
D

Monitors (Deprecated)

Around the time concurrent programming was becoming a big deal, object-
oriented programming was also gaining ground. Not surprisingly, peo-
ple started to think about ways to merge synchronization into a more
structured programming environment.

One such approach that emerged was the monitor. First described by
Per Brinch Hansen [BH73] and later refined by Tony Hoare [H74], the
idea behind a monitor is quite simple. Consider the following pretend
monitor written in C++ notation:

monitor class account {

private:

int balance = 0;

public:

void deposit(int amount) {

balance = balance + amount;

}

void withdraw(int amount) {

balance = balance - amount;

}

};
Figure D.1: A Pretend Monitor Class

Note: this is a “pretend” class because C++ does not support moni-
tors, and hence the monitor keyword does not exist. However, Java does
support monitors, with what are called synchronized methods. Below,
we will examine both how to make something quite like a monitor in
C/C++, as well as how to use Java synchronized methods.

In this example, you may notice we have our old friend the account
and some routines to deposit and withdraw an amount from the balance.
As you also may notice, these are critical sections; if they are called by
multiple threads concurrently, you have a race condition and the poten-
tial for an incorrect outcome.
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2 MONITORS (DEPRECATED)

In a monitor class, you don’t get into trouble, though, because the
monitor guarantees that only one thread can be active within the mon-
itor at a time. Thus, our above example is a perfectly safe and working
piece of code; multiple threads can call deposit() or withdraw() and know
that mutual exclusion is preserved.

How does the monitor do this? Simple: with a lock. Whenever a
thread tries to call a monitor routine, it implicitly tries to acquire the mon-
itor lock. If it succeeds, then it will be able to call into the routine and run
the method’s code. If it does not, it will block until the thread that is in
the monitor finishes what it is doing. Thus, if we wrote a C++ class that
looked like the following, it would accomplish the exact same goal as the
monitor class above:

class account {

private:

int balance = 0;

pthread_mutex_t monitor;

public:

void deposit(int amount) {

pthread_mutex_lock(&monitor);

balance = balance + amount;

pthread_mutex_unlock(&monitor);

}

void withdraw(int amount) {

pthread_mutex_lock(&monitor);

balance = balance - amount;

pthread_mutex_unlock(&monitor);

}

};
Figure D.2: A C++ Class that acts like a Monitor

Thus, as you can see from this example, the monitor isn’t doing too
much for you automatically. Basically, it is just acquiring a lock and re-
leasing it. By doing so, we achieve what the monitor requires: only one
thread will be active within deposit() or withdraw(), as desired.

D.1 Why Bother with Monitors?

You might wonder why monitors were invented at all, instead of just
using explicit locking. At the time, object-oriented programming was
just coming into fashion. Thus, the idea was to gracefully blend some
of the key concepts in concurrent programming with some of the basic
approaches of object orientation. Nothing more than that.

D.2 Do We Get More Than Automatic Locking?
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MONITORS (DEPRECATED) 3

monitor class BoundedBuffer {

private:

int buffer[MAX];

int fill, use;

int fullEntries = 0;

cond_t empty;

cond_t full;

public:

void produce(int element) {

if (fullEntries == MAX) // line P0

wait(&empty); // line P1

buffer[fill] = element; // line P2

fill = (fill + 1) % MAX; // line P3

fullEntries++; // line P4

signal(&full); // line P5

}

int consume() {

if (fullEntries == 0) // line C0

wait(&full); // line C1

int tmp = buffer[use]; // line C2

use = (use + 1) % MAX; // line C3

fullEntries--; // line C4

signal(&empty); // line C5

return tmp; // line C6

}

}

Figure D.3: Producer/Consumer with Monitors and Hoare Semantics

Back to business. As we know from our discussion of semaphores,
just having locks is not quite enough; for example, to implement the pro-
ducer/consumer solution, we previously used semaphores to both put
threads to sleep when waiting for a condition to change (e.g., a producer
waiting for a buffer to be emptied), as well as to wake up a thread when
a particular condition has changed (e.g., a consumer signaling that it has
indeed emptied a buffer).

Monitors support such functionality through an explicit construct known
as a condition variable. Let’s take a look at the producer/consumer so-
lution, here written with monitors and condition variables.

In this monitor class, we have two routines, produce() and consume().
A producer thread would repeatedly call produce() to put data into the
bounded buffer, while a consumer() would repeatedly call consume().
The example is a modern paraphrase of Hoare’s solution [H74].

You should notice some similarities between this code and the semaphore-
based solution in the previous note. One major difference is how condi-
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4 MONITORS (DEPRECATED)

tion variables must be used in concert with an explicit state variable; in
this case, the integer fullEntries determines whether a producer or
consumer must wait, depending on its state. Semaphores, in contrast,
have an internal numeric value which serves this same purpose. Thus,
condition variables must be paired with some kind of external state value
in order to achieve the same end.

The most important aspect of this code, however, is the use of the
two condition variables, empty and full, and the respective wait() and
signal() calls that employ them. These operations do exactly what
you might think: wait() blocks the calling thread on a given condition;
signal() wakes one waiting thread that is waiting on the condition.

However, there are some subtleties in how these calls operate; under-
standing the semantics of these calls is critically important to understand-
ing why this code works. In what researchers in operating systems call
Hoare semantics (yes, a somewhat unfortunate name), the signal()

immediately wakes one waiting thread and runs it; thus, the monitor
lock, which is implicitly held by the running thread, immediately is trans-
ferred to the woken thread which then runs until it either blocks or ex-
its the monitor. Note that there may be more than one thread waiting;
signal() only wakes one waiting thread and runs it, while the others
must wait for a subsequent signal.

A simple example will help us understand this code better. Imagine
there are two threads, one a producer and the other a consumer. The con-
sumer gets to run first, and calls consume(), only to find that fullEntries
= 0 (C0), as there is nothing in the buffer yet. Thus, it calls wait(&full)
(C1), and waits for a buffer to be filled. The producer then runs, finds
it doesn’t have to wait (P0), puts an element into the buffer (P2), in-
crements the fill index (P3) and the fullEntries count (P4), and calls
signal(&full) (P5). In Hoare semantics, the producer does not con-
tinue running after the signal; rather, the signal immediately transfers
control to the waiting consumer, which returns from wait() (C1) and
immediately consumes the element produced by the producer (C2) and
so on. Only after the consumer returns will the producer get to run again
and return from the produce() routine.

D.3 Where Theory Meets Practice

Tony Hoare, who wrote the solution above and came up with the ex-
act semantics for signal() and wait(), was a theoretician. Clearly a
smart guy, too; he came up with quicksort after all [H61]. However, the
semantics of signaling and waiting, as it turns out, were not ideal for a
real implementation. As the old saying goes, in theory, there is no differ-
ence between theory and practice, but in practice, there is.
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OLD SAYING: THEORY VS. PRACTICE

The old saying is “in theory, there is no difference between theory and
practice, but in practice, there is.” Of course, only practitioners tell you
this; a theory person could undoubtedly prove that it is not true.

A few years later, Butler Lampson and David Redell of Xerox PARC
were building a concurrent language known as Mesa, and decided to use
monitors as their basic concurrency primitive [LR80]. They were well-
known systems researchers, and they soon found that Hoare semantics,
while more amenable to proofs, were hard to realize in a real system
(there are a lot of reasons for this, perhaps too many to go through here).

In particular, to build a working monitor implementation, Lampson
and Redell decided to change the meaning of signal() in a subtle but crit-
ical way. The signal() routine now was just considered a hint [L83]; it
would move a single waiting thread from the blocked state to a runnable
state, but it would not run it immediately. Rather, the signaling thread
would retain control until it exited the monitor and was descheduled.

D.4 Oh Oh, A Race

Given these new Mesa semantics, let us again reexamine the code
above. Imagine again a consumer (consumer 1) who enters the moni-
tor and finds the buffer empty and thus waits (C1). Now the producer
comes along and fills the buffer and signals that a buffer has been filled,
moving the waiting consumer from blocked on the full condition variable
to ready. The producer keeps running for a while, and eventually gives
up the CPU.

But Houston, we have a problem. Can you see it? Imagine a differ-
ent consumer (consumer 2) now calls into the consume() routine; it will
find a full buffer, consume it, and return, setting fullEntries to 0 in the
meanwhile. Can you see the problem yet? Well, here it comes. Our old
friend consumer 1 now finally gets to run, and returns from wait(), ex-
pecting a buffer to be full (C1...); unfortunately, this is no longer true,
as consumer 2 snuck in and consumed the buffer before consumer 1 had
a chance to consume it. Thus, the code doesn’t work, because in the time
between the signal() by the producer and the return from wait() by con-
sumer 1, the condition has changed. This timeline illustrates the problem:

Fortunately, the switch from Hoare semantics to Mesa semantics re-
quires only a small change by the programmer to realize a working so-
lution. Specifically, when woken, a thread should recheck the condition
it was waiting on; because signal() is only a hint, it is possible that the
condition has changed (even multiple times) and thus may not be in the
desired state when the waiting thread runs. In our example, two lines of
code must change, lines P0 and C0:
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6 MONITORS (DEPRECATED)

Producer Consumer1 Consumer2

C0 (fullEnt=0)

C1 (Con1: blocked)

P0 (fullEnt=0)

P2

P3

P4 (fullEnt=1)

P5 (Con1: ready)

C0 (fullEnt=1)

C2

C3

C4 (fullEnt=0)

C5

C6

C2 (using a buffer,

fullEnt=0!)

Figure D.4: Why the Code doesn’t work with Hoare Semantics

public:

void produce(int element) {

while (fullEntries == MAX) // line P0 (CHANGED IF->WHILE)

wait(&empty); // line P1

buffer[fill] = element; // line P2

fill = (fill + 1) % MAX; // line P3

fullEntries++; // line P4

signal(&full); // line P5

}

int consume() {

while (fullEntries == 0) // line C0 (CHANGED IF->WHILE)

wait(&full); // line C1

int tmp = buffer[use]; // line C2

use = (use + 1) % MAX; // line C3

fullEntries--; // line C4

signal(&empty); // line C5

return tmp; // line C6

}

Figure D.5: Producer/Consumer with Monitors and Mesa Semantics

Not too hard after all. Because of the ease of this implementation,
virtually any system today that uses condition variables with signaling
and waiting uses Mesa semantics. Thus, if you remember nothing else at
all from this class, you can just remember: always recheck the condition
after being woken! Put in even simpler terms, use while loops and not
if statements when checking conditions. Note that this is always correct,
even if somehow you are running on a system with Hoare semantics; in
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t | Con1 Con2 Prod | Mon | Empty | Full | FE | Comment

------------------------------------------------------------------------

0 C0 0

1 C1 Con1 0 Con1 waiting on full

2 <Context switch> Con1 0 switch: Con1 to Prod

3 P0 Con1 0

4 P2 Con1 0 Prod doesn’t wait (FE=0)

5 P3 Con1 0

6 P4 Con1 1 Prod updates fullEntries

7 P5 1 Prod signals: Con1 now ready

8 <Context switch> 1 switch: Prod to Con2

9 C0 1 switch to Con2

10 C2 1 Con2 doesn’t wait (FE=1)

11 C3 1

12 C4 0 Con2 changes fullEntries

13 C5 0 Con2 signals empty (no waiter)

14 C6 0 Con2 done

15 <Context switch> 0 switch: Con2 to Con1

16 C0 0 recheck fullEntries: 0!

17 C1 Con1 0 wait on full again

Figure D.6: Tracing Queues during a Producer/Consumer Run

that case, you would just needlessly retest the condition an extra time.

D.5 Peeking Under The Hood A Bit

To understand a bit better why Mesa semantics are easier to imple-
ment, let’s understand a little more about the implementation of Mesa
monitors. In their work [LR80], Lampson and Redell describe three differ-
ent types of queues that a thread can be a part of at a given time: the ready
queue, a monitor lock queue, and a condition variable queue. Note that
a program might have multiple monitor classes and multiple condition
variable instances; there is a queue per instance of said items.

With a single bounded buffer monitor, we thus have four queues to
consider: the ready queue, a single monitor queue, and two condition
variable queues (one for the full condition and one for the empty). To
better understand how a thread library manages these queues, what we
will do is show how a thread transitions through these queues in the pro-
ducer/consumer example.

In this example, we walk through a case where a consumer might be
woken up but find that there is nothing to consume. Let us consider the
following timeline. On the left are two consumers (Con1 and Con2) and a
producer (Prod) and which line of code they are executing; on the right is
the state of each of the four queues we are following for this example:
the ready queue of runnable processes, the monitor lock queue called
Monitor, and the empty and full condition variable queues. We also track
time (t), the thread that is running (square brackets around the thread on
the ready queue that is running), and the value of fullEntries (FE).

As you can see from the timeline, consumer 2 (Con2) sneaks in and
consumes the available data (t=9..14) before consumer 1 (Con1), who was
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8 MONITORS (DEPRECATED)

monitor class allocator {

int available; // how much memory is available?

cond_t c;

void *allocate(int size) {

while (size > available)

wait(&c);

available -= size;

// and then do whatever the allocator should do

// and return a chunk of memory

}

void free(void *pointer, int size) {

// free up some memory

available += size;

signal(&c);

}

};
Figure D.7: A Simple Memory Allocator

waiting on the full condition to be signaled (since t=1), gets a chance to
do so. However, Con1 does get woken by the producer’s signal (t=7),
and thus runs again even though the buffer is empty by the time it does
so. If Con1 didn’t recheck the state variable fullEntries (t=16), it would
have erroneously tried to consume data when no data was present to
consume. Thus, this natural implementation is exactly what leads us to
Mesa semantics (and not Hoare).

D.6 Other Uses Of Monitors

In their paper on Mesa, Lampson and Redell also point out a few
places where a different kind of signaling is needed. For example, con-
sider the following memory allocator (Figure D.7).

Many details are left out of this example, in order to allow us to focus
on the conditions for waking and signaling. It turns out the signal/wait
code above does not quite work; can you see why?

Imagine two threads call allocate. The first calls allocate(20) and the
second allocate(10). No memory is available, and thus both threads call
wait() and block. Some time later, a different thread comes along and calls
free(p, 15), and thus frees up 15 bytes of memory. It then signals that it
has done so. Unfortunately, it wakes the thread waiting for 20 bytes; that
thread rechecks the condition, finds that only 15 bytes are available, and
calls wait() again. The thread that could have benefited from the free of
15 bytes, i.e., the thread that called allocate(10), is not woken.

Lampson and Redell suggest a simple solution to this problem. In-
stead of a signal() which wakes a single waiting thread, they employ a
broadcast() which wakes all waiting threads. Thus, all threads are woken
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monitor class Semaphore {

int s; // value of the semaphore

Semaphore(int value) {

s = value;

}

void wait() {

while (s <= 0)

wait();

s--;

}

void post() {

s++;

signal();

}

};

Figure D.8: Implementing a Semaphore with a Monitor

up, and in the example above, the thread waiting for 10 bytes will find 15
available and succeed in its allocation.

In Mesa semantics, using a broadcast() is always correct, as all threads
should recheck the condition of interest upon waking anyhow. However,
it may be a performance problem, and thus should only be used when
needed. In this example, a broadcast() might wake hundreds of waiting
threads, only to have one successfully continue while the rest immedi-
ately block again; this problem, sometimes known as a thundering herd,
is costly, due to all the extra context switches that occur.

D.7 Using Monitors To Implement Semaphores

You can probably see a lot of similarities between monitors and semaphores.
Not surprisingly, you can use one to implement the other. Here, we show
how you might implement a semaphore class using a monitor (Figure
D.8).

As you can see, wait() simply waits for the value of the semaphore to
be greater than 0, and then decrements its value, whereas post() incre-
ments the value and wakes one waiting thread (if there is one). It’s as
simple as that.

To use this class as a binary semaphore (i.e., a lock), you just initialize
the semaphore to 1, and then put wait()/post() pairs around critical sec-
tions. And thus we have shown that monitors can be used to implement
semaphores.

D.8 Monitors in the Real World
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class BoundedBuffer {

private:

int buffer[MAX];

int fill, use;

int fullEntries;

pthread_mutex_t monitor; // monitor lock

pthread_cond_t empty;

pthread_cond_t full;

public:

BoundedBuffer() {

use = fill = fullEntries = 0;

}

void produce(int element) {

pthread_mutex_lock(&monitor);

while (fullEntries == MAX)

pthread_cond_wait(&empty, &monitor);

buffer[fill] = element;

fill = (fill + 1) % MAX;

fullEntries++;

pthread_cond_signal(&full);

pthread_mutex_unlock(&monitor);

}

int consume() {

pthread_mutex_lock(&monitor);

while (fullEntries == 0)

pthread_cond_wait(&full, &monitor);

int tmp = buffer[use];

use = (use + 1) % MAX;

fullEntries--;

pthread_cond_signal(&empty);

pthread_mutex_unlock(&monitor);

return tmp;

}

}

Figure D.9: C++ Producer/Consumer with a “Monitor”

We already mentioned above that we were using “pretend” monitors;
C++ has no such concept. We now show how to make a monitor-like C++
class, and how Java uses synchronized methods to achieve a similar end.

A C++ Monitor of Sorts

Here is the producer/consumer code written in C++ with locks and con-
dition variables (Figure D.9). You can see in this code example that there
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is little difference between the pretend monitor code and the working
C++ class we have above. Of course, one obvious difference is the explicit
use of a lock ”monitor”. More subtle is the switch to the POSIX standard
pthread cond signal() and pthread cond wait() calls. In partic-
ular, notice that when calling pthread cond wait(), one also passes
in the lock that is held at the time of waiting. The lock is needed inside
pthread cond wait() because it must be released when this thread is
put to sleep and re-acquired before it returns to the caller (the same be-
havior as within a monitor but again with explicit locks).

A Java Monitor
Interestingly, the designers of Java decided to use monitors as they thought
they were a graceful way to add synchronization primitives into a lan-
guage. To use them, you just use add the keyword synchronized to the
method or set of methods that you wish to use as a monitor (here is an
example from Sun’s own documentation site [S12a,S12b]):

This code does exactly what you think it should: provide a counter
that is thread safe. Because only one thread is allowed into the monitor
at a time, only one thread can update the value of ”c”, and thus a race
condition is averted.

Java and the Single Condition Variable

In the original version of Java, a condition variable was also supplied with
each synchronized class. To use it, you would call either wait() or notify()
(sometimes the term notify is used instead of signal, but they mean the
same thing). Oddly enough, in this original implementation, there was no
way to have two (or more) condition variables. You may have noticed in
the producer/consumer solution, we always use two: one for signaling a
buffer has been emptied, and another for signaling that a buffer has been
filled.

To understand the limitations of only providing a single condition
variable, let’s imagine the producer/consumer solution with only a sin-
gle condition variable. Imagine two consumers run first, and both get
stuck waiting. Then, a producer runs, fills a single buffer, wakes a single
consumer, and then tries to fill again but finds the buffer full (MAX=1).
Thus, we have a producer waiting for an empty buffer, a consumer wait-
ing for a full buffer, and a consumer who had been waiting about to run
because it has been woken.

The consumer then runs and consumes the buffer. When it calls no-
tify(), though, it wakes a single thread that is waiting on the condition.
Because there is only a single condition variable, the consumer might
wake the waiting consumer, instead of the waiting producer. Thus, the
solution does not work.

To remedy this problem, one can again use the broadcast solution. In
Java, one calls notifyAll() to wake all waiting threads. In this case, the
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12 MONITORS (DEPRECATED)

public class SynchronizedCounter {

private int c = 0;

public synchronized void increment() {

c++;

}

public synchronized void decrement() {

c--;

}

public synchronized int value() {

return c;

}

}

Figure D.10: A Simple Java Class with Synchronized Methods

consumer would wake a producer and a consumer, but the consumer
would find that fullEntries is equal to 0 and go back to sleep, while the
producer would continue. As usual, waking all waiters can lead to the
thundering herd problem.

Because of this deficiency, Java later added an explicit Condition class,
thus allowing for a more efficient solution to this and other similar con-
currency problems.

D.9 Summary

We have seen the introduction of monitors, a structuring concept de-
veloped by Brinch Hansen and and subsequently Hoare in the early sev-
enties. When running inside the monitor, a thread implicitly holds a mon-
itor lock, and thus prevents other threads from entering the monitor, al-
lowing the ready construction of mutual exclusion.

We also have seen the introduction of explicit condition variables, which
allow threads to signal() and wait() much like we saw with semaphores
in the previous note. The semantics of signal() and wait() are critical; be-
cause all modern systems implement Mesa semantics, a recheck of the
condition that the thread went to sleep on is required for correct execu-
tion. Thus, signal() is just a hint that something has changed; it is the
responsibility of the woken thread to make sure the conditions are right
for its continued execution.

Finally, because C++ has no monitor support, we saw how to emulate
monitors with explicit pthread locks and condition variables. We also saw
how Java supports monitors with its synchronized routines, and some of
the limitations of only providing a single condition variable in such an
environment.
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