
30

Condition Variables

Thus far we have developed the notion of a lock and seen how one can be
properly built with the right combination of hardware and OS support.
Unfortunately, locks are not the only primitives that are needed to build
concurrent programs.

In particular, there are many cases where a thread wishes to check
whether a condition is true before continuing its execution. For example,
a parent thread might wish to check whether a child thread has completed
before continuing (this is often called a join()); how should such a wait
be implemented? Let’s look at Figure 30.1.

1 void *child(void *arg) {

2 printf("child\n");

3 // XXX how to indicate we are done?

4 return NULL;

5 }

6

7 int main(int argc, char *argv[]) {

8 printf("parent: begin\n");

9 pthread_t c;

10 Pthread_create(&c, NULL, child, NULL); // child

11 // XXX how to wait for child?

12 printf("parent: end\n");

13 return 0;

14 }

Figure 30.1: A Parent Waiting For Its Child

What we would like to see here is the following output:

parent: begin

child

parent: end

We could try using a shared variable, as you see in Figure 30.2. This
solution will generally work, but it is hugely inefficient as the parent spins

1



2 CONDITION VARIABLES

1 volatile int done = 0;

2

3 void *child(void *arg) {

4 printf("child\n");

5 done = 1;

6 return NULL;

7 }

8

9 int main(int argc, char *argv[]) {

10 printf("parent: begin\n");

11 pthread_t c;

12 Pthread_create(&c, NULL, child, NULL); // child

13 while (done == 0)

14 ; // spin

15 printf("parent: end\n");

16 return 0;

17 }

Figure 30.2: Parent Waiting For Child: Spin-based Approach

and wastes CPU time. What we would like here instead is some way to
put the parent to sleep until the condition we are waiting for (e.g., the
child is done executing) comes true.

THE CRUX: HOW TO WAIT FOR A CONDITION

In multi-threaded programs, it is often useful for a thread to wait for
some condition to become true before proceeding. The simple approach,
of just spinning until the condition becomes true, is grossly inefficient
and wastes CPU cycles, and in some cases, can be incorrect. Thus, how
should a thread wait for a condition?

30.1 Definition and Routines

To wait for a condition to become true, a thread can make use of what
is known as a condition variable. A condition variable is an explicit
queue that threads can put themselves on when some state of execution
(i.e., some condition) is not as desired (by waiting on the condition);
some other thread, when it changes said state, can then wake one (or
more) of those waiting threads and thus allow them to continue (by sig-
naling on the condition). The idea goes back to Dijkstra’s use of “private
semaphores” [D68]; a similar idea was later named a “condition variable”
by Hoare in his work on monitors [H74].

To declare such a condition variable, one simply writes something
like this: pthread cond t c;, which declares c as a condition variable
(note: proper initialization is also required). A condition variable has two
operations associated with it: wait() and signal(). The wait() call
is executed when a thread wishes to put itself to sleep; the signal() call
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CONDITION VARIABLES 3

1 int done = 0;

2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;

4

5 void thr_exit() {

6 Pthread_mutex_lock(&m);

7 done = 1;

8 Pthread_cond_signal(&c);

9 Pthread_mutex_unlock(&m);

10 }

11

12 void *child(void *arg) {

13 printf("child\n");

14 thr_exit();

15 return NULL;

16 }

17

18 void thr_join() {

19 Pthread_mutex_lock(&m);

20 while (done == 0)

21 Pthread_cond_wait(&c, &m);

22 Pthread_mutex_unlock(&m);

23 }

24

25 int main(int argc, char *argv[]) {

26 printf("parent: begin\n");

27 pthread_t p;

28 Pthread_create(&p, NULL, child, NULL);

29 thr_join();

30 printf("parent: end\n");

31 return 0;

32 }

Figure 30.3: Parent Waiting For Child: Use A Condition Variable

is executed when a thread has changed something in the program and
thus wants to wake a sleeping thread waiting on this condition. Specifi-
cally, the POSIX calls look like this:

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);

pthread_cond_signal(pthread_cond_t *c);

We will often refer to these as wait() and signal() for simplicity.
One thing you might notice about the wait() call is that it also takes a
mutex as a parameter; it assumes that this mutex is locked when wait()

is called. The responsibility of wait() is to release the lock and put the
calling thread to sleep (atomically); when the thread wakes up (after some
other thread has signaled it), it must re-acquire the lock before returning
to the caller. This complexity stems from the desire to prevent certain
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4 CONDITION VARIABLES

race conditions from occurring when a thread is trying to put itself to
sleep. Let’s take a look at the solution to the join problem (Figure 30.3) to
understand this better.

There are two cases to consider. In the first, the parent creates the child
thread but continues running itself (assume we have only a single pro-
cessor) and thus immediately calls into thr join() to wait for the child
thread to complete. In this case, it will acquire the lock, check if the child
is done (it is not), and put itself to sleep by calling wait() (hence releas-
ing the lock). The child will eventually run, print the message “child”,
and call thr exit() to wake the parent thread; this code just grabs the
lock, sets the state variable done, and signals the parent thus waking it.
Finally, the parent will run (returning from wait() with the lock held),
unlock the lock, and print the final message “parent: end”.

In the second case, the child runs immediately upon creation, sets
done to 1, calls signal to wake a sleeping thread (but there is none, so
it just returns), and is done. The parent then runs, calls thr join(), sees
that done is 1, and thus does not wait and returns.

One last note: you might observe the parent uses a while loop instead
of just an if statement when deciding whether to wait on the condition.
While this does not seem strictly necessary per the logic of the program,
it is always a good idea, as we will see below.

To make sure you understand the importance of each piece of the
thr exit() and thr join() code, let’s try a few alternate implemen-
tations. First, you might be wondering if we need the state variable done.
What if the code looked like the example below? (Figure 30.4)

Unfortunately this approach is broken. Imagine the case where the
child runs immediately and calls thr exit() immediately; in this case,
the child will signal, but there is no thread asleep on the condition. When
the parent runs, it will simply call wait and be stuck; no thread will ever
wake it. From this example, you should appreciate the importance of
the state variable done; it records the value the threads are interested in
knowing. The sleeping, waking, and locking all are built around it.

1 void thr_exit() {

2 Pthread_mutex_lock(&m);

3 Pthread_cond_signal(&c);

4 Pthread_mutex_unlock(&m);

5 }

6

7 void thr_join() {

8 Pthread_mutex_lock(&m);

9 Pthread_cond_wait(&c, &m);

10 Pthread_mutex_unlock(&m);

11 }

Figure 30.4: Parent Waiting: No State Variable
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CONDITION VARIABLES 5

1 void thr_exit() {

2 done = 1;

3 Pthread_cond_signal(&c);

4 }

5

6 void thr_join() {

7 if (done == 0)

8 Pthread_cond_wait(&c);

9 }

Figure 30.5: Parent Waiting: No Lock

Here (Figure 30.5) is another poor implementation. In this example,
we imagine that one does not need to hold a lock in order to signal and

wait. What problem could occur here? Think about it1!
The issue here is a subtle race condition. Specifically, if the parent calls

thr join() and then checks the value of done, it will see that it is 0 and
thus try to go to sleep. But just before it calls wait to go to sleep, the parent
is interrupted, and the child runs. The child changes the state variable
done to 1 and signals, but no thread is waiting and thus no thread is
woken. When the parent runs again, it sleeps forever, which is sad.

Hopefully, from this simple join example, you can see some of the ba-
sic requirements of using condition variables properly. To make sure you
understand, we now go through a more complicated example: the pro-
ducer/consumer or bounded-buffer problem.

TIP: ALWAYS HOLD THE LOCK WHILE SIGNALING

Although it is strictly not necessary in all cases, it is likely simplest and
best to hold the lock while signaling when using condition variables. The
example above shows a case where you must hold the lock for correct-
ness; however, there are some other cases where it is likely OK not to, but
probably is something you should avoid. Thus, for simplicity, hold the
lock when calling signal.

The converse of this tip, i.e., hold the lock when calling wait, is not just
a tip, but rather mandated by the semantics of wait, because wait always
(a) assumes the lock is held when you call it, (b) releases said lock when
putting the caller to sleep, and (c) re-acquires the lock just before return-
ing. Thus, the generalization of this tip is correct: hold the lock when
calling signal or wait, and you will always be in good shape.

1Note that this example is not “real” code, because the call to pthread cond wait()

always requires a mutex as well as a condition variable; here, we just pretend that the interface
does not do so for the sake of the negative example.
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6 CONDITION VARIABLES

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }
Figure 30.6: The Put And Get Routines (v1)

30.2 The Producer/Consumer (Bounded Buffer) Problem

The next synchronization problem we will confront in this chapter is
known as the producer/consumer problem, or sometimes as the bounded
buffer problem, which was first posed by Dijkstra [D72]. Indeed, it was
this very producer/consumer problem that led Dijkstra and his co-workers
to invent the generalized semaphore (which can be used as either a lock
or a condition variable) [D01]; we will learn more about semaphores later.

Imagine one or more producer threads and one or more consumer
threads. Producers generate data items and place them in a buffer; con-
sumers grab said items from the buffer and consume them in some way.

This arrangement occurs in many real systems. For example, in a
multi-threaded web server, a producer puts HTTP requests into a work
queue (i.e., the bounded buffer); consumer threads take requests out of
this queue and process them.

A bounded buffer is also used when you pipe the output of one pro-
gram into another, e.g., grep foo file.txt | wc -l. This example
runs two processes concurrently; grep writes lines from file.txt with
the string foo in them to what it thinks is standard output; the UNIX

shell redirects the output to what is called a UNIX pipe (created by the
pipe system call). The other end of this pipe is connected to the stan-
dard input of the process wc, which simply counts the number of lines in
the input stream and prints out the result. Thus, the grep process is the
producer; the wc process is the consumer; between them is an in-kernel
bounded buffer; you, in this example, are just the happy user.

Because the bounded buffer is a shared resource, we must of course
require synchronized access to it, lest2 a race condition arise. To begin to
understand this problem better, let us examine some actual code.

The first thing we need is a shared buffer, into which a producer puts
data, and out of which a consumer takes data. Let’s just use a single

2This is where we drop some serious Old English on you, and the subjunctive form.
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CONDITION VARIABLES 7

1 void *producer(void *arg) {

2 int i;

3 int loops = (int) arg;

4 for (i = 0; i < loops; i++) {

5 put(i);

6 }

7 }

8

9 void *consumer(void *arg) {

10 while (1) {

11 int tmp = get();

12 printf("%d\n", tmp);

13 }

14 }
Figure 30.7: Producer/Consumer Threads (v1)

integer for simplicity (you can certainly imagine placing a pointer to a
data structure into this slot instead), and the two inner routines to put
a value into the shared buffer, and to get a value out of the buffer. See
Figure 30.6 (page 6) for details.

Pretty simple, no? The put() routine assumes the buffer is empty
(and checks this with an assertion), and then simply puts a value into the
shared buffer and marks it full by setting count to 1. The get() routine
does the opposite, setting the buffer to empty (i.e., setting count to 0)
and returning the value. Don’t worry that this shared buffer has just a
single entry; later, we’ll generalize it to a queue that can hold multiple
entries, which will be even more fun than it sounds.

Now we need to write some routines that know when it is OK to access
the buffer to either put data into it or get data out of it. The conditions for
this should be obvious: only put data into the buffer when count is zero
(i.e., when the buffer is empty), and only get data from the buffer when
count is one (i.e., when the buffer is full). If we write the synchronization
code such that a producer puts data into a full buffer, or a consumer gets
data from an empty one, we have done something wrong (and in this
code, an assertion will fire).

This work is going to be done by two types of threads, one set of which
we’ll call the producer threads, and the other set which we’ll call con-
sumer threads. Figure 30.7 shows the code for a producer that puts an
integer into the shared buffer loops number of times, and a consumer
that gets the data out of that shared buffer (forever), each time printing
out the data item it pulled from the shared buffer.

A Broken Solution

Now imagine that we have just a single producer and a single consumer.
Obviously the put() and get() routines have critical sections within
them, as put() updates the buffer, and get() reads from it. However,
putting a lock around the code doesn’t work; we need something more.
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8 CONDITION VARIABLES

1 int loops; // must initialize somewhere...

2 cond_t cond;

3 mutex_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 Pthread_mutex_lock(&mutex); // p1

9 if (count == 1) // p2

10 Pthread_cond_wait(&cond, &mutex); // p3

11 put(i); // p4

12 Pthread_cond_signal(&cond); // p5

13 Pthread_mutex_unlock(&mutex); // p6

14 }

15 }

16

17 void *consumer(void *arg) {

18 int i;

19 for (i = 0; i < loops; i++) {

20 Pthread_mutex_lock(&mutex); // c1

21 if (count == 0) // c2

22 Pthread_cond_wait(&cond, &mutex); // c3

23 int tmp = get(); // c4

24 Pthread_cond_signal(&cond); // c5

25 Pthread_mutex_unlock(&mutex); // c6

26 printf("%d\n", tmp);

27 }

28 }

Figure 30.8: Producer/Consumer: Single CV And If Statement

Not surprisingly, that something more is some condition variables. In this
(broken) first try (Figure 30.8), we have a single condition variable cond
and associated lock mutex.

Let’s examine the signaling logic between producers and consumers.
When a producer wants to fill the buffer, it waits for it to be empty (p1–
p3). The consumer has the exact same logic, but waits for a different
condition: fullness (c1–c3).

With just a single producer and a single consumer, the code in Figure
30.8 works. However, if we have more than one of these threads (e.g.,
two consumers), the solution has two critical problems. What are they?

... (pause here to think) ...
Let’s understand the first problem, which has to do with the if state-

ment before the wait. Assume there are two consumers (Tc1 and Tc2) and
one producer (Tp). First, a consumer (Tc1) runs; it acquires the lock (c1),
checks if any buffers are ready for consumption (c2), and finding that
none are, waits (c3) (which releases the lock).

Then the producer (Tp) runs. It acquires the lock (p1), checks if all
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CONDITION VARIABLES 9

Tc1 State Tc2 State Tp State

C
o

u
n

t

Comment

c1 Run Ready Ready 0
c2 Run Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get

Sleep Ready p1 Run 0
Sleep Ready p2 Run 0
Sleep Ready p4 Run 1 Buffer now full
Ready Ready p5 Run 1 Tc1 awoken
Ready Ready p6 Run 1
Ready Ready p1 Run 1
Ready Ready p2 Run 1
Ready Ready p3 Sleep 1 Buffer full; sleep
Ready c1 Run Sleep 1 Tc2 sneaks in ...
Ready c2 Run Sleep 1
Ready c4 Run Sleep 0 ... and grabs data
Ready c5 Run Ready 0 Tp awoken
Ready c6 Run Ready 0

c4 Run Ready Ready 0 Oh oh! No data

Figure 30.9: Thread Trace: Broken Solution (v1)

buffers are full (p2), and finding that not to be the case, goes ahead and
fills the buffer (p4). The producer then signals that a buffer has been
filled (p5). Critically, this moves the first consumer (Tc1) from sleeping
on a condition variable to the ready queue; Tc1 is now able to run (but
not yet running). The producer then continues until realizing the buffer
is full, at which point it sleeps (p6, p1–p3).

Here is where the problem occurs: another consumer (Tc2) sneaks in
and consumes the one existing value in the buffer (c1, c2, c4, c5, c6, skip-
ping the wait at c3 because the buffer is full). Now assume Tc1 runs; just
before returning from the wait, it re-acquires the lock and then returns. It
then calls get() (c4), but there are no buffers to consume! An assertion
triggers, and the code has not functioned as desired. Clearly, we should
have somehow prevented Tc1 from trying to consume because Tc2 snuck
in and consumed the one value in the buffer that had been produced. Fig-
ure 30.9 shows the action each thread takes, as well as its scheduler state
(Ready, Running, or Sleeping) over time.

The problem arises for a simple reason: after the producer woke Tc1,
but before Tc1 ever ran, the state of the bounded buffer changed (thanks to
Tc2). Signaling a thread only wakes them up; it is thus a hint that the state
of the world has changed (in this case, that a value has been placed in the
buffer), but there is no guarantee that when the woken thread runs, the
state will still be as desired. This interpretation of what a signal means
is often referred to as Mesa semantics, after the first research that built
a condition variable in such a manner [LR80]; the contrast, referred to as
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10 CONDITION VARIABLES

1 int loops;

2 cond_t cond;

3 mutex_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 Pthread_mutex_lock(&mutex); // p1

9 while (count == 1) // p2

10 Pthread_cond_wait(&cond, &mutex); // p3

11 put(i); // p4

12 Pthread_cond_signal(&cond); // p5

13 Pthread_mutex_unlock(&mutex); // p6

14 }

15 }

16

17 void *consumer(void *arg) {

18 int i;

19 for (i = 0; i < loops; i++) {

20 Pthread_mutex_lock(&mutex); // c1

21 while (count == 0) // c2

22 Pthread_cond_wait(&cond, &mutex); // c3

23 int tmp = get(); // c4

24 Pthread_cond_signal(&cond); // c5

25 Pthread_mutex_unlock(&mutex); // c6

26 printf("%d\n", tmp);

27 }

28 }

Figure 30.10: Producer/Consumer: Single CV And While

Hoare semantics, is harder to build but provides a stronger guarantee
that the woken thread will run immediately upon being woken [H74].
Virtually every system ever built employs Mesa semantics.

Better, But Still Broken: While, Not If
Fortunately, this fix is easy (Figure 30.10): change the if to a while.
Think about why this works; now consumer Tc1 wakes up and (with the
lock held) immediately re-checks the state of the shared variable (c2). If
the buffer is empty at that point, the consumer simply goes back to sleep
(c3). The corollary if is also changed to a while in the producer (p2).

Thanks to Mesa semantics, a simple rule to remember with condition
variables is to always use while loops. Sometimes you don’t have to re-
check the condition, but it is always safe to do so; just do it and be happy.

However, this code still has a bug, the second of two problems men-
tioned above. Can you see it? It has something to do with the fact that
there is only one condition variable. Try to figure out what the problem
is, before reading ahead. DO IT! (pause for you to think, or close your eyes...)
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CONDITION VARIABLES 11

Tc1 State Tc2 State Tp State

C
o

u
n

t

Comment

c1 Run Ready Ready 0
c2 Run Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get

Sleep c1 Run Ready 0
Sleep c2 Run Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep p1 Run 0
Sleep Sleep p2 Run 0
Sleep Sleep p4 Run 1 Buffer now full
Ready Sleep p5 Run 1 Tc1 awoken
Ready Sleep p6 Run 1
Ready Sleep p1 Run 1
Ready Sleep p2 Run 1
Ready Sleep p3 Sleep 1 Must sleep (full)

c2 Run Sleep Sleep 1 Recheck condition
c4 Run Sleep Sleep 0 Tc1 grabs data
c5 Run Ready Sleep 0 Oops! Woke Tc2

c6 Run Ready Sleep 0
c1 Run Ready Sleep 0
c2 Run Ready Sleep 0
c3 Sleep Ready Sleep 0 Nothing to get

Sleep c2 Run Sleep 0
Sleep c3 Sleep Sleep 0 Everyone asleep...

Figure 30.11: Thread Trace: Broken Solution (v2)

Let’s confirm you figured it out correctly, or perhaps let’s confirm that
you are now awake and reading this part of the book. The problem oc-
curs when two consumers run first (Tc1 and Tc2) and both go to sleep (c3).
Then, the producer runs, puts a value in the buffer, and wakes one of the
consumers (say Tc1). The producer then loops back (releasing and reac-
quiring the lock along the way) and tries to put more data in the buffer;
because the buffer is full, the producer instead waits on the condition
(thus sleeping). Now, one consumer is ready to run (Tc1), and two threads
are sleeping on a condition (Tc2 and Tp). We are about to cause a problem:
things are getting exciting!

The consumer Tc1 then wakes by returning from wait() (c3), re-checks
the condition (c2), and finding the buffer full, consumes the value (c4).
This consumer then, critically, signals on the condition (c5), waking only
one thread that is sleeping. However, which thread should it wake?

Because the consumer has emptied the buffer, it clearly should wake
the producer. However, if it wakes the consumer Tc2 (which is definitely
possible, depending on how the wait queue is managed), we have a prob-
lem. Specifically, the consumer Tc2 will wake up and find the buffer
empty (c2), and go back to sleep (c3). The producer Tp, which has a value
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12 CONDITION VARIABLES

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex);

8 while (count == 1)

9 Pthread_cond_wait(&empty, &mutex);

10 put(i);

11 Pthread_cond_signal(&fill);

12 Pthread_mutex_unlock(&mutex);

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock(&mutex);

20 while (count == 0)

21 Pthread_cond_wait(&fill, &mutex);

22 int tmp = get();

23 Pthread_cond_signal(&empty);

24 Pthread_mutex_unlock(&mutex);

25 printf("%d\n", tmp);

26 }

27 }

Figure 30.12: Producer/Consumer: Two CVs And While

to put into the buffer, is left sleeping. The other consumer thread, Tc1,
also goes back to sleep. All three threads are left sleeping, a clear bug; see
Figure 30.11 for the brutal step-by-step of this terrible calamity.

Signaling is clearly needed, but must be more directed. A consumer
should not wake other consumers, only producers, and vice-versa.

The Single Buffer Producer/Consumer Solution

The solution here is once again a small one: use two condition variables,
instead of one, in order to properly signal which type of thread should
wake up when the state of the system changes. Figure 30.12 shows the
resulting code.

In the code, producer threads wait on the condition empty, and sig-
nals fill. Conversely, consumer threads wait on fill and signal empty. By
doing so, the second problem above is avoided by design: a consumer
can never accidentally wake a consumer, and a producer can never acci-
dentally wake a producer.
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CONDITION VARIABLES 13

1 int buffer[MAX];

2 int fill_ptr = 0;

3 int use_ptr = 0;

4 int count = 0;

5

6 void put(int value) {

7 buffer[fill_ptr] = value;

8 fill_ptr = (fill_ptr + 1) % MAX;

9 count++;

10 }

11

12 int get() {

13 int tmp = buffer[use_ptr];

14 use_ptr = (use_ptr + 1) % MAX;

15 count--;

16 return tmp;

17 }
Figure 30.13: The Correct Put And Get Routines

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex); // p1

8 while (count == MAX) // p2

9 Pthread_cond_wait(&empty, &mutex); // p3

10 put(i); // p4

11 Pthread_cond_signal(&fill); // p5

12 Pthread_mutex_unlock(&mutex); // p6

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock(&mutex); // c1

20 while (count == 0) // c2

21 Pthread_cond_wait(&fill, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&empty); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }
Figure 30.14: The Correct Producer/Consumer Synchronization
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14 CONDITION VARIABLES

TIP: USE WHILE (NOT IF) FOR CONDITIONS

When checking for a condition in a multi-threaded program, using a
while loop is always correct; using an if statement only might be, de-
pending on the semantics of signaling. Thus, always use while and your
code will behave as expected.

Using while loops around conditional checks also handles the case where
spurious wakeups occur. In some thread packages, due to details of the
implementation, it is possible that two threads get woken up though just
a single signal has taken place [L11]. Spurious wakeups are further reason
to re-check the condition a thread is waiting on.

The Correct Producer/Consumer Solution

We now have a working producer/consumer solution, albeit not a fully
general one. The last change we make is to enable more concurrency and
efficiency; specifically, we add more buffer slots, so that multiple values
can be produced before sleeping, and similarly multiple values can be
consumed before sleeping. With just a single producer and consumer, this
approach is more efficient as it reduces context switches; with multiple
producers or consumers (or both), it even allows concurrent producing
or consuming to take place, thus increasing concurrency. Fortunately, it
is a small change from our current solution.

The first change for this correct solution is within the buffer structure
itself and the corresponding put() and get() (Figure 30.13). We also
slightly change the conditions that producers and consumers check in or-
der to determine whether to sleep or not. We also show the correct wait-
ing and signaling logic (Figure 30.14). A producer only sleeps if all buffers
are currently filled (p2); similarly, a consumer only sleeps if all buffers are
currently empty (c2). And thus we solve the producer/consumer prob-
lem; time to sit back and drink a cold one.

30.3 Covering Conditions

We’ll now look at one more example of how condition variables can
be used. This code study is drawn from Lampson and Redell’s paper on
Pilot [LR80], the same group who first implemented the Mesa semantics
described above (the language they used was Mesa, hence the name).

The problem they ran into is best shown via simple example, in this
case in a simple multi-threaded memory allocation library. Figure 30.15
shows a code snippet which demonstrates the issue.

As you might see in the code, when a thread calls into the memory
allocation code, it might have to wait in order for more memory to be-
come free. Conversely, when a thread frees memory, it signals that more
memory is free. However, our code above has a problem: which waiting
thread (there can be more than one) should be woken up?
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1 // how many bytes of the heap are free?

2 int bytesLeft = MAX_HEAP_SIZE;

3

4 // need lock and condition too

5 cond_t c;

6 mutex_t m;

7

8 void *
9 allocate(int size) {

10 Pthread_mutex_lock(&m);

11 while (bytesLeft < size)

12 Pthread_cond_wait(&c, &m);

13 void *ptr = ...; // get mem from heap

14 bytesLeft -= size;

15 Pthread_mutex_unlock(&m);

16 return ptr;

17 }

18

19 void free(void *ptr, int size) {

20 Pthread_mutex_lock(&m);

21 bytesLeft += size;

22 Pthread_cond_signal(&c); // whom to signal??

23 Pthread_mutex_unlock(&m);

24 }
Figure 30.15: Covering Conditions: An Example

Consider the following scenario. Assume there are zero bytes free;
thread Ta calls allocate(100), followed by thread Tb which asks for
less memory by calling allocate(10). Both Ta and Tb thus wait on the
condition and go to sleep; there aren’t enough free bytes to satisfy either
of these requests.

At that point, assume a third thread, Tc, calls free(50). Unfortu-
nately, when it calls signal to wake a waiting thread, it might not wake
the correct waiting thread, Tb, which is waiting for only 10 bytes to be
freed; Ta should remain waiting, as not enough memory is yet free. Thus,
the code in the figure does not work, as the thread waking other threads
does not know which thread (or threads) to wake up.

The solution suggested by Lampson and Redell is straightforward: re-
place the pthread cond signal() call in the code above with a call to
pthread cond broadcast(), which wakes up all waiting threads. By
doing so, we guarantee that any threads that should be woken are. The
downside, of course, can be a negative performance impact, as we might
needlessly wake up many other waiting threads that shouldn’t (yet) be
awake. Those threads will simply wake up, re-check the condition, and
then go immediately back to sleep.

Lampson and Redell call such a condition a covering condition, as it
covers all the cases where a thread needs to wake up (conservatively);
the cost, as we’ve discussed, is that too many threads might be woken.
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16 CONDITION VARIABLES

The astute reader might also have noticed we could have used this ap-
proach earlier (see the producer/consumer problem with only a single
condition variable). However, in that case, a better solution was avail-
able to us, and thus we used it. In general, if you find that your program
only works when you change your signals to broadcasts (but you don’t
think it should need to), you probably have a bug; fix it! But in cases like
the memory allocator above, broadcast may be the most straightforward
solution available.

30.4 Summary

We have seen the introduction of another important synchronization
primitive beyond locks: condition variables. By allowing threads to sleep
when some program state is not as desired, CVs enable us to neatly solve
a number of important synchronization problems, including the famous
(and still important) producer/consumer problem, as well as covering
conditions. A more dramatic concluding sentence would go here, such as
“He loved Big Brother” [O49].
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Homework (Code)

This homework lets you explore some real code that uses locks and
condition variables to implement various forms of the producer/consumer
queue discussed in the chapter. You’ll look at the real code, run it in
various configurations, and use it to learn about what works and what
doesn’t, as well as other intricacies. Read the README for details.

Questions

1. Our first question focuses on main-two-cvs-while.c (the work-
ing solution). First, study the code. Do you think you have an un-
derstanding of what should happen when you run the program?

2. Run with one producer and one consumer, and have the producer
produce a few values. Start with a buffer (size 1), and then increase
it. How does the behavior of the code change with larger buffers?
(or does it?) What would you predict num full to be with different
buffer sizes (e.g., -m 10) and different numbers of produced items
(e.g., -l 100), when you change the consumer sleep string from
default (no sleep) to -C 0,0,0,0,0,0,1?

3. If possible, run the code on different systems (e.g., a Mac and Linux).
Do you see different behavior across these systems?

4. Let’s look at some timings. How long do you think the follow-
ing execution, with one producer, three consumers, a single-entry
shared buffer, and each consumer pausing at point c3 for a sec-
ond, will take? ./main-two-cvs-while -p 1 -c 3 -m 1 -C

0,0,0,1,0,0,0:0,0,0,1,0,0,0:0,0,0,1,0,0,0 -l 10 -v

-t

5. Now change the size of the shared buffer to 3 (-m 3). Will this make
any difference in the total time?

6. Now change the location of the sleep to c6 (this models a con-
sumer taking something off the queue and then doing something
with it), again using a single-entry buffer. What time do you pre-
dict in this case? ./main-two-cvs-while -p 1 -c 3 -m 1

-C 0,0,0,0,0,0,1:0,0,0,0,0,0,1:0,0,0,0,0,0,1 -l 10

-v -t

7. Finally, change the buffer size to 3 again (-m 3). What time do you
predict now?

8. Now let’s look at main-one-cv-while.c. Can you configure
a sleep string, assuming a single producer, one consumer, and a
buffer of size 1, to cause a problem with this code?
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9. Now change the number of consumers to two. Can you construct
sleep strings for the producer and the consumers so as to cause a
problem in the code?

10. Now examine main-two-cvs-if.c. Can you cause a problem to
happen in this code? Again consider the case where there is only
one consumer, and then the case where there is more than one.

11. Finally, examine main-two-cvs-while-extra-unlock.c. What
problem arises when you release the lock before doing a put or a
get? Can you reliably cause such a problem to happen, given the
sleep strings? What bad thing can happen?
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