
Preface

To Everyone

Welcome to this book! We hope you’ll enjoy reading it as much as we
enjoyed writing it. The book is called Operating Systems: Three Easy
Pieces (available at http://ostep.org), and the title is obviously an
homage to one of the greatest sets of lecture notes ever created, by one
Richard Feynman on the topic of Physics [F96]. While this book will un-
doubtedly fall short of the high standard set by that famous physicist,
perhaps it will be good enough for you in your quest to understand what
operating systems (and more generally, systems) are all about.

The three easy pieces refer to the three major thematic elements the
book is organized around: virtualization, concurrency, and persistence.
In discussing these concepts, we’ll end up discussing most of the impor-
tant things an operating system does; hopefully, you’ll also have some
fun along the way. Learning new things is fun, right? At least, it (usually)
should be.

Each major concept is divided into a set of chapters, most of which
present a particular problem and then show how to solve it. The chapters
are short, and try (as best as possible) to reference the source material
where the ideas really came from. One of our goals in writing this book
is to make the paths of history as clear as possible, as we think that helps
a student understand what is, what was, and what will be more clearly.
In this case, seeing how the sausage was made is nearly as important as
understanding what the sausage is good for1.

There are a couple devices we use throughout the book which are
probably worth introducing here. The first is the crux of the problem.
Anytime we are trying to solve a problem, we first try to state what the
most important issue is; such a crux of the problem is explicitly called
out in the text, and hopefully solved via the techniques, algorithms, and
ideas presented in the rest of the text.

In many places, we’ll explain how a system works by showing its be-
havior over time. These timelines are at the essence of understanding; if
you know what happens, for example, when a process page faults, you
are on your way to truly understanding how virtual memory operates. If

1Hint: eating! Or if you’re a vegetarian, running away from.

iii



iv

you comprehend what takes place when a journaling file system writes a
block to disk, you have taken the first steps towards mastery of storage
systems.

There are also numerous asides and tips throughout the text, adding
a little color to the mainline presentation. Asides tend to discuss some-
thing relevant (but perhaps not essential) to the main text; tips tend to be
general lessons that can be applied to systems you build. An index at the
end of the book lists all of these tips and asides (as well as cruces, the odd
plural of crux) for your convenience.

We use one of the oldest didactic methods, the dialogue, throughout
the book, as a way of presenting some of the material in a different light.
These are used to introduce the major thematic concepts (in a peachy way,
as we will see), as well as to review material every now and then. They
are also a chance to write in a more humorous style. Whether you find
them useful, or humorous, well, that’s another matter entirely.

At the beginning of each major section, we’ll first present an abstrac-
tion that an operating system provides, and then work in subsequent
chapters on the mechanisms, policies, and other support needed to pro-
vide the abstraction. Abstractions are fundamental to all aspects of Com-
puter Science, so it is perhaps no surprise that they are also essential in
operating systems.

Throughout the chapters, we try to use real code (not pseudocode)
where possible, so for virtually all examples, you should be able to type
them up yourself and run them. Running real code on real systems is the
best way to learn about operating systems, so we encourage you to do
so when you can. We are also making code available for your viewing
pleasure2.

In various parts of the text, we have sprinkled in a few homeworks
to ensure that you are understanding what is going on. Many of these
homeworks are little simulations of pieces of the operating system; you
should download the homeworks, and run them to quiz yourself. The
homework simulators have the following feature: by giving them a dif-
ferent random seed, you can generate a virtually infinite set of problems;
the simulators can also be told to solve the problems for you. Thus, you
can test and re-test yourself until you have achieved a good level of un-
derstanding.

The most important addendum to this book is a set of projects in
which you learn about how real systems work by designing, implement-
ing, and testing your own code. All projects (as well as the code exam-
ples, mentioned above) are in the C programming language [KR88]; C is
a simple and powerful language that underlies most operating systems,
and thus worth adding to your tool-chest of languages. Two types of
projects are available (see the online appendix for ideas). The first type
is systems programming projects; these projects are great for those who

2https://github.com/remzi-arpacidusseau/ostep-code

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



v

are new to C and UNIX and want to learn how to do low-level C pro-
gramming. The second type is based on a real operating system kernel
developed at MIT called xv6 [CK+08]; these projects are great for stu-
dents that already have some C and want to get their hands dirty inside
the OS. At Wisconsin, we’ve run the course in three different ways: either
all systems programming, all xv6 programming, or a mix of both.

We are slowly making project descriptions, and a testing framework,
available. See our repository3 for more information. If not part of a class,
this will give you a chance to do these projects on your own, to better
learn the material. Unfortunately, you don’t have a TA to bug when you
get stuck, but not everything in life can be free (but books can be!).

3https://github.com/remzi-arpacidusseau/ostep-projects

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



vi

To Educators

If you are an instructor or professor who wishes to use this book,
please feel free to do so. As you may have noticed, they are free and
available on-line from the following web page:

http://www.ostep.org

You can also purchase a printed copy from http://lulu.com or
http://amazon.com. Look for it on the web page above.

The (current) proper citation for the book is as follows:

Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Arpaci-Dusseau Books
August, 2018 (Version 1.00) or July, 2019 (Version 1.01)
or October, 2023 (Version 1.10)
http://www.ostep.org

The course divides fairly well across a 15-week semester, in which you
can cover most of the topics within at a reasonable level of depth. Cram-
ming the course into a 10-week quarter probably requires dropping some
detail from each of the pieces. There are also a few chapters on virtual
machine monitors, which we usually squeeze in sometime during the
semester, either right at end of the large section on virtualization, or near
the end as an aside.

One slightly unusual aspect of the book is that concurrency, a topic at
the front of many OS books, is pushed off herein until the student has
built an understanding of virtualization of the CPU and of memory. In
our experience in teaching this course for nearly 20 years, students have
a hard time understanding how the concurrency problem arises, or why
they are trying to solve it, if they don’t yet understand what an address
space is, what a process is, or why context switches can occur at arbitrary
points in time. Once they do understand these concepts, however, in-
troducing the notion of threads and the problems that arise due to them
becomes rather easy, or at least, easier.

As much as is possible, we use a chalkboard (or whiteboard) to deliver
a lecture. On these more conceptual days, we come to class with a few
major ideas and examples in mind and use the board to present them.
Handouts are useful to give the students concrete problems to solve based
on the material. On more practical days, we simply plug a laptop into
the projector and show real code; this style works particularly well for
concurrency lectures as well as for any discussion sections where you
show students code that is relevant for their projects. We don’t generally
use slides to present material, but have now made a set available for those
who prefer that style of presentation.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



vii

If you’d like a copy of any of these materials, please drop us an email.
We have already shared them with many others around the world, and
others have contributed their materials as well.

One last request: if you use the free online chapters, please just link to
them, instead of making a local copy. This helps us track usage (million
of chapters downloaded each month) and also ensures students get the
latest (and greatest?) version.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



viii

To Students

If you are a student reading this book, thank you! It is an honor for us
to provide some material to help you in your pursuit of knowledge about
operating systems. We both think back fondly towards some textbooks of
our undergraduate days (e.g., Hennessy and Patterson [HP90], the classic
book on computer architecture) and hope this book will become one of
those positive memories for you.

You may have noticed this book is free and available online4. There
is one major reason for this: textbooks are generally too expensive. This
book, we hope, is the first of a new wave of free materials to help those
in pursuit of their education, regardless of which part of the world they
come from or how much they are willing to spend for a book. Failing
that, it is one free book, which is better than none.

We also hope, where possible, to point you to the original sources of
much of the material in the book: the great papers and persons who have
shaped the field of operating systems over the years. Ideas are not pulled
out of the air; they come from smart and hard-working people (including
numerous Turing-award winners5), and thus we should strive to cele-
brate those ideas and people where possible. In doing so, we hopefully
can better understand the revolutions that have taken place, instead of
writing texts as if those thoughts have always been present [K62]. Fur-
ther, perhaps such references will encourage you to dig deeper on your
own; reading the famous papers of our field is certainly one of the best
ways to learn.

4A digression here: “free” in the way we use it here does not mean open source, and it
does not mean the book is not copyrighted with the usual protections – it is! What it means is
that you can download the chapters and use them to learn about operating systems. Why not
an open-source book, just like Linux is an open-source kernel? Well, we believe it is important
for a book to have a single voice throughout, and have worked hard to provide such a voice.
When you’re reading it, the book should kind of feel like a dialogue with the person explaining
something to you. Hence, our approach.

5The Turing Award is the highest award in Computer Science; it is like the Nobel Prize,
except that you have never heard of it.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



ix

Acknowledgments

This section will contain thanks to those who helped us put the book
together. The important thing for now: your name could go here! But,
you have to help. So send us some feedback and help debug this book.
And you could be famous! Or, at least, have your name in some book.

The people who have helped so far include: Aaron Gember (Colgate), Aashrith

H Govindraj (USF), Abdallah Ahmed, Abhinav Mehra, Abhinay Reddy, Abhirami Senthilku-

maran*, Abhishek Bhattacherjee (NITR), Adam Drescher* (WUSTL), Adam Eggum, Adam

Morrison, Aditya Venkataraman, Adriana Iamnitchi and class (USF), Ahmad Jarara, Ahmed

Fikri*, Ajaykrishna Raghavan, Akiel Khan, Alain Clark (github), Alex Curtis, Alex Giorev, Alex

Wyler, Alex Zhao (U. Colorado at Colorado Springs), Alexander Nordin (MIT), Ali Razeen

(Duke), Alistair Martin, AmirBehzad Eslami, Anand Mundada, Andrei Bozântan, Andrew

Mahler, Andrew Moss, Andrew Valencik (Saint Mary’s), Angela Demke Brown (Toronto), An-

tonella Bernobich (UoPeople)*, Arek Bulski, Arun Rajan (Stonybrook), Aryan Arora, Axel So-

lis Trompler (KIT), B. Brahmananda Reddy (Minnesota), Bala Subrahmanyam Kambala, Bart

Miller (Wisconsin), Basti Ortiz (github), Ben Kushigian (U. Mass), Benita Bose, Benjamin Wil-

helm (Konstanz), Bill Yang, Biswajit Mazumder (Clemson), Bo Liu (UCSD), Bobby Jack, Björn

Lindberg, Brandon Harshe (U. Minn), Brennan Payne, Brian Gorman, Brian Kroth, Calder

White (University of Waterloo), Caleb Sumner (Southern Adventist), Cara Lauritzen, Charlotte

Kissinger, Chen Huo (Shippensburg University), Chris Simionovici (U. Toronto), Cheng Su,

Chien Chi, Chien-Chung Shen (Delaware)*, chriskorosu (github), Christian Stober, Christoph

Jaeger (HTWK Leipzig), C.J. Stanbridge (Memorial U. of Newfoundland), Cody Hanson, Con-

stantinos Georgiades, Dakota Cookenmaster (Southern Adventist), Dakota Crane (U. Washington-

Tacoma), Dan Soendergaard (U. Aarhus), Dan Tsafrir (Technion), Daniel J Williams (IBM)*,

Daniela Ferreira Franco Moura, Danilo Bruschi (Universita Degli Studi Di Milano), Darby

Asher Noam Haller, David Hanle (Grinnell), David Hartman, Dawn Flood, Deepika Muthuku-

mar, Demir Delic, Dennis Zhou, Dheeraj Shetty (North Carolina State), Diego Oleiarz (FaMAF

UNC), dominikw1 (github), Dominic White, Dorian Arnold (New Mexico), Dustin Metzler,

Dustin Passofaro, Dylan Kaplan, Eduardo Stelmaszczyk, Efkan S. Goktepe, Emad Sadeghi,

Emil Hessman, Emily Jacobson, Emmett Witchel (Texas), Eric Freudenthal (UTEP), Erik Hjelmås

Eric Kleinberg, Eric Johansson, Erik Turk, Ernst Biersack (France), Ethan Wood, Evan Leung,

Fangjun Kuang (U. Stuttgart), Feng Zhang (IBM), Finn Kuusisto*, Francesco Piccoli, Gavin In-

glis (Notre Dame), Gia Hoang Tran, Giovanni Di Santi, Giovanni Lagorio (DIBRIS), Giovanni

Moricca, Glenn Bruns (CSU Monterey Bay), Glen Granzow (College of Idaho), Greggory Van

Dycke, Guilherme Baptista, gurugio (github), Tian Guo (WPI), Hamid Reza Ghasemi, Hao

Chen, Hao Liu, Hein Meling (Stavanger), Helen Gaiser (HTWG Konstanz), Henry Abbey,

Hilmar Gústafsson (Aalborg University), Holly Johnson (USF), Hrishikesh Amur, Huanchen

Zhang*, Huseyin Sular, Hugo Diaz, Hyrum Carroll (Columbus State), Ilya Oblomkov, Itai Hass

(Toronto), Jack Xu (Wisconsin), Jackson “Jake” Haenchen (Texas), Jacob Levinson (UCLA),

Jaeyoung Cho (SKKU), Jagannathan Eachambadi, Jake Gillberg, Jakob Olandt, James Earley,

James Perry (U. Michigan-Dearborn)*, Jan Reineke (Universität des Saarlandes), Jason MacLaf-

ferty (Southern Adventist), Jason Waterman (Vassar), Jay Lim, Jerod Weinman (Grinnell), Jer-

sey Deng (UCLA), Jhih-Cheng Luo, Jiao Dong (Rutgers), Jia-Shen Boon, Jiawen Bao, Jidong

Xiao (Boise State), Jingxin Li, jmcruzGH (github), Joe Jean (NYU), Joel Kuntz (Saint Mary’s),

Joel Hassan (U. Helsinki), Joel Sommers (Colgate), John Brady (Grinnell), John Komenda,

John McEachen (NPS), Jonathan Perry (MIT), Joshua Carpenter (NCSU), Josip Cavar, Jun He,

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



x

Justinas Petuchovas, Kai Mast (Wisconsin), Karl Schultheisz, Karl Wallinger, Kartik Singhal,

Katherine Dudenas, Katie Coyle (Georgia Tech), Kaushik Kannan, Kemal Bıçakcı, Kevin Liu*,

Khaled Emara, Kyle Hale (Illinois Institute of Technology), KyoungSoo Park (KAIST), Kyu-

tae Lee*, Lanyue Lu, Laura Xu, legate (github), Lei Tian (U. Nebraska-Lincoln), Leonardo

Medici (U. Milan), Leslie Schultz, Liang Yin, Lihao Wang, Looserof, Louie Lu, Luigi Finetti

(FaMAF, UNC) Luna Gal (Wooster), lyazj (github), Manav Batra (IIIT-Delhi), Manu Awasthi

(Samsung), Marcel van der Holst, Marco Guazzone (U. Piemonte Orientale), Marco Pedri-

nazzi (Universita Degli Studi Di Milano), Marius Rodi, Mart Oskamp, Martha Ferris, Masashi

Kishikawa (Sony), Matt Reichoff, Matı́as De Pascuale (FaMAF Universidad Nacional De Cor-

doba), Matthew Prinz, Matthias St. Pierre, Mattia Monga (U. Milan), Matty Williams, Megan

Cutrofello, Meng Huang, Michael Machtel (Hochschule Konstanz), Michael Walfish (NYU),

Michael Wu (UCLA), Mike Griepentrog, Ming Chen (Stonybrook), Mohammed Alali (Delaware),

Mohamed Omran (GUST), Mondo Gao (Wisconsin), Muhammad Mobeen Movania, Muham-

mad Yasoob Ullah Khalid, Murat Kerim Aslan, Murugan Kandaswamy, Nadeem Shaikh, Nan

Xiao, Natasha Eilbert, Natasha Stopa, Nathan Dipiazza, Nathan Sullivan, Neeraj Badlani (N.C.

State), Neil Perry, Nelson Gomez, Neven Sajko, Nghia Huynh (Texas), Ngu (Nicholas) Q.

Truong, Nicholas Mandal, Nick Weinandt, Nishin Shouzab, Nizare Leonetti, Noah Jackson,

Otto Sievert, Patel Pratyush Ashesh (BITS-Pilani), Patricio Jara, Patrick Elsen, Patrizio Palmisano,

Pavle Kostovic, Perry Kivolowitz, Peter Peterson (Minnesota), Phani Karan, Pieter Kockx, Po-

Hao Su (Taiwan) Prabhsimrandeep Singh, Prairie Rose Goodwin, Radford Smith, Repon Ku-

mar Roy, Reynaldo H. Verdejo Pinochet, Riccardo Mutschlechner, Rick Perry, Richard Cam-

panha (Georgia Tech), Ripudaman Singh, Rita Pia Folisi, Robert Ordóñez and class (South-

ern Adventist), Robin Li (Cornell), Roger Wattenhofer (ETH), Rohan Das (Toronto)*, Rohan

Pasalkar (Minnesota), Rohan Puri, Ross Aiken, Ruslan Kiselev, Ryland Herrick, Sam Kelly,

Sam Noh (UNIST), Sameer Punjal, Samer Al-Kiswany, Sandeep Ummadi (Minnesota), San-

tiago Marini, Sankaralingam Panneerselvam, Sarvesh Tandon (Wisconsin), Satish Chebrolu

(NetApp), Satyanarayana Shanmugam*, Scott Catlin, Scott Lee (UCLA), Scott Schoeller, Seth

Pollen, Sharad Punuganti, Shawn Ge, Shivaram Venkataraman, Shreevatsa R., Simon Pratt

(University of Waterloo), Sirui Chen, Sivaraman Sivaraman*, Song Jiang (Wayne State), Spencer

Harston (Weber State), Srinivasan Thirunarayanan*, Stardustman (github), Stefan Dekanski,

Stephen Bye, Stephen Schaub, Suriyhaprakhas Balaram Sankari, Sy Jin Cheah, Teri Zhao (EMC),

Thanumalayan S. Pillai, thasinaz (github), Thomas Griebel, Thomas John Lesniak (Wisconsin),

Thomas Scrace, Tianxia Bai, Tobi Popoola (Boise State), Tong He, Tongxin Zheng, Tony Ad-

kins, Torin Rudeen (Princeton), Tuo Wang, Tyler Couto, Varun Vats, Vegard Stikbakke, Vikas

Goel, Waciuma Wanjohi, William Royle (Grinnell), Winson Huang (github), Xiang Peng, Xu

Di, Yanyan Jiang, Yifan Hao, Yuanyuan Chen, Yubin Ruan, Yudong Sun, Yue Zhuo (Texas

A&M), Yufeng Zhang (UCLA), Yufui Ren, Yuxing Xiang (Peking), Zef RosnBrick, Zeyuan Hu

(Texas), Zhengguang Zhou (Wisconsin), ZiHan Zheng (USTC), zino23 (github), Zuyu Zhang.

Special thanks to those marked with an asterisk above, who have gone
above and beyond in their suggestions for improvement.

In addition, a hearty thanks to Professor Joe Meehean (Lynchburg) for
his detailed notes on each chapter, to Professor Jerod Weinman (Grin-
nell) and his entire class for their incredible booklets, to Professor Chien-
Chung Shen (Delaware) for his invaluable and detailed reading and com-
ments, to Adam Drescher (WUSTL) for his careful reading and sugges-
tions, to Glen Granzow (College of Idaho) for his incredibly detailed com-
ments and tips, Michael Walfish (NYU) for his enthusiasm and detailed

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



xi

suggestions for improvement, Peter Peterson (UMD) for his many bits
of useful feedback and commentary, Mark Kampe (Pomona) for detailed
criticism (we only wish we could fix all suggestions!), and Youjip Won
(Hanyang) for his translation work into Korean(!) and numerous insight-
ful suggestions, to Terence Kelly for his sidebar on memory mapping. All
have helped these authors immeasurably in the refinement of the materi-
als herein.

A special thank you to Professor Peter Reiher (UCLA) for writing a
wonderful set of security chapters, all in the style of this book. We had
the fortune of meeting Peter many years ago, and little did we know that
we would collaborate in this fashion two decades later. Amazing work!

Also, many thanks to the hundreds of students who have taken 537
over the years. In particular, the Fall ’08 class who encouraged the first
written form of these notes (they were sick of not having any kind of
textbook to read — pushy students!), and then praised them enough for
us to keep going (including one hilarious “ZOMG! You should totally
write a textbook!” comment in our course evaluations that year).

A great debt of thanks is also owed to the brave few who took the xv6
project lab course, much of which is now incorporated into the main 537
course. From Spring ’09: Justin Cherniak, Patrick Deline, Matt Czech,
Tony Gregerson, Michael Griepentrog, Tyler Harter, Ryan Kroiss, Eric
Radzikowski, Wesley Reardan, Rajiv Vaidyanathan, and Christopher Wa-
clawik. From Fall ’09: Nick Bearson, Aaron Brown, Alex Bird, David
Capel, Keith Gould, Tom Grim, Jeffrey Hugo, Brandon Johnson, John
Kjell, Boyan Li, James Loethen, Will McCardell, Ryan Szaroletta, Simon
Tso, and Ben Yule. From Spring ’10: Patrick Blesi, Aidan Dennis-Oehling,
Paras Doshi, Jake Friedman, Benjamin Frisch, Evan Hanson, Pikkili He-
manth, Michael Jeung, Alex Langenfeld, Scott Rick, Mike Treffert, Garret
Staus, Brennan Wall, Hans Werner, Soo-Young Yang, and Carlos Griffin
(almost).

Although they do not directly help with the book, our students have
taught us much of what we know about systems. We talk with them reg-
ularly while they are at Wisconsin, but they do all the real work — and
by telling us about what they are doing, we learn new things every week.
This list includes the following collection of former Ph.D.s and post-docs:
Aishwarya Ganesan, Florentina Popovici, Haryadi S. Gunawi, Joe Mee-
hean, John Bent, Jun He, Kan Wu, Lanyue Lu, Lakshmi Bairavasundaram,
Leo Arulraj, Muthian Sivathanu, Nathan Burnett, Nitin Agrawal, Ram
Alagappan, Samer Al-Kiswany, Sriram Subramanian, Stephen Todd Jones,
Sudarsun Kannan, Suli Yang, Swaminathan Sundararaman, Thanh Do,
Thanumalayan S. Pillai, Timothy Denehy, Tyler Harter, Vijay Chidambaram,
Vijayan Prabhakaran, Yiying Zhang, Yupu Zhang, Yuvraj Patel, Zev Weiss.

Of course, many other students (undergraduates, masters) and collab-
orators have co-authored papers with us. We thank them as well; please
see our web pages or DBLP to see who they are.

Our graduate students have largely been funded by the National Sci-
ence Foundation (NSF), the Department of Energy Office of Science (DOE),

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



xii

and by industry grants. We are especially grateful to the NSF for their
support over many years, as our research has shaped the content of many
chapters herein.

We thank Thomas Griebel, who demanded a better cover for the book.
Although we didn’t take his specific suggestion (a dinosaur, can you be-
lieve it?), the beautiful picture of Halley’s comet would not be found on
the cover without him.

A final debt of gratitude is also owed to Aaron Brown, who first took
this course many years ago (Spring ’09), then took the xv6 lab course (Fall
’09), and finally was a graduate teaching assistant for the course for two
years or so (Fall ’10 through Spring ’12). His tireless work has vastly im-
proved the state of the projects (particularly those in xv6 land) and thus
has helped better the learning experience for countless undergraduates
and graduates here at Wisconsin. As Aaron would say (in his usual suc-
cinct manner): “Thx.”

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



xiii

Final Words

Yeats famously said “Education is not the filling of a pail but the light-
ing of a fire.” He was right but wrong at the same time6. You do have
to “fill the pail” a bit, and these notes are certainly here to help with that
part of your education; after all, when you go to interview at Google, and
they ask you a trick question about how to use semaphores, it might be
good to actually know what a semaphore is, right?

But Yeats’s larger point is obviously on the mark: the real point of
education is to get you interested in something, to learn something more
about the subject matter on your own and not just what you have to digest
to get a good grade in some class. As one of our fathers (Remzi’s dad,
Vedat Arpaci) used to say, “Learn beyond the classroom”.

We created these notes to spark your interest in operating systems, to
read more about the topic on your own, to talk to your professor about all
the exciting research that is going on in the field, and even to get involved
with that research. It is a great field(!), full of exciting and wonderful
ideas that have shaped computing history in profound and important
ways. And while we understand this fire won’t light for all of you, we
hope it does for many, or even a few. Because once that fire is lit, well,
that is when you truly become capable of doing something great. And
thus the real point of the educational process: to go forth, to study many
new and fascinating topics, to learn, to mature, and most importantly, to
find something that lights a fire for you.

Andrea and Remzi
Married couple
Professors of Computer Science at the University of Wisconsin
Chief Lighters of Fires, hopefully7

6If he actually said this; as with many famous quotes, the history of this gem is murky.
7If this sounds like we are admitting some past history as arsonists, you are probably

missing the point. Probably. If this sounds cheesy, well, that’s because it is, but you’ll just have
to forgive us for that.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



xiv

References

[CK+08] “The xv6 Operating System” by Russ Cox, Frans Kaashoek, Robert Morris, Nickolai
Zeldovich. From: http://pdos.csail.mit.edu/6.828/2008/index.html. xv6 was
developed as a port of the original UNIX version 6 and represents a beautiful, clean, and simple way to
understand a modern operating system.

[F96] “Six Easy Pieces: Essentials Of Physics Explained By Its Most Brilliant Teacher” by
Richard P. Feynman. Basic Books, 1996. This book reprints the six easiest chapters of Feynman’s
Lectures on Physics, from 1963. If you like Physics, it is a fantastic read.

[HP90] “Computer Architecture a Quantitative Approach” (1st ed.) by David A. Patterson and
John L. Hennessy . Morgan-Kaufman, 1990. A book that encouraged each of us at our undergraduate
institutions to pursue graduate studies; we later both had the pleasure of working with Patterson, who
greatly shaped the foundations of our research careers.

[KR88] “The C Programming Language” by Brian Kernighan and Dennis Ritchie. Prentice-
Hall, April 1988. The C programming reference that everyone should have, by the people who invented
the language.

[K62] “The Structure of Scientific Revolutions” by Thomas S. Kuhn. University of Chicago
Press, 1962. A great and famous read about the fundamentals of the scientific process. Mop-up work,
anomaly, crisis, and revolution. We are mostly destined to do mop-up work, alas.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG


