
43. Log-structured File Systems
Operating System: Three Easy Pieces

1Youjip Won

LFS: Log-structured File System

 Memory sizes were growing.

 Large gap between random IO and sequential IO performance.

 Existing File System perform poorly on common workloads.

 File System were not RAID-aware.

2Youjip Won

Writing to Disk Sequentially

 How do we transform all updates to file-system state into a series of

sequntial writes to disk?

 data update

 metadata needs to be updated too. (Ex. inode)

3Youjip Won

D

A0

D I

A0

blk[0]:A0

Writing to Disk Sequentially and Effectively

 Writing single blocks sequentially does not guarantee efficient writes

 After writing into A0, next write to A1 will be delayed by disk rotation

 Write buffering for effectiveness

 Keeps track of updates in memory buffer (also called segment)

 Writes them to disk all at once, when it has sufficient number of updates.

4Youjip Won

D[j,0] D[j,1] D[j,2] D[j,3] D[k,0]

A0

blk[0]:A5blk[0]:A0
blk[0]:A1
blk[0]:A2
blk[0]:A3

A1 A2 A3 inode[j] A5 inode[k]

How Much to Buffer?

 Each write to disk has fixed overhead of positioning

 Time to write out D MB

𝑇𝑤𝑟𝑖𝑡𝑒 = 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
𝐷

𝑅𝑝𝑒𝑎𝑘
(43.1)

(𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛: positioning time, 𝑅𝑝𝑒𝑎𝑘 : disk transfer rate)

 To amortize the cost, how much should LFS buffer before writing?

 Effective rate of writing can be denoted as follows

𝑅𝑒𝑓𝑓𝑒𝑐𝑖𝑡𝑣𝑒 =
𝐷

𝑇𝑤𝑟𝑖𝑡𝑒
=

𝐷

𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+
𝐷

𝑅𝑝𝑒𝑎𝑘

(43.2)

5Youjip Won

How Much to Buffer?

 Assume that 𝑅𝑒𝑓𝑓𝑒𝑐𝑖𝑡𝑣𝑒 = 𝐹 × 𝑅𝑝𝑒𝑎𝑘 (F: fraction of peak rate, 0 < F < 1), then

𝑅𝑒𝑓𝑓𝑒𝑐𝑖𝑡𝑣𝑒 =
𝐷

𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+
𝐷

𝑅𝑝𝑒𝑎𝑘

= 𝐹 × 𝑅𝑝𝑒𝑎𝑘 (43.3)

 Solve for D

D =
𝐹

1−𝐹
× 𝑅𝑝𝑒𝑎𝑘× 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (43.6)

 If we want F to be 0.9 when 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛= 10𝑚𝑠𝑒𝑐 and 𝑅𝑝𝑒𝑎𝑘= 100𝑀𝐵/𝑠,

then 𝐷 = 9𝑀𝐵 by the equation.

 Segment size should be 9MB at least.

6Youjip Won

Finding Inode in LFS

 Inodes are scattered throughout the disk!

 Solution is through indirection “Inode Map” (imap)

 LFS place the chunks of the inode map right next to where it is writing

all of the other new new information

7Youjip Won

D I[k] imap

A0 A1

blk[0]:A0 map[k]:A1

The Checkpoint Region

 How to find the inode map, spread across the disk?

 The LFS File system have fixed location on disk to begin a file lookup

 Checkpoint Region contains pointers to the latest of the inode map

 Only updated periodically (ex. Every 30 seconds)

 performance is not ill-affected

8Youjip Won

CR

D I[k] imap

0

imap
[k..k+N]:

A2

A1 A2A0

blk[0]:A0 map[k]:A1

Reading a File from Disk: A Recap

 Read checkpoint region

 Read entire inode map and cache it in memory

 Read the most recent inode

 Read a block from file by using direct or indirect or doubly-indirect

pointers

9Youjip Won

What About Directories?

 Directory structure of LFS is basically identical to classic UNIX file

systems.

 Directory is a file which data blocks consist of directory information

10Youjip Won

D[k] I[k] D[dir] I[dir] imap

A1 A2A0

blk[0]:A0 map[k]:A1
map[dir]:A3

(foo,k) blk[0]:A2

A3

Garbage Collection

 LFS keeps writing newer version of file to new locations.

 Thus, LFS leaves the older versions of file structures all over the disk,

call as garbage.

11Youjip Won

Examples: Garbage

 For a file with a singe data block

 Overwrite the data block: both old data block and inode become garbage

 Append a block to that original file k: old inode becomes garbage

12Youjip Won

D0 I[k] D0 I[k]

(both garbage)A0

blk[0]:A0 blk[0]:A4

D0 I[k] D1 I[k]

(garbage)

A4

A0

blk[0]:A0 blk[0]:A0
blk[1]:A4

A4

Handling older versions of inodes and data blocks

 One possibility: Versioning file system

 keep the older versions around

 Users can restore old file versions

 LFS approach: Garbage Collection

 Keep only the latest live version and periodically clean old dead versions

 Segment-by-segment basis

 Block-by-block basis cleaner eventually make free holes in random location

 Writes can not be sequential anymore

13Youjip Won

Determining Block Liveness

 Segment summary block (SS)

 Located in each segment

 Inode number and offset for each data block are recorded

 Determining Liveness

 The block is live if the latest inode indicates the block

 Version number can be used for efficient liveness determining

14Youjip Won

A0:
(K,0)
SS

D I[k] imap

A1A0

map[k]:A1blk[0]:A0

Which Blocks to Clean, and When?

 When to clean

 Periodically

 During idle time

 When the disk is full

 Which blocks to clean

 Segregate hot/cold segments

 Hot segment: frequently over-written

 more blocks are getting over-written if we wait a long time before cleaning

 Cold segment: relatively stable

 May have a few dead blocks, but the other blocks are stable

 Clean cold segment sooner and hot segment later

15Youjip Won

Crash Recovery and the Log

 Log organization in LFS

 CR points to a head and tail segment

 Each segment points to next segment

 LFS can easily recover by simply reading latest valid CR

 The latest consistent snapshot may be quite old

 To ensuring atomicity of CR update

 Keep two CRs

 CR update protocol: timestamp  CR  timestamp

 Roll forward

 Start from end of the log (pointed by the lastest CR)

 Read next segments and adopt any valid updates to the file system

16Youjip Won

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

17Youjip Won

