
B

Virtual Machine Monitors

B.1 Introduction

Years ago, IBM sold expensive mainframes to large organizations, and
a problem arose: what if the organization wanted to run different oper-
ating systems on the machine at the same time? Some applications had
been developed on one OS, and some on others, and thus the problem.
As a solution, IBM introduced yet another level of indirection in the form
of a virtual machine monitor (VMM) (also called a hypervisor) [G74].

Specifically, the monitor sits between one or more operating systems
and the hardware and gives the illusion to each running OS that it con-
trols the machine. Behind the scenes, however, the monitor actually is
in control of the hardware, and must multiplex running OSes across the
physical resources of the machine. Indeed, the VMM serves as an operat-
ing system for operating systems, but at a much lower level; the OS must
still think it is interacting with the physical hardware. Thus, transparency
is a major goal of VMMs.

Thus, we find ourselves in a funny position: the OS has thus far served
as the master illusionist, tricking unsuspecting applications into thinking
they have their own private CPU and a large virtual memory, while se-
cretly switching between applications and sharing memory as well. Now,
we have to do it again, but this time underneath the OS, who is used to
being in charge. How can the VMM create this illusion for each OS run-
ning on top of it?

THE CRUX:
HOW TO VIRTUALIZE THE MACHINE UNDERNEATH THE OS

The virtual machine monitor must transparently virtualize the ma-
chine underneath the OS; what are the techniques required to do so?

1



2 VIRTUAL MACHINE MONITORS

B.2 Motivation: Why VMMs?

Today, VMMs have become popular again for a multitude of reasons.
Server consolidation is one such reason. In many settings, people run
services on different machines which run different operating systems (or
even OS versions), and yet each machine is lightly utilized. In this case,
virtualization enables an administrator to consolidate multiple OSes onto
fewer hardware platforms, and thus lower costs and ease administration.

Virtualization has also become popular on desktops, as many users
wish to run one operating system (say Linux or Mac OS X) but still have
access to native applications on a different platform (say Windows). This
type of improvement in functionality is also a good reason.

Another reason is testing and debugging. While developers write code
on one main platform, they often want to debug and test it on the many
different platforms that they deploy the software to in the field. Thus,
virtualization makes it easy to do so, by enabling a developer to run many
operating system types and versions on just one machine.

This resurgence in virtualization began in earnest the mid-to-late 1990’s,
and was led by a group of researchers at Stanford headed by Professor
Mendel Rosenblum. His group’s work on Disco [B+97], a virtual machine
monitor for the MIPS processor, was an early effort that revived VMMs
and eventually led that group to the founding of VMware [V98], now a
market leader in virtualization technology. In this chapter, we will dis-
cuss the primary technology underlying Disco and through that window
try to understand how virtualization works.

B.3 Virtualizing the CPU

To run a virtual machine (e.g., an OS and its applications) on top of a
virtual machine monitor, the basic technique that is used is limited direct
execution, a technique we saw before when discussing how the OS vir-
tualizes the CPU. Thus, when we wish to “boot” a new OS on top of the
VMM, we simply jump to the address of the first instruction and let the
OS begin running. It is as simple as that (well, almost).

Assume we are running on a single processor, and that we wish to
multiplex between two virtual machines, that is, between two OSes and
their respective applications. In a manner quite similar to an operating
system switching between running processes (a context switch), a virtual
machine monitor must perform a machine switch between running vir-
tual machines. Thus, when performing such a switch, the VMM must
save the entire machine state of one OS (including registers, PC, and un-
like in a context switch, any privileged hardware state), restore the ma-
chine state of the to-be-run VM, and then jump to the PC of the to-be-run
VM and thus complete the switch. Note that the to-be-run VM’s PC may
be within the OS itself (i.e., the system was executing a system call) or it
may simply be within a process that is running on that OS (i.e., a user-
mode application).

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



VIRTUAL MACHINE MONITORS 3

We get into some slightly trickier issues when a running application
or OS tries to perform some kind of privileged operation. For example,
on a system with a software-managed TLB, the OS will use special priv-
ileged instructions to update the TLB with a translation before restarting
an instruction that suffered a TLB miss. In a virtualized environment, the
OS cannot be allowed to perform privileged instructions, because then it
controls the machine rather than the VMM beneath it. Thus, the VMM
must somehow intercept attempts to perform privileged operations and
thus retain control of the machine.

A simple example of how a VMM must interpose on certain operations
arises when a running process on a given OS tries to make a system call.
For example, the process may be trying to call open() on a file, or may be
calling read() to get data from it, or may be calling fork() to create a
new process. In a system without virtualization, a system call is achieved
with a special instruction; on MIPS, it is a trap instruction, and on x86, it
is the int (an interrupt) instruction with the argument 0x80. Here is the
open library call on FreeBSD [B00] (recall that your C code first makes a
library call into the C library, which then executes the proper assembly
sequence to actually issue the trap instruction and make a system call):

open:

push dword mode

push dword flags

push dword path

mov eax, 5

push eax

int 80h

On UNIX-based systems, open() takes just three arguments: int

open(char *path, int flags, mode t mode). You can see in the
code above how the open() library call is implemented: first, the ar-
guments get pushed onto the stack (mode, flags, path), then a 5
gets pushed onto the stack, and then int 80h is called, which trans-
fers control to the kernel. The 5, if you were wondering, is the pre-agreed
upon convention between user-mode applications and the kernel for the
open() system call in FreeBSD; different system calls would place differ-
ent numbers onto the stack (in the same position) before calling the trap

instruction int and thus making the system call1.
When a trap instruction is executed, as we’ve discussed before, it usu-

ally does a number of interesting things. Most important in our example
here is that it first transfers control (i.e., changes the PC) to a well-defined
trap handler within the operating system. The OS, when it is first start-
ing up, establishes the address of such a routine with the hardware (also

1Just to make things confusing, the Intel folks use the term “interrupt” for what almost
any sane person would call a trap instruction. As Patterson said about the Intel instruction
set: “It’s an ISA only a mother could love.” But actually, we kind of like it, and we’re not its
mother.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



4 VIRTUAL MACHINE MONITORS

Process Hardware Operating System
1. Execute instructions
(add, load, etc.)
2. System call:
Trap to OS

3. Switch to kernel mode;
Jump to trap handler

4. In kernel mode;
Handle system call;
Return from trap

5. Switch to user mode;
Return to user code

6. Resume execution
(@PC after trap)

Figure B.1: Executing a System Call

a privileged operation) and thus upon subsequent traps, the hardware
knows where to start running code to handle the trap. At the same time
of the trap, the hardware also does one other crucial thing: it changes the
mode of the processor from user mode to kernel mode. In user mode, op-
erations are restricted, and attempts to perform privileged operations will
lead to a trap and likely the termination of the offending process; in ker-
nel mode, on the other hand, the full power of the machine is available,
and thus all privileged operations can be executed. Thus, in a traditional
setting (again, without virtualization), the flow of control would be like
what you see in Figure B.1.

On a virtualized platform, things are a little more interesting. When an
application running on an OS wishes to perform a system call, it does the
exact same thing: executes a trap instruction with the arguments carefully
placed on the stack (or in registers). However, it is the VMM that controls
the machine, and thus the VMM who has installed a trap handler that
will first get executed in kernel mode.

So what should the VMM do to handle this system call? The VMM
doesn’t really know how to handle the call; after all, it does not know
the details of each OS that is running and therefore does not know what
each call should do. What the VMM does know, however, is where the
OS’s trap handler is. It knows this because when the OS booted up, it
tried to install its own trap handlers; when the OS did so, it was trying
to do something privileged, and therefore trapped into the VMM; at that
time, the VMM recorded the necessary information (i.e., where this OS’s
trap handlers are in memory). Now, when the VMM receives a trap from
a user process running on the given OS, it knows exactly what to do: it
jumps to the OS’s trap handler and lets the OS handle the system call as
it should. When the OS is finished, it executes some kind of privileged
instruction to return from the trap (rett on MIPS, iret on x86), which
again bounces into the VMM, which then realizes that the OS is trying to
return from the trap and thus performs a real return-from-trap and thus

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



VIRTUAL MACHINE MONITORS 5

Process Operating System
1. System call:
Trap to OS

2. OS trap handler:
Decode trap and execute
appropriate syscall routine;
When done: return from trap

3. Resume execution
(@PC after trap)

Figure B.2: System Call Flow Without Virtualization

Process Operating System VMM
1. System call:
Trap to OS

2. Process trapped:
Call OS trap handler
(at reduced privilege)

3. OS trap handler:
Decode trap and
execute syscall;
When done: issue
return-from-trap

4. OS tried return from trap:
Do real return from trap

5. Resume execution
(@PC after trap)

Figure B.3: System Call Flow with Virtualization

returns control to the user and puts the machine back in user mode. The
entire process is depicted in Figures B.2 and B.3, both for the normal case
without virtualization and the case with virtualization (we leave out the
exact hardware operations from above to save space).

As you can see from the figures, a lot more has to take place when
virtualization is going on. Certainly, because of the extra jumping around,
virtualization might indeed slow down system calls and thus could hurt
performance.

You might also notice that we have one remaining question: what
mode should the OS run in? It can’t run in kernel mode, because then
it would have unrestricted access to the hardware. Thus, it must run in
some less privileged mode than before, be able to access its own data
structures, and simultaneously prevent access to its data structures from
user processes.

In the Disco work, Rosenblum and colleagues handled this problem
quite neatly by taking advantage of a special mode provided by the MIPS
hardware known as supervisor mode. When running in this mode, one
still doesn’t have access to privileged instructions, but one can access a

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



6 VIRTUAL MACHINE MONITORS

Virtual Address Space "Physical Memory" Machine Memory

0
1
2
3

OS Page Table

VPN 0 to PFN 10
VPN 2 to PFN 03
VPN 3 to PFN 08

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

VMM Page Table

PFN 03 to MFN 06
PFN 08 to MFN 10
PFN 10 to MFN 05

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure B.4: VMM Memory Virtualization

little more memory than when in user mode; the OS can use this extra
memory for its data structures and all is well. On hardware that doesn’t
have such a mode, one has to run the OS in user mode and use memory
protection (page tables and TLBs) to protect OS data structures appro-
priately. In other words, when switching into the OS, the monitor would
have to make the memory of the OS data structures available to the OS via
page-table protections; when switching back to the running application,
the ability to read and write the kernel would have to be removed.

B.4 Virtualizing Memory

You should now have a basic idea of how the processor is virtualized:
the VMM acts like an OS and schedules different virtual machines to run,
and some interesting interactions occur when privilege levels change. But
we have left out a big part of the equation: how does the VMM virtualize
memory?

Each OS normally thinks of physical memory as a linear array of pages,
and assigns each page to itself or user processes. The OS itself, of course,
already virtualizes memory for its running processes, such that each pro-
cess has the illusion of its own private address space. Now we must add
another layer of virtualization, so that multiple OSes can share the actual
physical memory of the machine, and we must do so transparently.

This extra layer of virtualization makes “physical” memory a virtual-
ization on top of what the VMM refers to as machine memory, which is
the real physical memory of the system. Thus, we now have an additional

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



VIRTUAL MACHINE MONITORS 7

Process Operating System
1. Load from memory:
TLB miss: Trap

2. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid:
get PFN, update TLB;
Return from trap

3. Resume execution
(@PC of trapping instruction);
Instruction is retried;
Results in TLB hit

Figure B.5: TLB Miss Flow without Virtualization

layer of indirection: each OS maps virtual-to-physical addresses via its
per-process page tables; the VMM maps the resulting physical mappings
to underlying machine addresses via its per-OS page tables. Figure B.4
depicts this extra level of indirection.

In the figure, there is just a single virtual address space with four
pages, three of which are valid (0, 2, and 3). The OS uses its page ta-
ble to map these pages to three underlying physical frames (10, 3, and
8, respectively). Underneath the OS, the VMM performs a further level
of indirection, mapping PFNs 3, 8, and 10 to machine frames 6, 10, and
5 respectively. Of course, this picture simplifies things quite a bit; on a
real system, there would be V operating systems running (with V likely
greater than one), and thus V VMM page tables; further, on top of each
running operating system OSi, there would be a number of processes Pi

running (Pi likely in the tens or hundreds), and hence Pi (per-process)
page tables within OSi.

To understand how this works a little better, let’s recall how address
translation works in a modern paged system. Specifically, let’s discuss
what happens on a system with a software-managed TLB during address
translation. Assume a user process generates an address (for an instruc-
tion fetch or an explicit load or store); by definition, the process generates
a virtual address, as its address space has been virtualized by the OS. As
you know by now, it is the role of the OS, with help from the hardware,
to turn this into a physical address and thus be able to fetch the desired
contents from physical memory.

Assume we have a 32-bit virtual address space and a 4-KB page size.
Thus, our 32-bit address is chopped into two parts: a 20-bit virtual page
number (VPN), and a 12-bit offset. The role of the OS, with help from the
hardware TLB, is to translate the VPN into a valid physical page frame
number (PFN) and thus produce a fully-formed physical address which
can be sent to physical memory to fetch the proper data. In the common
case, we expect the TLB to handle the translation in hardware, thus mak-

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



8 VIRTUAL MACHINE MONITORS

Process Operating System Virtual Machine Monitor
1. Load from mem
TLB miss: Trap

2. VMM TLB miss handler:
Call into OS TLB handler
(reducing privilege)

3. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid,
get PFN, update TLB

4. Trap handler:
Unprivileged code trying
to update the TLB;
OS is trying to install
VPN-to-PFN mapping;
Update TLB instead with
VPN-to-MFN (privileged);
Jump back to OS
(reducing privilege)

5. Return from trap
6. Trap handler:
Unprivileged code trying
to return from a trap;
Return from trap

7. Resume execution
(@PC of instruction);
Instruction is retried;
Results in TLB hit

Figure B.6: TLB Miss Flow with Virtualization

ing the translation fast. When a TLB miss occurs (at least, on a system
with a software-managed TLB), the OS must get involved to service the
miss, as depicted here in Figure B.5.

As you can see, a TLB miss causes a trap into the OS, which handles
the fault by looking up the VPN in the page table and installing the trans-
lation in the TLB.

With a virtual machine monitor underneath the OS, however, things
again get a little more interesting. Let’s examine the flow of a TLB miss
again (see Table B.6 for a summary). When a process makes a virtual
memory reference and misses in the TLB, it is not the OS TLB miss han-
dler that runs; rather, it is the VMM TLB miss handler, as the VMM is
the true privileged owner of the machine. However, in the normal case,
the VMM TLB handler doesn’t know how to handle the TLB miss, so it
immediately jumps into the OS TLB miss handler; the VMM knows the
location of this handler because the OS, during “boot”, tried to install its
own trap handlers. The OS TLB miss handler then runs, does a page ta-

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



VIRTUAL MACHINE MONITORS 9

ASIDE: HYPERVISORS AND HARDWARE-MANAGED TLBS

Our discussion has centered around software-managed TLBs and the
work that needs to be done when a miss occurs. But you might be
wondering: how does the virtual machine monitor get involved with a
hardware-managed TLB? In those systems, the hardware walks the page
table on each TLB miss and updates the TLB as need be, and thus the
VMM doesn’t have a chance to run on each TLB miss to sneak its trans-
lation into the system. Instead, the VMM must closely monitor changes
the OS makes to each page table (which, in a hardware-managed sys-
tem, is pointed to by a page-table base register of some kind), and keep a
shadow page table that instead maps the virtual addresses of each pro-
cess to the VMM’s desired machine pages [AA06]. The VMM installs a
process’s shadow page table whenever the OS tries to install the process’s
OS-level page table, and thus the hardware chugs along, translating vir-
tual addresses to machine addresses using the shadow table, without the
OS even noticing.

ble lookup for the VPN in question, and tries to install the VPN-to-PFN
mapping in the TLB. However, doing so is a privileged operation, and
thus causes another trap into the VMM (the VMM gets notified when any
non-privileged code tries to do something that is privileged, of course).
At this point, the VMM plays its trick: instead of installing the OS’s VPN-
to-PFN mapping, the VMM installs its desired VPN-to-MFN mapping.
After doing so, the system eventually gets back to the user-level code,
which retries the instruction, and results in a TLB hit, fetching the data
from the machine frame where the data resides.

This set of actions also hints at how a VMM must manage the virtu-
alization of physical memory for each running OS; just like the OS has a
page table for each process, the VMM must track the physical-to-machine
mappings for each virtual machine it is running. These per-machine page
tables need to be consulted in the VMM TLB miss handler in order to de-
termine which machine page a particular “physical” page maps to, and
even, for example, if it is present in machine memory at the current time
(i.e., the VMM could have swapped it to disk).

Finally, as you might notice from this sequence of operations, TLB
misses on a virtualized system become quite a bit more expensive than
in a non-virtualized system. To reduce this cost, the designers of Disco
added a VMM-level “software TLB”. The idea behind this data structure
is simple. The VMM records every virtual-to-physical mapping that it
sees the OS try to install; then, on a TLB miss, the VMM first consults
its software TLB to see if it has seen this virtual-to-physical mapping be-
fore, and what the VMM’s desired virtual-to-machine mapping should
be. If the VMM finds the translation in its software TLB, it simply installs
the virtual-to-machine mapping directly into the hardware TLB, and thus
skips all the back and forth in the control flow above [B+97].

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



10 VIRTUAL MACHINE MONITORS

ASIDE: PARA-VIRTUALIZATION

In many situations, it is good to assume that the OS cannot be modified in
order to work better with virtual machine monitors (for example, because
you are running your VMM under an unfriendly competitor’s operating
system). However, this is not always the case, and when the OS can be
modified (as we saw in the example with demand-zeroing of pages), it
may run more efficiently on top of a VMM. Running a modified OS to
run on a VMM is generally called para-virtualization [WSG02], as the
virtualization provided by the VMM isn’t a complete one, but rather a
partial one requiring OS changes to operate effectively. Research shows
that a properly-designed para-virtualized system, with just the right OS
changes, can be made to be nearly as efficient a system without a VMM
[BD+03].

B.5 The Information Gap

Just like the OS doesn’t know too much about what application pro-
grams really want, and thus must often make general policies that hope-
fully work for all programs, the VMM often doesn’t know too much about
what the OS is doing or wanting; this lack of knowledge, sometimes
called the information gap between the VMM and the OS, can lead to
various inefficiencies [B+97]. For example, an OS, when it has nothing
else to run, will sometimes go into an idle loop just spinning and waiting
for the next interrupt to occur:

while (1)

; // the idle loop

It makes sense to spin like this if the OS is in charge of the entire ma-
chine and thus knows there is nothing else that needs to run. However,
when a VMM is running underneath two different OSes, one in the idle
loop and one usefully running user processes, it would be useful for the
VMM to know that one OS is idle so it can give more CPU time to the OS
doing useful work.

Another example arises with demand zeroing of pages. Most oper-
ating systems zero a physical frame before mapping it into a process’s
address space. The reason for doing so is simple: security. If the OS
gave one process a page that another had been using without zeroing it,
an information leak across processes could occur, thus potentially leak-
ing sensitive information. Unfortunately, the VMM must zero pages that
it gives to each OS, for the same reason, and thus many times a page will
be zeroed twice, once by the VMM when assigning it to an OS, and once
by the OS when assigning it to a process. The authors of Disco had no
great solution to this problem: they simply changed the OS (IRIX) to not
zero pages that it knew had been zeroed by the underlying VMM [B+97].

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



VIRTUAL MACHINE MONITORS 11

TIP: USE IMPLICIT INFORMATION

Implicit information can be a powerful tool in layered systems where
it is hard to change the interfaces between systems, but more informa-
tion about a different layer of the system is needed. For example, a
block-based disk device might like to know more about how a file sys-
tem above it is using it; Similarly, an application might want to know
what pages are currently in the file-system page cache, but the OS pro-
vides no API to access this information. In both these cases, researchers
have developed powerful inferencing techniques to gather the needed in-
formation implicitly, without requiring an explicit interface between lay-
ers [AD+01,S+03]. Such techniques are quite useful in a virtual machine
monitor, which would like to learn more about the OSes running above it
without requiring an explicit API between the two layers.

There are many other similar problems to these described here. One
solution is for the VMM to use inference (a form of implicit information)
to overcome the problem. For example, a VMM can detect the idle loop by
noticing that the OS switched to low-power mode. A different approach,
seen in para-virtualized systems, requires the OS to be changed. This
more explicit approach, while harder to deploy, can be quite effective.

B.6 Summary

Virtualization is in a renaissance. For a multitude of reasons, users
and administrators want to run multiple OSes on the same machine at
the same time. The key is that VMMs generally provide this service trans-
parently; the OS above has little clue that it is not actually controlling the
hardware of the machine. The key method that VMMs use to do so is
to extend the notion of limited direct execution; by setting up the hard-
ware to enable the VMM to interpose on key events (such as traps), the
VMM can completely control how machine resources are allocated while
preserving the illusion that the OS requires.

You might have noticed some similarities between what the OS does
for processes and what the VMM does for OSes. They both virtualize
the hardware after all, and hence do some of the same things. However,
there is one key difference: with the OS virtualization, a number of new
abstractions and nice interfaces are provided; with VMM-level virtual-
ization, the abstraction is identical to the hardware (and thus not very
nice). While both the OS and VMM virtualize hardware, they do so by
providing completely different interfaces; VMMs, unlike the OS, are not
particularly meant to make the hardware easier to use.

There are many other topics to study if you wish to learn more about
virtualization. For example, we didn’t even discuss what happens with
I/O, a topic that has its own new and interesting issues when it comes to

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



12 VIRTUAL MACHINE MONITORS

virtualized platforms. We also didn’t discuss how virtualization works
when running “on the side” with your OS in what is sometimes called a
“hosted” configuration. Read more about both of these topics if you’re in-
terested [SVL01]. We also didn’t discuss what happens when a collection
of operating systems running on a VMM uses too much memory.

Finally, hardware support has changed how platforms support virtu-
alization. Companies like Intel and AMD now include direct support for
an extra level of virtualization, thus obviating many of the software tech-
niques in this chapter. Perhaps, in a chapter yet-to-be-written, we will
discuss these mechanisms in more detail.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



VIRTUAL MACHINE MONITORS 13

References

[AA06] “A Comparison of Software and Hardware Techniques for x86 Virtualization” by Keith
Adams and Ole Agesen. ASPLOS ’06, San Jose, California. A terrific paper from two VMware
engineers about the surprisingly small benefits of having hardware support for virtualization. Also an
excellent general discussion about virtualization in VMware, including the crazy binary-translation
tricks they have to play in order to virtualize the difficult-to-virtualize x86 platform.

[AD+01] “Information and Control in Gray-box Systems” by Andrea C. Arpaci-Dusseau and
Remzi H. Arpaci-Dusseau. SOSP ’01, Banff, Canada. Our own work on how to infer information
and even exert control over the OS from application level, without change to the OS. The best example
therein: determining which file blocks are cached using a probabilistic probe-based technique; doing so
allows applications to better utilize the cache, by first scheduling work that will result in hits.

[B00] “FreeBSD Developers’ Handbook: Chapter 11 x86 Assembly Language Programming”
http://www.freebsd.org/doc/en/books/developers-handbook/. A nice tutorial on system calls
and such in the BSD developers handbook.

[BD+03] “Xen and the Art of Virtualization” by Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield. SOSP ’03,
Bolton Landing, New York. The paper that shows that with para-virtualized systems, the overheads
of virtualized systems can be made to be incredibly low. So successful was this paper on the Xen virtual
machine monitor that it launched a company.

[B+97] “Disco: Running Commodity Operating Systems on Scalable Multiprocessors” by Edouard
Bugnion, Scott Devine, Kinshuk Govil, Mendel Rosenblum. SOSP ’97. The paper that reintro-
duced the systems community to virtual machine research; well, perhaps this is unfair as Bressoud and
Schneider [BS95] also did, but here we began to understand why virtualization was going to come back.
What made it even clearer, however, is when this group of excellent researchers started VMware and
made some billions of dollars.

[B+17] “Hardware and Software Support for Virtualization” by Edouard Bugnion, Jason Nieh,
Dan Tsafrir. Morgan and Claypool, 2017. Undoubtedly the best place to get the latest on how
virtualization works in modern systems. Unfortunately, you’ll have to read a short book to figure it out!

[BS95] “Hypervisor-based Fault-tolerance” by Thomas C. Bressoud, Fred B. Schneider. SOSP
’95. One the earliest papers to bring back the hypervisor, which is just another term for a virtual
machine monitor. In this work, however, such hypervisors are used to improve system tolerance of
hardware faults, which is perhaps less useful than some of the more practical scenarios discussed in this
chapter; however, still quite an intriguing paper in its own right.

[G74] “Survey of Virtual Machine Research” by R.P. Goldberg. IEEE Computer, Volume 7,
Number 6. A terrific survey of a lot of old virtual machine research.

[SVL01] “Virtualizing I/O Devices on VMware Workstation’s Hosted Virtual Machine Moni-
tor” by Jeremy Sugerman, Ganesh Venkitachalam and Beng-Hong Lim. USENIX ’01, Boston,
Massachusetts. Provides a good overview of how I/O works in VMware using a hosted architecture
which exploits many native OS features to avoid reimplementing them within the VMM.

[V98] by VMware corporation. Available: http://www.vmware.com/. This may be the most
useless reference in this book, as you can clearly look this up yourself. Anyhow, the company was
founded in 1998 and is a leader in the field of virtualization.

[S+03] “Semantically-Smart Disk Systems” by Muthian Sivathanu, Vijayan Prabhakaran, Flo-
rentina I. Popovici, Timothy E. Denehy, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau.
FAST ’03, San Francisco, California, March 2003. Our work again, this time showing how a dumb
block-based device can infer much about what the file system above it is doing, such as deleting a file.
The technology used therein enables interesting new functionality within a block device, such as secure
delete, or more reliable storage.

[WSG02] “Scale and Performance in the Denali Isolation Kernel” by Andrew Whitaker, Mari-
anne Shaw, and Steven D. Gribble. OSDI ’02, Boston, Massachusetts. The paper that introduces
the term para-virtualization. Although one can argue that Bugnion et al. [B+97] introduce the idea of
para-virtualization in the Disco paper, Whitaker et al. take it further and show how the idea can be more
general than what was thought before.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES


