
5

Interlude: Process API

ASIDE: INTERLUDES

Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don’t
like practical things, you could skip these interludes. But you should like
practical things, because, well, they are generally useful in real life; com-
panies, for example, don’t usually hire you for your non-practical skills.

In this interlude, we discuss process creation in UNIX systems. UNIX

presents one of the most intriguing ways to create a new process with
a pair of system calls: fork() and exec(). A third routine, wait(),
can be used by a process wishing to wait for a process it has created to
complete. We now present these interfaces in more detail, with a few
simple examples to motivate us. And thus, our problem:

CRUX: HOW TO CREATE AND CONTROL PROCESSES

What interfaces should the OS present for process creation and con-
trol? How should these interfaces be designed to enable powerful func-
tionality, ease of use, and high performance?

5.1 The fork() System Call

The fork() system call is used to create a new process [C63]. How-
ever, be forewarned: it is certainly the strangest routine you will ever

call1. More specifically, you have a running program whose code looks
like what you see in Figure 5.1; examine the code, or better yet, type it in
and run it yourself!

1Well, OK, we admit that we don’t know that for sure; who knows what routines you
call when no one is looking? But fork() is pretty odd, no matter how unusual your routine-
calling patterns are.

1

2 INTERLUDE: PROCESS API

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int main(int argc, char *argv[]) {

6 printf("hello (pid:%d)\n", (int) getpid());

7 int rc = fork();

8 if (rc < 0) {

9 // fork failed

10 fprintf(stderr, "fork failed\n");

11 exit(1);

12 } else if (rc == 0) {

13 // child (new process)

14 printf("child (pid:%d)\n", (int) getpid());

15 } else {

16 // parent goes down this path (main)

17 printf("parent of %d (pid:%d)\n",

18 rc, (int) getpid());

19 }

20 return 0;

21 }

22

Figure 5.1: Calling fork() (p1.c)

When you run this program (called p1.c), you’ll see the following:

prompt> ./p1

hello (pid:29146)

parent of 29147 (pid:29146)

child (pid:29147)

prompt>

Let us understand what happened in more detail in p1.c. When it
first started running, the process prints out a hello message; included in
that message is its process identifier, also known as a PID. The process
has a PID of 29146; in UNIX systems, the PID is used to name the process
if one wants to do something with the process, such as (for example) stop
it from running. So far, so good.

Now the interesting part begins. The process calls the fork() system
call, which the OS provides as a way to create a new process. The odd
part: the process that is created is an (almost) exact copy of the calling pro-
cess. That means that to the OS, it now looks like there are two copies of
the program p1 running, and both are about to return from the fork()
system call. The newly-created process (called the child, in contrast to the
creating parent) doesn’t start running at main(), like you might expect
(note, the “hello” message only got printed out once); rather, it just comes
into life as if it had called fork() itself.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 3

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <sys/wait.h>

5

6 int main(int argc, char *argv[]) {

7 printf("hello (pid:%d)\n", (int) getpid());

8 int rc = fork();

9 if (rc < 0) { // fork failed; exit

10 fprintf(stderr, "fork failed\n");

11 exit(1);

12 } else if (rc == 0) { // child (new process)

13 printf("child (pid:%d)\n", (int) getpid());

14 } else { // parent goes down this path

15 int rc_wait = wait(NULL);

16 printf("parent of %d (rc_wait:%d) (pid:%d)\n",

17 rc, rc_wait, (int) getpid());

18 }

19 return 0;

20 }

21

Figure 5.2: Calling fork() And wait() (p2.c)

You might have noticed: the child isn’t an exact copy. Specifically, al-
though it now has its own copy of the address space (i.e., its own private
memory), its own registers, its own PC, and so forth, the value it returns
to the caller of fork() is different. Specifically, while the parent receives
the PID of the newly-created child, the child receives a return code of
zero. This differentiation is useful, because it is simple then to write the
code that handles the two different cases (as above).

You might also have noticed: the output (of p1.c) is not deterministic.
When the child process is created, there are now two active processes in
the system that we care about: the parent and the child. Assuming we
are running on a system with a single CPU (for simplicity), then either
the child or the parent might run at that point. In our example (above),
the parent did and thus printed out its message first. In other cases, the
opposite might happen, as we show in this output trace:

prompt> ./p1

hello (pid:29146)

child (pid:29147)

parent of 29147 (pid:29146)

prompt>

The CPU scheduler, a topic we’ll discuss in great detail soon, deter-
mines which process runs at a given moment in time; because the sched-
uler is complex, we cannot usually make strong assumptions about what

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

4 INTERLUDE: PROCESS API

it will choose to do, and hence which process will run first. This non-
determinism, as it turns out, leads to some interesting problems, par-
ticularly in multi-threaded programs; hence, we’ll see a lot more non-
determinism when we study concurrency in the second part of the book.

5.2 The wait() System Call

So far, we haven’t done much: just created a child that prints out a
message and exits. Sometimes, as it turns out, it is quite useful for a
parent to wait for a child process to finish what it has been doing. This
task is accomplished with the wait() system call (or its more complete
sibling waitpid()); see Figure 5.2 for details.

In this example (p2.c), the parent process calls wait() to delay its
execution until the child finishes executing. When the child is done,
wait() returns to the parent.

Adding a wait() call to the code above makes the output determin-
istic. Can you see why? Go ahead, think about it.

(waiting for you to think and done)

Now that you have thought a bit, here is the output:

prompt> ./p2

hello (pid:29266)

child (pid:29267)

parent of 29267 (rc_wait:29267) (pid:29266)

prompt>

With this code, we now know that the child will always print first.
Why do we know that? Well, it might simply run first, as before, and
thus print before the parent. However, if the parent does happen to run
first, it will immediately call wait(); this system call won’t return until

the child has run and exited2. Thus, even when the parent runs first, it
politely waits for the child to finish running, then wait() returns, and
then the parent prints its message.

5.3 Finally, The exec() System Call

A final and important piece of the process creation API is the exec()

system call3. This system call is useful when you want to run a program
that is different from the calling program. For example, calling fork()

2There are a few cases where wait() returns before the child exits; read the man page
for more details, as always. And beware of any absolute and unqualified statements this book
makes, such as “the child will always print first” or “UNIX is the best thing in the world, even
better than ice cream.”

3On Linux, there are six variants of exec(): execl(), execlp(), execle(),

execv(), execvp(), and execvpe(). Read the man pages to learn more.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 5

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <sys/wait.h>

6

7 int main(int argc, char *argv[]) {

8 printf("hello (pid:%d)\n", (int) getpid());

9 int rc = fork();

10 if (rc < 0) { // fork failed; exit

11 fprintf(stderr, "fork failed\n");

12 exit(1);

13 } else if (rc == 0) { // child (new process)

14 printf("child (pid:%d)\n", (int) getpid());

15 char *myargs[3];

16 myargs[0] = strdup("wc"); // program: "wc"

17 myargs[1] = strdup("p3.c"); // arg: input file

18 myargs[2] = NULL; // mark end of array

19 execvp(myargs[0], myargs); // runs word count

20 printf("this shouldn’t print out");

21 } else { // parent goes down this path

22 int rc_wait = wait(NULL);

23 printf("parent of %d (rc_wait:%d) (pid:%d)\n",

24 rc, rc_wait, (int) getpid());

25 }

26 return 0;

27 }

28

Figure 5.3: Calling fork(), wait(), And exec() (p3.c)

in p2.c is only useful if you want to keep running copies of the same
program. However, often you want to run a different program; exec()
does just that (Figure 5.3).

In this example, the child process calls execvp() in order to run the
program wc, which is the word counting program. In fact, it runs wc on
the source file p3.c, thus telling us how many lines, words, and bytes are
found in the file:

prompt> ./p3

hello (pid:29383)

child (pid:29384)

29 107 1030 p3.c

parent of 29384 (rc_wait:29384) (pid:29383)

prompt>

The fork() system call is strange; its partner in crime, exec(), is not
so normal either. What it does: given the name of an executable (e.g., wc),
and some arguments (e.g., p3.c), it loads code (and static data) from that

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

6 INTERLUDE: PROCESS API

TIP: GETTING IT RIGHT (LAMPSON’S LAW)
As Lampson states in his well-regarded “Hints for Computer Systems
Design” [L83], “Get it right. Neither abstraction nor simplicity is a sub-
stitute for getting it right.” Sometimes, you just have to do the right thing,
and when you do, it is way better than the alternatives. There are lots
of ways to design APIs for process creation; however, the combination
of fork() and exec() are simple and immensely powerful. Here, the
UNIX designers simply got it right. And because Lampson so often “got
it right”, we name the law in his honor.

executable and overwrites its current code segment (and current static
data) with it; the heap and stack and other parts of the memory space of
the program are re-initialized. Then the OS simply runs that program,
passing in any arguments as the argv of that process. Thus, it does not
create a new process; rather, it transforms the currently running program
(formerly p3) into a different running program (wc). After the exec()
in the child, it is almost as if p3.c never ran; a successful call to exec()
never returns.

5.4 Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork() and exec() is
essential in building a UNIX shell, because it lets the shell run code after
the call to fork() but before the call to exec(); this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

The shell is just a user program4. It shows you a prompt and then
waits for you to type something into it. You then type a command (i.e.,
the name of an executable program, plus any arguments) into it; in most
cases, the shell then figures out where in the file system the executable
resides, calls fork() to create a new child process to run the command,
calls some variant of exec() to run the command, and then waits for the
command to complete by calling wait(). When the child completes, the
shell returns from wait() and prints out a prompt again, ready for your
next command.

The separation of fork() and exec() allows the shell to do a whole
bunch of useful things rather easily. For example:

prompt> wc p3.c > newfile.txt

4And there are lots of shells; tcsh, bash, and zsh to name a few. You should pick one,
read its man pages, and learn more about it; all UNIX experts do.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 7

In the example above, the output of the program wc is redirected into
the output file newfile.txt (the greater-than sign is how said redirec-
tion is indicated). The way the shell accomplishes this task is quite sim-
ple: when the child is created, before calling exec(), the shell (specifi-
cally, the code executed in the child process) closes standard output and
opens the file newfile.txt. By doing so, any output from the soon-
to-be-running program wc is sent to the file instead of the screen (open
file descriptors are kept open across the exec() call, thus enabling this
behavior [SR05]).

Figure 5.4 (page 8) shows a program that does exactly this. The reason
this redirection works is due to an assumption about how the operating
system manages file descriptors. Specifically, UNIX systems start looking
for free file descriptors at zero. In this case, STDOUT FILENO will be the
first available one and thus get assigned when open() is called. Subse-
quent writes by the child process to the standard output file descriptor,
for example by routines such as printf(), will then be routed transpar-
ently to the newly-opened file instead of the screen.

Here is the output of running the p4.c program:

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

You’ll notice (at least) two interesting tidbits about this output. First,
when p4 is run, it looks as if nothing has happened; the shell just prints
the command prompt and is immediately ready for your next command.
However, that is not the case; the program p4 did indeed call fork() to
create a new child, and then run the wc program via a call to execvp().
You don’t see any output printed to the screen because it has been redi-
rected to the file p4.output. Second, you can see that when we cat the
output file, all the expected output from running wc is found. Cool, right?

UNIX pipes are implemented in a similar way, but with the pipe()

system call. In this case, the output of one process is connected to an in-
kernel pipe (i.e., queue), and the input of another process is connected
to that same pipe; thus, the output of one process seamlessly is used as
input to the next, and long and useful chains of commands can be strung
together. As a simple example, consider looking for a word in a file, and
then counting how many times said word occurs; with pipes and the util-
ities grep and wc, it is easy; just type grep -o foo file | wc -l

into the command prompt and marvel at the result.
Finally, while we just have sketched out the process API at a high level,

there is a lot more detail about these calls out there to be learned and
digested; we’ll learn more, for example, about file descriptors when we
talk about file systems in the third part of the book. For now, suffice it
to say that the fork()/exec() combination is a powerful way to create
and manipulate processes.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

8 INTERLUDE: PROCESS API

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <fcntl.h>

6 #include <sys/wait.h>

7

8 int main(int argc, char *argv[]) {

9 int rc = fork();

10 if (rc < 0) {

11 // fork failed

12 fprintf(stderr, "fork failed\n");

13 exit(1);

14 } else if (rc == 0) {

15 // child: redirect standard output to a file

16 close(STDOUT_FILENO);

17 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC,

18 S_IRWXU);

19 // now exec "wc"...

20 char *myargs[3];

21 myargs[0] = strdup("wc"); // program: wc

22 myargs[1] = strdup("p4.c"); // arg: file to count

23 myargs[2] = NULL; // mark end of array

24 execvp(myargs[0], myargs); // runs word count

25 } else {

26 // parent goes down this path (main)

27 int rc_wait = wait(NULL);

28 }

29 return 0;

30 }
Figure 5.4: All Of The Above With Redirection (p4.c)

5.5 Process Control And Users
Beyond fork(), exec(), and wait(), there are a lot of other inter-

faces for interacting with processes in UNIX systems. For example, the
kill() system call is used to send signals to a process, including di-
rectives to pause, die, and other useful imperatives. For convenience,
in most UNIX shells, certain keystroke combinations are configured to
deliver a specific signal to the currently running process; for example,
control-c sends a SIGINT (interrupt) to the process (normally terminating
it) and control-z sends a SIGTSTP (stop) signal thus pausing the process
in mid-execution (you can resume it later with a command, e.g., the fg
built-in command found in many shells).

The entire signals subsystem provides a rich infrastructure to deliver
external events to processes, including ways to receive and process those
signals within individual processes, and ways to send signals to individ-
ual processes as well as entire process groups. To use this form of com-

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 9

ASIDE: RTFM — READ THE MAN PAGES

Many times in this book, when referring to a particular system call or
library call, we’ll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.

Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tcsh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).

Finally, reading the man pages can save you some embarrassment. When
you ask colleagues about some intricacy of fork(), they may simply
reply: “RTFM.” This is your colleagues’ way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

munication, a process should use the signal() system call to “catch”
various signals; doing so ensures that when a particular signal is deliv-
ered to a process, it will suspend its normal execution and run a particu-
lar piece of code in response to the signal. Read elsewhere [SR05] to learn
more about signals and their many intricacies.

This naturally raises the question: who can send a signal to a process,
and who cannot? Generally, the systems we use can have multiple people
using them at the same time; if one of these people can arbitrarily send
signals such as SIGINT (to interrupt a process, likely terminating it), the
usability and security of the system will be compromised. As a result,
modern systems include a strong conception of the notion of a user. The
user, after entering a password to establish credentials, logs in to gain
access to system resources. The user may then launch one or many pro-
cesses, and exercise full control over them (pause them, kill them, etc.).
Users generally can only control their own processes; it is the job of the
operating system to parcel out resources (such as CPU, memory, and disk)
to each user (and their processes) to meet overall system goals.

5.6 Useful Tools

There are many command-line tools that are useful as well. For exam-
ple, using the ps command allows you to see which processes are run-
ning; read the man pages for some useful flags to pass to ps. The tool top
is also quite helpful, as it displays the processes of the system and how
much CPU and other resources they are eating up. Humorously, many
times when you run it, top claims it is the top resource hog; perhaps it is
a bit of an egomaniac. The command kill can be used to send arbitrary

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

10 INTERLUDE: PROCESS API

ASIDE: THE SUPERUSER (ROOT)
A system generally needs a user who can administer the system, and is
not limited in the way most users are. Such a user should be able to kill
an arbitrary process (e.g., if it is abusing the system in some way), even
though that process was not started by this user. Such a user should also
be able to run powerful commands such as shutdown (which, unsurpris-
ingly, shuts down the system). In UNIX-based systems, these special abil-
ities are given to the superuser (sometimes called root). While most users
can’t kill other users processes, the superuser can. Being root is much like
being Spider-Man: with great power comes great responsibility [QI15].
Thus, to increase security (and avoid costly mistakes), it’s usually better
to be a regular user; if you do need to be root, tread carefully, as all of the
destructive powers of the computing world are now at your fingertips.

signals to processes, as can the slightly more user friendly killall. Be
sure to use these carefully; if you accidentally kill your window manager,
the computer you are sitting in front of may become quite difficult to use.

Finally, there are many different kinds of CPU meters you can use to
get a quick glance understanding of the load on your system; for example,
we always keep MenuMeters (from Raging Menace software) running on
our Macintosh toolbars, so we can see how much CPU is being utilized
at any moment in time. In general, the more information about what is
going on, the better.

5.7 Summary

We have introduced some of the APIs dealing with UNIX process cre-
ation: fork(), exec(), and wait(). However, we have just skimmed
the surface. For more detail, read Stevens and Rago [SR05], of course,
particularly the chapters on Process Control, Process Relationships, and
Signals; there is much to extract from the wisdom therein.

While our passion for the UNIX process API remains strong, we should
also note that such positivity is not uniform. For example, a recent pa-
per by systems researchers from Microsoft, Boston University, and ETH
in Switzerland details some problems with fork(), and advocates for
other, simpler process creation APIs such as spawn() [B+19]. Read it,
and the related work it refers to, to understand this different vantage
point. While it’s generally good to trust this book, remember too that
the authors have opinions; those opinions may not (always) be as widely
shared as you might think.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 11

ASIDE: KEY PROCESS API TERMS

• Each process has a name; in most systems, that name is a number
known as a process ID (PID).

• The fork() system call is used in UNIX systems to create a new pro-
cess. The creator is called the parent; the newly created process is
called the child. As sometimes occurs in real life [J16], the child
process is a nearly identical copy of the parent.

• The wait() system call allows a parent to wait for its child to com-
plete execution.

• The exec() family of system calls allows a child to break free from
its similarity to its parent and execute an entirely new program.

• A UNIX shell commonly uses fork(), wait(), and exec() to
launch user commands; the separation of fork and exec enables fea-
tures like input/output redirection, pipes, and other cool features,
all without changing anything about the programs being run.

• Process control is available in the form of signals, which can cause
jobs to stop, continue, or even terminate.

• Which processes can be controlled by a particular person is encap-
sulated in the notion of a user; the operating system allows multiple
users onto the system, and ensures users can only control their own
processes.

• A superuser can control all processes (and indeed do many other
things); this role should be assumed infrequently and with caution
for security reasons.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

12 INTERLUDE: PROCESS API

References

[B+19] “A fork() in the road” by Andrew Baumann, Jonathan Appavoo, Orran Krieger, Tim-
othy Roscoe. HotOS ’19, Bertinoro, Italy. A fun paper full of fork()ing rage. Read it to get an
opposing viewpoint on the UNIX process API. Presented at the always lively HotOS workshop, where
systems researchers go to present extreme opinions in the hopes of pushing the community in new di-
rections.

[C63] “A Multiprocessor System Design” by Melvin E. Conway. AFIPS ’63 Fall Joint Computer
Conference, New York, USA 1963. An early paper on how to design multiprocessing systems; may
be the first place the term fork() was used in the discussion of spawning new processes.

[DV66] “Programming Semantics for Multiprogrammed Computations” by Jack B. Dennis and
Earl C. Van Horn. Communications of the ACM, Volume 9, Number 3, March 1966. A classic
paper that outlines the basics of multiprogrammed computer systems. Undoubtedly had great influence
on Project MAC, Multics, and eventually UNIX.

[J16] “They could be twins!” by Phoebe Jackson-Edwards. The Daily Mail. March 1, 2016.. This
hard-hitting piece of journalism shows a bunch of weirdly similar child/parent photos and is frankly kind
of mesmerizing. Go ahead, waste two minutes of your life and check it out. But don’t forget to come
back here! This, in a microcosm, is the danger of surfing the web.

[L83] “Hints for Computer Systems Design” by Butler Lampson. ACM Operating Systems
Review, Volume 15:5, October 1983. Lampson’s famous hints on how to design computer systems.
You should read it at some point in your life, and probably at many points in your life.

[QI15] “With Great Power Comes Great Responsibility” by The Quote Investigator. Available:
https://quoteinvestigator.com/2015/07/23/great-power. The quote investigator
concludes that the earliest mention of this concept is 1793, in a collection of decrees made at the French
National Convention. The specific quote: “Ils doivent envisager qu’une grande responsabilité est la
suite inséparable d’un grand pouvoir”, which roughly translates to “They must consider that great
responsibility follows inseparably from great power.” Only in 1962 did the following words appear in
Spider-Man: “...with great power there must also come–great responsibility!” So it looks like the French
Revolution gets credit for this one, not Stan Lee. Sorry, Stan.

[SR05] “Advanced Programming in the UNIX Environment” by W. Richard Stevens, Stephen
A. Rago. Addison-Wesley, 2005. All nuances and subtleties of using UNIX APIs are found herein.
Buy this book! Read it! And most importantly, live it.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 13

Homework (Simulation)

This simulation homework focuses on fork.py, a simple process cre-
ation simulator that shows how processes are related in a single “famil-
ial” tree. Read the relevant README for details about how to run the
simulator.

Questions

1. Run ./fork.py -s 10 and see which actions are taken. Can you
predict what the process tree looks like at each step? Use the -c

flag to check your answers. Try some different random seeds (-s)
or add more actions (-a) to get the hang of it.

2. One control the simulator gives you is the fork percentage, con-
trolled by the -f flag. The higher it is, the more likely the next
action is a fork; the lower it is, the more likely the action is an
exit. Run the simulator with a large number of actions (e.g., -a
100) and vary the fork percentage from 0.1 to 0.9. What do you
think the resulting final process trees will look like as the percent-
age changes? Check your answer with -c.

3. Now, switch the output by using the -t flag (e.g., run ./fork.py

-t). Given a set of process trees, can you tell which actions were
taken?

4. One interesting thing to note is what happens when a child exits;
what happens to its children in the process tree? To study this, let’s
create a specific example: ./fork.py -A a+b,b+c,c+d,c+e,c-.
This example has process ’a’ create ’b’, which in turn creates ’c’,
which then creates ’d’ and ’e’. However, then, ’c’ exits. What do
you think the process tree should like after the exit? What if you
use the -R flag? Learn more about what happens to orphaned pro-
cesses on your own to add more context.

5. One last flag to explore is the -F flag, which skips intermediate
steps and only asks to fill in the final process tree. Run ./fork.py

-F and see if you can write down the final tree by looking at the
series of actions generated. Use different random seeds to try this a
few times.

6. Finally, use both -t and -F together. This shows the final process
tree, but then asks you to fill in the actions that took place. By look-
ing at the tree, can you determine the exact actions that took place?
In which cases can you tell? In which can’t you tell? Try some dif-
ferent random seeds to delve into this question.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

14 INTERLUDE: PROCESS API

ASIDE: CODING HOMEWORKS

Coding homeworks are small exercises where you write code to run on
a real machine to get some experience with some basic operating system
APIs. After all, you are (probably) a computer scientist, and therefore
should like to code, right? If you don’t, there is always CS theory, but
that’s pretty hard. Of course, to truly become an expert, you have to
spend more than a little time hacking away at the machine; indeed, find
every excuse you can to write some code and see how it works. Spend
the time, and become the wise master you know you can be.

Homework (Code)

In this homework, you are to gain some familiarity with the process
management APIs about which you just read. Don’t worry – it’s even
more fun than it sounds! You’ll in general be much better off if you find
as much time as you can to write some code, so why not start now?

Questions

1. Write a program that calls fork(). Before calling fork(), have the
main process access a variable (e.g., x) and set its value to some-
thing (e.g., 100). What value is the variable in the child process?
What happens to the variable when both the child and parent change
the value of x?

2. Write a program that opens a file (with the open() system call)
and then calls fork() to create a new process. Can both the child
and parent access the file descriptor returned by open()? What
happens when they are writing to the file concurrently, i.e., at the
same time?

3. Write another program using fork(). The child process should
print “hello”; the parent process should print “goodbye”. You should
try to ensure that the child process always prints first; can you do
this without calling wait() in the parent?

4. Write a program that calls fork() and then calls some form of
exec() to run the program /bin/ls. See if you can try all of the
variants of exec(), including (on Linux) execl(), execle(),

execlp(), execv(), execvp(), and execvpe(). Why do
you think there are so many variants of the same basic call?

5. Now write a program that uses wait() to wait for the child process
to finish in the parent. What does wait() return? What happens if
you use wait() in the child?

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

INTERLUDE: PROCESS API 15

6. Write a slight modification of the previous program, this time us-
ing waitpid() instead of wait(). When would waitpid() be
useful?

7. Write a program that creates a child process, and then in the child
closes standard output (STDOUT FILENO). What happens if the child
calls printf() to print some output after closing the descriptor?

8. Write a program that creates two children, and connects the stan-
dard output of one to the standard input of the other, using the
pipe() system call.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES

