Won

The File System Checker (5)

 Basic summary of what fsck does: (Cont.)

 Bad blocks

 A check for bad block pointers is also performed while scanning through the

list of all pointers

 A pointer is considered “bad” if it obviously points to something outside it valid

range

 Example : It has an address that refers to a block greater than the partition size

 In this case, fsck can’t do anything too intelligent; it just removes the pointer

18Youjip Won

The File System Checker (6)

 Basic summary of what fsck does: (Cont.)

 Directory checks

 fsck does not understand the contents of user files

 However, directories hold specifically formatted information created by the file

system itself

 Thus, fsck performs additional integrity checks on the contents of each directory

 Example

 making sure that “.” and “..” are the first entries

 each inode referred to in a directory entry is allocated?

 ensuring that no directory is linked to more than once in the entire hierarchy

19Youjip Won

The File System Checker (end)

 Buliding a working fsck requires intricate knowledge of the filesystem

 fsck have a bigger and fundamental problem: too slow

 scanning the entire disk may take many minutes or hours

 Performance of fsck became prohibitive.

 as disk grew in capacity and RAIDs grew in popularity

 At a higher level, the basic premise of fsck seems just a tad irrational.

 It is incredibly expensive to scan the entire disk

 It works but is wasteful

 Thus, as disk(and RAIDs) grew, researchers started to look for other

solutions

20Youjip Won

Solution #2: Journaling

21Youjip Won

Journaling (1)

 Journaling (Write-Ahead Logging)

 When updating the disk, before over writing the structures in place, first

write down a little note describing what you are about to do

 Writing this note is the “write ahead” part, and we write it to a structure

that we organize as a “log”

 By writing the note to disk, you are guaranteeing that if a crash takes

places during the update of the structures you are updating, you can go

back and look at the note you made and try again

 Thus, you will know exactly what to fix after a crash, instead of having to

scan the entire disk

22Youjip Won

Journaling (Cont.)

 We’ll describe how Linux ext3 incorporates journaling into the file

system.

 Most of the on-disk structures are identical to Linux ext2

 The new key structure is the journal itself

 It occupies some small amount of space within the partition or on another

device

23Youjip Won

Super Group 0 Group 1 … Group N

Super Journal Group 0 Group 1 … Group N

Fig.1 Ext2 File system structure

Fig.2 Ext3 File system structure

Data Journaling (1)

 Data journaling is available as a mode with the ext3 file system

 Example : our canonical update again

 We wish to update inode (I[v2]), bitmap (B[v2]), and data block (Db) to

disk

 Before writing them to their final disk locations, we are now first going to

write them to the log(a.k.a. journal)

24Youjip Won

Transaction

Data Journaling (2)

 Example : our canonical update again (Cont.)

 TxB: Transaction begin block

 It contains some kind of transaction identifier(TID)

 The middle three blocks just contain the exact content of the blocks

themselves

 This is known as physical logging

 TxE: Transaction end block

 Marker of the end of this transaction

 It also contain the TID

25Youjip Won

TxB I[v2] B[v2] Db TxE

Jo
u
rn

a
l

Data Journaling (3)

 Checkpoint

 Once this transaction is safely on disk, we are ready to overwrite the old

structures in the file system

 This process is called checkpointing

 Thus, to checkpoint the file system, we issue the writes I[v2], B[v2], and Db

to their disk locations

26Youjip Won

Data Journaling (4)

 Our initial sequence of operations:

1. Journal write

 Write the transaction to the log and wait for these writes to complete

 TxB, all pending data, metadata updates, TxE

2. Checkpoint

 Write the pending metadata and data updates to their final locations

27Youjip Won

Data Journaling (5)

 When a crash occurs during the writes to the journal

1. Transaction each one at a time

 5 transactions (TxB, I[v2], B[v2], Dnb, TxE)

 This is slow because of waiting for each to complete

2. Transaction all block writes at once

 Five writes -> a single sequential write : Faster way

 However, this is unsafe

 Given such a big write, the disk internally may perform scheduling and complete

small pieces of the big write in any order

28Youjip Won

Data Journaling (6)

 When a crash occurs during the writes to the journal (Cont.)

2. Transaction all block writes at once (Cont.)

 Thus, the disk internally may (1) write TxB, I[v2], B[v2], and TxE and only later (2)

write Db

 Unfortunately, if the disk loses power between (1) and (2)

 Transaction looks like a valid transaction.

 Further, the file system can’t look at that forth block and know it is wrong.

 It is much worse if it happens to a critical piece of file system, such as superblock.

29Youjip Won

TxB I[v2] B[v2] ?? TxE

Jo
u
rn

a
l

Data Journaling (7)

 When a crash occurs during the writes to the journal (Cont.)

2. Transaction all block writes at once (Cont.)

 To avoid this problem, the file system issues the transactional write in two steps

 First, writes all blokes except the TxE block to journal

 Second, The file system issues the write of the TxE

 An important aspect of this process is the atomicity guarantee provided by the

disk.

 The disk guarantees that any 512-byte write either happen or not

 Thus, TxE should be a single 512-byte block

30Youjip Won

TxB
id=1

I[v2] B[v2] Db

Jo
u
rn

a
l

TxB
id=1

I[v2] B[v2] Db
TxE
id=1

Jo
u
rn

a
l

Data Journaling (8)

 When a crash occurs during the writes to the journal (Cont.)

2. Transaction all block writes at once (Cont.)

 Thus, our current protocol to update the file system, with each of its three

phases labeled:

1. Journal write : write the contents of the transaction to the log

2. Journal commit (added) : write the transaction commit block

3. Checkpoint : write the contents of the update to their locations

31Youjip Won

Data Journaling (end)

 Recovery

 If the crash happens before the transactions is written to the log

 The pending update is skipped

 If the crash happens after the transactions is written to the log, but

before the checkpoint

 Recover the update as follow:

 Scan the log and lock for transactions that have committed to the disk

 Transactions are replayed

32Youjip Won

Batching Log Updates

 If we create two files in same directory, same inode, directory entry

block is to the log and committed twice.

 To reduce excessive write traffic to disk, journaling manage the global

transaction.

 Write the content of the global transaction forced by synchronous request.

 Write the content of the global transaction after timeout of 5 seconds.

33Youjip Won

Making The log Finite (1)

 The log is of a finite size

 Two problems arise when the log becomes full

1. The larger the log, the longer recovery will take

 Simpler but less critical

2. No further transactions can be committed to the disk

 Thus making the file system “less than useful”

34Youjip Won

Tx1 Tx2 Tx3 Tx4 Tx5 …

Jo
u
rn

a
l

Making The log Finite (2)

 To address these problems, journaling file systems treat the log as a

circular data structure, re-using it over and over

 This is why the journal is referred to as a circular log.

 To do so, the file system must take action some time after a

checkpoint

 Specifically, once a transaction has been checkpointed, the file system

should free the space

35Youjip Won

Making The log Finite (3)

 journal super block

 Mark the oldest and newest transactions in the log.

 The journaling system records which transactions have not been check

pointed.

36Youjip Won

Journal
Super

Tx1 Tx2 Tx3 Tx4 Tx5 …

Jo
u
rn

a
l

Making The log Finite (end)

 journal super block (Cont.)

 Thus, we add another step to our basic protocol

1. Journal write

2. Journal commit

3. checkpoint

4. Free

 Some time later, mark the transaction free in the journal by updating the journal

Superblock

37Youjip Won

Metadata Journaling (1)

 There is a still problem : writing every data block to disk twice

 Commit to log (journal file)

 Checkpoint to on-disk location.

 People have tried a few different things in order to speed up

performance.

 Example : A simpler form of journaling is called ordered journaling

(metadata journaling)

 User data is not written to the journal

38Youjip Won

Metadata Journaling (2)

 Thus, the following information would be written to the journal

 The data block Db, previously written to the log, would instead be

written to the file system proper

39Youjip Won

TxB I[v2] B[v2] TxE

Jo
u
rn

a
l

Metadata Journaling (3)

 The modification does raise an interesting question: when should we

write data blocks to disk?

 Let’s consider an example

1. Write Data to disk after the transaction

 Unfortunately, this approach has a problem

 The file system is consistent but I[v2] may end up pointing to garbage data

2. Write Data to disk before the transaction

 It ensures the problems

40Youjip Won

Metadata Journaling (end)

 Specifically, the protocol is as follows:

1. Data Write(added): Write data to final location

2. Journal metadata write(added): Write the begin and metadata to the log

3. Journal commit

4. Checkpoint metadata

5. Free

41Youjip Won

Tricky case: Block Reuse (1)

 Some metadatas should not be replayed.

 Example

1. Directory “foo” is updated.

2. Directory “foo” id deleted. block 1000 is freed up for reuse

3. User Create a file “foobar”, reusing block 1000 for data

42Youjip Won

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

Jo
u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2

Jo
u
rn

a
l

Tricky case: Block Reuse (2)

4. Now assume a crash occurs and all of this information is still in the log.

5. During replay, the recovery process replays everything in the log

 Including the write of directory data in block 1000

6. The replay thus overwrites the user data of current file foobar with old

directory contents

43Youjip Won

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2

Jo
u
rn

a
l

Tricky case: Block Reuse (2)

 Solution

 What Linux ext3 does instead is to add a new type of record to the

journal, Known as a revoke record

 When replaying the journal, the system first scans for such revoke records

 Any such revoked data is never replayed

44Youjip Won

Data Journaling Timeline

TxB
Journal contents

TxE
File System

(metadata) (data) Metadata Data

issue issue issue

complete

complete

complete issue
complete

issue

complete

issue
complete

45Youjip Won

Data Journaling Timeline

Metadata Journaling Timeline

TxB
Journal
contents TxE

File System

(metadata) Metadata Data

issue issue Issue
complete

complete

complete

issue
complete

issue
complete

46Youjip Won

Metadata Journaling Timeline

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

47Youjip Won

