
Preface

To Everyone

Welcome to this book! We hope you’ll enjoy reading it as much as we
enjoyed writing it. The book is called Operating Systems: Three Easy
Pieces (available at http://ostep.org), and the title is obviously an
homage to one of the greatest sets of lecture notes ever created, by one
Richard Feynman on the topic of Physics [F96]. While this book will un-
doubtedly fall short of the high standard set by that famous physicist,
perhaps it will be good enough for you in your quest to understand what
operating systems (and more generally, systems) are all about.

The three easy pieces refer to the three major thematic elements the
book is organized around: virtualization, concurrency, and persistence.
In discussing these concepts, we’ll end up discussing most of the impor-
tant things an operating system does; hopefully, you’ll also have some
fun along the way. Learning new things is fun, right? At least, it (usually)
should be.

Each major concept is divided into a set of chapters, most of which
present a particular problem and then show how to solve it. The chapters
are short, and try (as best as possible) to reference the source material
where the ideas really came from. One of our goals in writing this book
is to make the paths of history as clear as possible, as we think that helps
a student understand what is, what was, and what will be more clearly.
In this case, seeing how the sausage was made is nearly as important as
understanding what the sausage is good for1.

There are a couple devices we use throughout the book which are
probably worth introducing here. The first is the crux of the problem.
Anytime we are trying to solve a problem, we first try to state what the
most important issue is; such a crux of the problem is explicitly called
out in the text, and hopefully solved via the techniques, algorithms, and
ideas presented in the rest of the text.

In many places, we’ll explain how a system works by showing its be-
havior over time. These timelines are at the essence of understanding; if
you know what happens, for example, when a process page faults, you
are on your way to truly understanding how virtual memory operates. If

1Hint: eating! Or if you’re a vegetarian, running away from.
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you comprehend what takes place when a journaling file system writes a
block to disk, you have taken the first steps towards mastery of storage
systems.

There are also numerous asides and tips throughout the text, adding
a little color to the mainline presentation. Asides tend to discuss some-
thing relevant (but perhaps not essential) to the main text; tips tend to be
general lessons that can be applied to systems you build. An index at the
end of the book lists all of these tips and asides (as well as cruces, the odd
plural of crux) for your convenience.

We use one of the oldest didactic methods, the dialogue, throughout
the book, as a way of presenting some of the material in a different light.
These are used to introduce the major thematic concepts (in a peachy way,
as we will see), as well as to review material every now and then. They
are also a chance to write in a more humorous style. Whether you find
them useful, or humorous, well, that’s another matter entirely.

At the beginning of each major section, we’ll first present an abstrac-
tion that an operating system provides, and then work in subsequent
chapters on the mechanisms, policies, and other support needed to pro-
vide the abstraction. Abstractions are fundamental to all aspects of Com-
puter Science, so it is perhaps no surprise that they are also essential in
operating systems.

Throughout the chapters, we try to use real code (not pseudocode)
where possible, so for virtually all examples, you should be able to type
them up yourself and run them. Running real code on real systems is the
best way to learn about operating systems, so we encourage you to do
so when you can. We are also making code available for your viewing
pleasure2.

In various parts of the text, we have sprinkled in a few homeworks
to ensure that you are understanding what is going on. Many of these
homeworks are little simulations of pieces of the operating system; you
should download the homeworks, and run them to quiz yourself. The
homework simulators have the following feature: by giving them a dif-
ferent random seed, you can generate a virtually infinite set of problems;
the simulators can also be told to solve the problems for you. Thus, you
can test and re-test yourself until you have achieved a good level of un-
derstanding.

The most important addendum to this book is a set of projects in
which you learn about how real systems work by designing, implement-
ing, and testing your own code. All projects (as well as the code exam-
ples, mentioned above) are in the C programming language [KR88]; C is
a simple and powerful language that underlies most operating systems,
and thus worth adding to your tool-chest of languages. Two types of
projects are available (see the online appendix for ideas). The first type
is systems programming projects; these projects are great for those who

2https://github.com/remzi-arpacidusseau/ostep-code
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are new to C and UNIX and want to learn how to do low-level C pro-
gramming. The second type is based on a real operating system kernel
developed at MIT called xv6 [CK+08]; these projects are great for stu-
dents that already have some C and want to get their hands dirty inside
the OS. At Wisconsin, we’ve run the course in three different ways: either
all systems programming, all xv6 programming, or a mix of both.

We are slowly making project descriptions, and a testing framework,
available. See our repository3 for more information. If not part of a class,
this will give you a chance to do these projects on your own, to better
learn the material. Unfortunately, you don’t have a TA to bug when you
get stuck, but not everything in life can be free (but books can be!).

3https://github.com/remzi-arpacidusseau/ostep-projects
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To Educators

If you are an instructor or professor who wishes to use this book,
please feel free to do so. As you may have noticed, they are free and
available on-line from the following web page:

http://www.ostep.org

You can also purchase a printed copy from http://lulu.com or
http://amazon.com. Look for it on the web page above.

The (current) proper citation for the book is as follows:

Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Arpaci-Dusseau Books
August, 2018 (Version 1.00) or July, 2019 (Version 1.01)
or October, 2023 (Version 1.10)
http://www.ostep.org

The course divides fairly well across a 15-week semester, in which you
can cover most of the topics within at a reasonable level of depth. Cram-
ming the course into a 10-week quarter probably requires dropping some
detail from each of the pieces. There are also a few chapters on virtual
machine monitors, which we usually squeeze in sometime during the
semester, either right at end of the large section on virtualization, or near
the end as an aside.

One slightly unusual aspect of the book is that concurrency, a topic at
the front of many OS books, is pushed off herein until the student has
built an understanding of virtualization of the CPU and of memory. In
our experience in teaching this course for nearly 20 years, students have
a hard time understanding how the concurrency problem arises, or why
they are trying to solve it, if they don’t yet understand what an address
space is, what a process is, or why context switches can occur at arbitrary
points in time. Once they do understand these concepts, however, in-
troducing the notion of threads and the problems that arise due to them
becomes rather easy, or at least, easier.

As much as is possible, we use a chalkboard (or whiteboard) to deliver
a lecture. On these more conceptual days, we come to class with a few
major ideas and examples in mind and use the board to present them.
Handouts are useful to give the students concrete problems to solve based
on the material. On more practical days, we simply plug a laptop into
the projector and show real code; this style works particularly well for
concurrency lectures as well as for any discussion sections where you
show students code that is relevant for their projects. We don’t generally
use slides to present material, but have now made a set available for those
who prefer that style of presentation.
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If you’d like a copy of any of these materials, please drop us an email.
We have already shared them with many others around the world, and
others have contributed their materials as well.

One last request: if you use the free online chapters, please just link to
them, instead of making a local copy. This helps us track usage (million
of chapters downloaded each month) and also ensures students get the
latest (and greatest?) version.
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To Students

If you are a student reading this book, thank you! It is an honor for us
to provide some material to help you in your pursuit of knowledge about
operating systems. We both think back fondly towards some textbooks of
our undergraduate days (e.g., Hennessy and Patterson [HP90], the classic
book on computer architecture) and hope this book will become one of
those positive memories for you.

You may have noticed this book is free and available online4. There
is one major reason for this: textbooks are generally too expensive. This
book, we hope, is the first of a new wave of free materials to help those
in pursuit of their education, regardless of which part of the world they
come from or how much they are willing to spend for a book. Failing
that, it is one free book, which is better than none.

We also hope, where possible, to point you to the original sources of
much of the material in the book: the great papers and persons who have
shaped the field of operating systems over the years. Ideas are not pulled
out of the air; they come from smart and hard-working people (including
numerous Turing-award winners5), and thus we should strive to cele-
brate those ideas and people where possible. In doing so, we hopefully
can better understand the revolutions that have taken place, instead of
writing texts as if those thoughts have always been present [K62]. Fur-
ther, perhaps such references will encourage you to dig deeper on your
own; reading the famous papers of our field is certainly one of the best
ways to learn.

4A digression here: “free” in the way we use it here does not mean open source, and it
does not mean the book is not copyrighted with the usual protections – it is! What it means is
that you can download the chapters and use them to learn about operating systems. Why not
an open-source book, just like Linux is an open-source kernel? Well, we believe it is important
for a book to have a single voice throughout, and have worked hard to provide such a voice.
When you’re reading it, the book should kind of feel like a dialogue with the person explaining
something to you. Hence, our approach.

5The Turing Award is the highest award in Computer Science; it is like the Nobel Prize,
except that you have never heard of it.
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Final Words

Yeats famously said “Education is not the filling of a pail but the light-
ing of a fire.” He was right but wrong at the same time6. You do have
to “fill the pail” a bit, and these notes are certainly here to help with that
part of your education; after all, when you go to interview at Google, and
they ask you a trick question about how to use semaphores, it might be
good to actually know what a semaphore is, right?

But Yeats’s larger point is obviously on the mark: the real point of
education is to get you interested in something, to learn something more
about the subject matter on your own and not just what you have to digest
to get a good grade in some class. As one of our fathers (Remzi’s dad,
Vedat Arpaci) used to say, “Learn beyond the classroom”.

We created these notes to spark your interest in operating systems, to
read more about the topic on your own, to talk to your professor about all
the exciting research that is going on in the field, and even to get involved
with that research. It is a great field(!), full of exciting and wonderful
ideas that have shaped computing history in profound and important
ways. And while we understand this fire won’t light for all of you, we
hope it does for many, or even a few. Because once that fire is lit, well,
that is when you truly become capable of doing something great. And
thus the real point of the educational process: to go forth, to study many
new and fascinating topics, to learn, to mature, and most importantly, to
find something that lights a fire for you.

Andrea and Remzi
Married couple
Professors of Computer Science at the University of Wisconsin
Chief Lighters of Fires, hopefully7

6If he actually said this; as with many famous quotes, the history of this gem is murky.
7If this sounds like we are admitting some past history as arsonists, you are probably

missing the point. Probably. If this sounds cheesy, well, that’s because it is, but you’ll just have
to forgive us for that.
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