
33

Event-based Concurrency (Advanced)

Thus far, we’ve written about concurrency as if the only way to build
concurrent applications is to use threads. Like many things in life, this
is not completely true. Specifically, a different style of concurrent pro-
gramming is often used in both GUI-based applications [O96] as well as
some types of internet servers [PDZ99]. This style, known as event-based
concurrency, has become popular in some modern systems, including
server-side frameworks such as node.js [N13], but its roots are found in
C/UNIX systems that we’ll discuss below.

The problem that event-based concurrency addresses is two-fold. The
first is that managing concurrency correctly in multi-threaded applica-
tions can be challenging; as we’ve discussed, missing locks, deadlock,
and other nasty problems can arise. The second is that in a multi-threaded
application, the developer has little or no control over what is scheduled
at a given moment in time; rather, the programmer simply creates threads
and then hopes that the underlying OS schedules them in a reasonable
manner across available CPUs. Given the difficulty of building a general-
purpose scheduler that works well in all cases for all workloads, some-
times the OS will schedule work in a manner that is less than optimal.
And thus, we have ...

THE CRUX:
HOW TO BUILD CONCURRENT SERVERS WITHOUT THREADS

How can we build a concurrent server without using threads, and thus
retain control over concurrency as well as avoid some of the problems
that seem to plague multi-threaded applications?

33.1 The Basic Idea: An Event Loop

The basic approach we’ll use, as stated above, is called event-based
concurrency. The approach is quite simple: you simply wait for some-
thing (i.e., an “event”) to occur; when it does, you check what type of

1



2 EVENT-BASED CONCURRENCY (ADVANCED)

event it is and do the small amount of work it requires (which may in-
clude issuing I/O requests, or scheduling other events for future han-
dling, etc.). That’s it!

Before getting into the details, let’s first examine what a canonical
event-based server looks like. Such applications are based around a sim-
ple construct known as the event loop. Pseudocode for an event loop
looks like this:

while (1) {

events = getEvents();

for (e in events)

processEvent(e);

}

It’s really that simple. The main loop simply waits for something to do
(by calling getEvents() in the code above) and then, for each event re-
turned, processes them, one at a time; the code that processes each event
is known as an event handler. Importantly, when a handler processes
an event, it is the only activity taking place in the system; thus, deciding
which event to handle next is equivalent to scheduling. This explicit con-
trol over scheduling is one of the fundamental advantages of the event-
based approach.

But this discussion leaves us with a bigger question: how exactly does
an event-based server determine which events are taking place, in par-
ticular with regards to network and disk I/O? Specifically, how can an
event server tell if a message has arrived for it?

33.2 An Important API: select() (or poll())

With that basic event loop in mind, we next must address the question
of how to receive events. In most systems, a basic API is available, via
either the select() or poll() system calls.

What these interfaces enable a program to do is simple: check whether
there is any incoming I/O that should be attended to. For example, imag-
ine that a network application (such as a web server) wishes to check
whether any network packets have arrived, in order to service them.
These system calls let you do exactly that.

Take select() for example. The manual page (on a Mac) describes
the API in this manner:

int select(int nfds,

fd_set *restrict readfds,

fd_set *restrict writefds,

fd_set *restrict errorfds,

struct timeval *restrict timeout);

The actual description from the man page: select() examines the I/O de-
scriptor sets whose addresses are passed in readfds, writefds, and errorfds to see

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



EVENT-BASED CONCURRENCY (ADVANCED) 3

ASIDE: BLOCKING VS. NON-BLOCKING INTERFACES

Blocking (or synchronous) interfaces do all of their work before returning
to the caller; non-blocking (or asynchronous) interfaces begin some work
but return immediately, thus letting whatever work that needs to be done
get done in the background.

The usual culprit in blocking calls is I/O of some kind. For example, if a
call must read from disk in order to complete, it might block, waiting for
the I/O request that has been sent to the disk to return.

Non-blocking interfaces can be used in any style of programming (e.g.,
with threads), but are essential in the event-based approach, as a call that
blocks will halt all progress.

if some of their descriptors are ready for reading, are ready for writing, or have
an exceptional condition pending, respectively. The first nfds descriptors are
checked in each set, i.e., the descriptors from 0 through nfds-1 in the descriptor
sets are examined. On return, select() replaces the given descriptor sets with
subsets consisting of those descriptors that are ready for the requested operation.
select() returns the total number of ready descriptors in all the sets.

A couple of points about select(). First, note that it lets you check
whether descriptors can be read from as well as written to; the former
lets a server determine that a new packet has arrived and is in need of
processing, whereas the latter lets the service know when it is OK to reply
(i.e., the outbound queue is not full).

Second, note the timeout argument. One common usage here is to
set the timeout to NULL, which causes select() to block indefinitely,
until some descriptor is ready. However, more robust servers will usually
specify some kind of timeout; one common technique is to set the timeout
to zero, and thus use the call to select() to return immediately.

The poll() system call is quite similar. See its manual page, or Stevens
and Rago [SR05], for details.

Either way, these basic primitives give us a way to build a non-blocking
event loop, which simply checks for incoming packets, reads from sockets
with messages upon them, and replies as needed.

33.3 Using select()

To make this more concrete, let’s examine how to use select() to see
which network descriptors have incoming messages upon them. Figure
33.1 shows a simple example.

This code is actually fairly simple to understand. After some initial-
ization, the server enters an infinite loop. Inside the loop, it uses the
FD ZERO() macro to first clear the set of file descriptors, and then uses
FD SET() to include all of the file descriptors from minFD to maxFD in

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



4 EVENT-BASED CONCURRENCY (ADVANCED)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <sys/types.h>

5 #include <unistd.h>

6

7 int main(void) {

8 // open and set up a bunch of sockets (not shown)

9 // main loop

10 while (1) {

11 // initialize the fd_set to all zero

12 fd_set readFDs;

13 FD_ZERO(&readFDs);

14

15 // now set the bits for the descriptors

16 // this server is interested in

17 // (for simplicity, all of them from min to max)

18 int fd;

19 for (fd = minFD; fd < maxFD; fd++)

20 FD_SET(fd, &readFDs);

21

22 // do the select

23 int rc = select(maxFD+1, &readFDs, NULL, NULL, NULL);

24

25 // check which actually have data using FD_ISSET()

26 int fd;

27 for (fd = minFD; fd < maxFD; fd++)

28 if (FD_ISSET(fd, &readFDs))

29 processFD(fd);

30 }

31 }

Figure 33.1: Simple Code Using select()

the set. This set of descriptors might represent, for example, all of the net-
work sockets to which the server is paying attention. Finally, the server
calls select() to see which of the connections have data available upon
them. By then using FD ISSET() in a loop, the event server can see
which of the descriptors have data ready and process the incoming data.

Of course, a real server would be more complicated than this, and
require logic to use when sending messages, issuing disk I/O, and many
other details. For further information, see Stevens and Rago [SR05] for
API information, or Pai et. al or Welsh et al. for a good overview of the
general flow of event-based servers [PDZ99, WCB01].

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



EVENT-BASED CONCURRENCY (ADVANCED) 5

TIP: DON’T BLOCK IN EVENT-BASED SERVERS

Event-based servers enable fine-grained control over scheduling of tasks.
However, to maintain such control, no call that blocks the execution of
the caller can ever be made; failing to obey this design tip will result in
a blocked event-based server, frustrated clients, and serious questions as
to whether you ever read this part of the book.

33.4 Why Simpler? No Locks Needed

With a single CPU and an event-based application, the problems found
in concurrent programs are no longer present. Specifically, because only
one event is being handled at a time, there is no need to acquire or release
locks; the event-based server cannot be interrupted by another thread be-
cause it is decidedly single threaded. Thus, concurrency bugs common in
threaded programs do not manifest in the basic event-based approach.

33.5 A Problem: Blocking System Calls

Thus far, event-based programming sounds great, right? You program
a simple loop, and handle events as they arise. You don’t even need to
think about locking! But there is an issue: what if an event requires that
you issue a system call that might block?

For example, imagine a request comes from a client into a server to
read a file from disk and return its contents to the requesting client (much
like a simple HTTP request). To service such a request, some event han-
dler will eventually have to issue an open() system call to open the file,
followed by a series of read() calls to read the file. When the file is read
into memory, the server will likely start sending the results to the client.

Both the open() and read() calls may issue I/O requests to the stor-
age system (when the needed metadata or data is not in memory already),
and thus may take a long time to service. With a thread-based server, this
is no issue: while the thread issuing the I/O request suspends (waiting
for the I/O to complete), other threads can run, thus enabling the server
to make progress. Indeed, this natural overlap of I/O and other computa-
tion is what makes thread-based programming quite natural and straight-
forward.

With an event-based approach, however, there are no other threads to
run: just the main event loop. And this implies that if an event handler
issues a call that blocks, the entire server will do just that: block until the
call completes. When the event loop blocks, the system sits idle, and thus
is a huge potential waste of resources. We thus have a rule that must be
obeyed in event-based systems: no blocking calls are allowed.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



6 EVENT-BASED CONCURRENCY (ADVANCED)

33.6 A Solution: Asynchronous I/O

To overcome this limit, many modern operating systems have intro-
duced new ways to issue I/O requests to the disk system, referred to
generically as asynchronous I/O. These interfaces enable an application
to issue an I/O request and return control immediately to the caller, be-
fore the I/O has completed; additional interfaces enable an application to
determine whether various I/Os have completed.

For example, let us examine the interface provided on a Mac (other
systems have similar APIs). The APIs revolve around a basic structure,
the struct aiocb or AIO control block in common terminology. A
simplified version of the structure looks like this (see the manual pages
for more information):

struct aiocb {

int aio_fildes; // File descriptor

off_t aio_offset; // File offset

volatile void *aio_buf; // Location of buffer

size_t aio_nbytes; // Length of transfer

};

To issue an asynchronous read to a file, an application should first
fill in this structure with the relevant information: the file descriptor of
the file to be read (aio fildes), the offset within the file (aio offset)
as well as the length of the request (aio nbytes), and finally the tar-
get memory location into which the results of the read should be copied
(aio buf).

After this structure is filled in, the application must issue the asyn-
chronous call to read the file; on a Mac, this API is simply the asyn-
chronous read API:

int aio_read(struct aiocb *aiocbp);

This call tries to issue the I/O; if successful, it simply returns right
away and the application (i.e., the event-based server) can continue with
its work.

There is one last piece of the puzzle we must solve, however. How can
we tell when an I/O is complete, and thus that the buffer (pointed to by
aio buf) now has the requested data within it?

One last API is needed. On a Mac, it is referred to (somewhat confus-
ingly) as aio error(). The API looks like this:

int aio_error(const struct aiocb *aiocbp);

This system call checks whether the request referred to by aiocbp has
completed. If it has, the routine returns success (indicated by a zero);
if not, EINPROGRESS is returned. Thus, for every outstanding asyn-
chronous I/O, an application can periodically poll the system via a call
to aio error() to determine whether said I/O has yet completed.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



EVENT-BASED CONCURRENCY (ADVANCED) 7

One thing you might have noticed is that it is painful to check whether
an I/O has completed; if a program has tens or hundreds of I/Os issued
at a given point in time, should it simply keep checking each of them
repeatedly, or wait a little while first, or ... ?

To remedy this issue, some systems provide an approach based on the
interrupt. This method uses UNIX signals to inform applications when
an asynchronous I/O completes, thus removing the need to repeatedly
ask the system. This polling vs. interrupts issue is seen in devices too, as
you will see (or already have seen) in the chapter on I/O devices.

In systems without asynchronous I/O, the pure event-based approach
cannot be implemented. However, clever researchers have derived meth-
ods that work fairly well in their place. For example, Pai et al. [PDZ99]
describe a hybrid approach in which events are used to process network
packets, and a thread pool is used to manage outstanding I/Os. Read
their paper for details.

33.7 Another Problem: State Management

Another issue with the event-based approach is that such code is gen-
erally more complicated to write than traditional thread-based code. The
reason is as follows: when an event handler issues an asynchronous I/O,
it must package up some program state for the next event handler to use
when the I/O finally completes; this additional work is not needed in
thread-based programs, as the state the program needs is on the stack of
the thread. Adya et al. call this work manual stack management, and it
is fundamental to event-based programming [A+02].

To make this point more concrete, let’s look at a simple example in
which a thread-based server needs to read from a file descriptor (fd) and,
once complete, write the data that it read from the file to a network socket
descriptor (sd). The code (ignoring error checking) looks like this:

int rc = read(fd, buffer, size);

rc = write(sd, buffer, size);

As you can see, in a multi-threaded program, doing this kind of work
is trivial; when the read() finally returns, the code immediately knows
which socket to write to because that information is on the stack of the
thread (in the variable sd).

In an event-based system, life is not so easy. To perform the same task,
we’d first issue the read asynchronously, using the AIO calls described
above. Let’s say we then periodically check for completion of the read
using the aio error() call; when that call informs us that the read is
complete, how does the event-based server know what to do?

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



8 EVENT-BASED CONCURRENCY (ADVANCED)

ASIDE: UNIX SIGNALS

A huge and fascinating infrastructure known as signals is present in all
modern UNIX variants. At its simplest, signals provide a way to commu-
nicate with a process. Specifically, a signal can be delivered to an appli-
cation; doing so stops the application from whatever it is doing to run a
signal handler, i.e., some code in the application to handle that signal.
When finished, the process just resumes its previous behavior.

Each signal has a name, such as HUP (hang up), INT (interrupt), SEGV
(segmentation violation), etc.; see the man page for details. Interestingly,
sometimes it is the kernel itself that does the signaling. For example,
when your program encounters a segmentation violation, the OS sends it
a SIGSEGV (prepending SIG to signal names is common); if your pro-
gram is configured to catch that signal, you can actually run some code
in response to this erroneous program behavior (which is helpful for de-
bugging). When a signal is sent to a process not configured to handle a
signal, the default behavior is enacted; for SEGV, the process is killed.

Here is a simple program that goes into an infinite loop, but has first set
up a signal handler to catch SIGHUP:

void handle(int arg) {

printf("stop wakin’ me up...\n");

}

int main(int argc, char *argv[]) {

signal(SIGHUP, handle);

while (1)

; // doin’ nothin’ except catchin’ some sigs

return 0;

}

You can send signals to it with the kill command line tool (yes, this is an
odd and aggressive name). Doing so will interrupt the main while loop
in the program and run the handler code handle():

prompt> ./main &

[3] 36705

prompt> kill -HUP 36705

stop wakin’ me up...

prompt> kill -HUP 36705

stop wakin’ me up...

There is a lot more to learn about signals, so much that a single chapter,
much less a single page, does not nearly suffice. As always, there is one
great source: Stevens and Rago [SR05]. Read more if interested.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



EVENT-BASED CONCURRENCY (ADVANCED) 9

The solution, as described by Adya et al. [A+02], is to use an old pro-
gramming language construct known as a continuation [FHK84]. Though
it sounds complicated, the idea is rather simple: basically, record the
needed information to finish processing this event in some data struc-
ture; when the event happens (i.e., when the disk I/O completes), look
up the needed information and process the event.

In this specific case, the solution would be to record the socket de-
scriptor (sd) in some kind of data structure (e.g., a hash table), indexed
by the file descriptor (fd). When the disk I/O completes, the event han-
dler would use the file descriptor to look up the continuation, which will
return the value of the socket descriptor to the caller. At this point (fi-
nally), the server can then do the last bit of work to write the data to the
socket.

33.8 What Is Still Difficult With Events

There are a few other difficulties with the event-based approach that
we should mention. For example, when systems moved from a single
CPU to multiple CPUs, some of the simplicity of the event-based ap-
proach disappeared. Specifically, in order to utilize more than one CPU,
the event server has to run multiple event handlers in parallel; when do-
ing so, the usual synchronization problems (e.g., critical sections) arise,
and the usual solutions (e.g., locks) must be employed. Thus, on mod-
ern multicore systems, simple event handling without locks is no longer
possible.

Another problem with the event-based approach is that it does not
integrate well with certain kinds of systems activity, such as paging. For
example, if an event-handler page faults, it will block, and thus the server
will not make progress until the page fault completes. Even though the
server has been structured to avoid explicit blocking, this type of implicit
blocking due to page faults is hard to avoid and thus can lead to large
performance problems when prevalent.

A third issue is that event-based code can be hard to manage over time,
as the exact semantics of various routines changes [A+02]. For example,
if a routine changes from non-blocking to blocking, the event handler
that calls that routine must also change to accommodate its new nature,
by ripping itself into two pieces. Because blocking is so disastrous for
event-based servers, a programmer must always be on the lookout for
such changes in the semantics of the APIs each event uses.

Finally, though asynchronous disk I/O is now possible on most plat-
forms, it has taken a long time to get there [PDZ99], and it never quite
integrates with asynchronous network I/O in as simple and uniform a
manner as you might think. For example, while one would simply like
to use the select() interface to manage all outstanding I/Os, usually
some combination of select() for networking and the AIO calls for
disk I/O are required.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



10 EVENT-BASED CONCURRENCY (ADVANCED)

33.9 Summary

We’ve presented a bare bones introduction to a different style of con-
currency based on events. Event-based servers give control of schedul-
ing to the application itself, but do so at some cost in complexity and
difficulty of integration with other aspects of modern systems (e.g., pag-
ing). Because of these challenges, no single approach has emerged as
best; thus, both threads and events are likely to persist as two different
approaches to the same concurrency problem for many years to come.
Read some research papers (e.g., [A+02, PDZ99, vB+03, WCB01]) or bet-
ter yet, write some event-based code, to learn more.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



EVENT-BASED CONCURRENCY (ADVANCED) 11

References

[A+02] “Cooperative Task Management Without Manual Stack Management” by Atul Adya,
Jon Howell, Marvin Theimer, William J. Bolosky, John R. Douceur. USENIX ATC ’02, Monterey,
CA, June 2002. This gem of a paper is the first to clearly articulate some of the difficulties of event-based
concurrency, and suggests some simple solutions, as well explores the even crazier idea of combining
the two types of concurrency management into a single application!

[FHK84] “Programming With Continuations” by Daniel P. Friedman, Christopher T. Haynes,
Eugene E. Kohlbecker. In Program Transformation and Programming Environments, Springer
Verlag, 1984. The classic reference to this old idea from the world of programming languages. Now
increasingly popular in some modern languages.

[N13] “Node.js Documentation” by the folks who built node.js. Available: nodejs.org/api.
One of the many cool new frameworks that help you readily build web services and applications. Every
modern systems hacker should be proficient in frameworks such as this one (and likely, more than one).
Spend the time and do some development in one of these worlds and become an expert.

[O96] “Why Threads Are A Bad Idea (for most purposes)” by John Ousterhout. Invited Talk
at USENIX ’96, San Diego, CA, January 1996. A great talk about how threads aren’t a great match
for GUI-based applications (but the ideas are more general). Ousterhout formed many of these opinions
while he was developing Tcl/Tk, a cool scripting language and toolkit that made it 100x easier to develop
GUI-based applications than the state of the art at the time. While the Tk GUI toolkit lives on (in Python
for example), Tcl seems to be slowly dying (unfortunately).

[PDZ99] “Flash: An Efficient and Portable Web Server” by Vivek S. Pai, Peter Druschel, Willy
Zwaenepoel. USENIX ’99, Monterey, CA, June 1999. A pioneering paper on how to structure
web servers in the then-burgeoning Internet era. Read it to understand the basics as well as to see the
authors’ ideas on how to build hybrids when support for asynchronous I/O is lacking.

[SR05] “Advanced Programming in the UNIX Environment” by W. Richard Stevens and Stephen
A. Rago. Addison-Wesley, 2005. Once again, we refer to the classic must-have-on-your-bookshelf
book of UNIX systems programming. If there is some detail you need to know, it is in here.

[vB+03] “Capriccio: Scalable Threads for Internet Services” by Rob von Behren, Jeremy Condit,
Feng Zhou, George C. Necula, Eric Brewer. SOSP ’03, Lake George, New York, October 2003.
A paper about how to make threads work at extreme scale; a counter to all the event-based work ongoing
at the time.

[WCB01] “SEDA: An Architecture for Well-Conditioned, Scalable Internet Services” by Matt
Welsh, David Culler, and Eric Brewer. SOSP ’01, Banff, Canada, October 2001. A nice twist
on event-based serving that combines threads, queues, and event-based handling into one streamlined
whole. Some of these ideas have found their way into the infrastructures of companies such as Google,
Amazon, and elsewhere.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



12 EVENT-BASED CONCURRENCY (ADVANCED)

Homework (Code)

In this (short) homework, you’ll gain some experience with event-
based code and some of its key concepts. Good luck!

Questions

1. First, write a simple server that can accept and serve TCP connec-
tions. You’ll have to poke around the Internet a bit if you don’t
already know how to do this. Build this to serve exactly one re-
quest at a time; have each request be very simple, e.g., to get the
current time of day.

2. Now, add the select() interface. Build a main program that can
accept multiple connections, and an event loop that checks which
file descriptors have data on them, and then read and process those
requests. Make sure to carefully test that you are using select()

correctly.
3. Next, let’s make the requests a little more interesting, to mimic a

simple web or file server. Each request should be to read the con-
tents of a file (named in the request), and the server should respond
by reading the file into a buffer, and then returning the contents
to the client. Use the standard open(), read(), close() system
calls to implement this feature. Be a little careful here: if you leave
this running for a long time, someone may figure out how to use it
to read all the files on your computer!

4. Now, instead of using standard I/O system calls, use the asyn-
chronous I/O interfaces as described in the chapter. How hard was
it to incorporate asynchronous interfaces into your program?

5. For fun, add some signal handling to your code. One common use
of signals is to poke a server to reload some kind of configuration
file, or take some other kind of administrative action. Perhaps one
natural way to play around with this is to add a user-level file cache
to your server, which stores recently accessed files. Implement a
signal handler that clears the cache when the signal is sent to the
server process.

6. Finally, we have the hard part: how can you tell if the effort to build
an asynchronous, event-based approach are worth it? Can you cre-
ate an experiment to show the benefits? How much implementa-
tion complexity did your approach add?

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG


