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ABSTRACT
We present a system that approximates the answer to complex ad-
hoc queries in big-data clusters by injecting samplers on-the-�y and
without requiring pre-existing samples. Improvements can be sub-
stantial when big-data queries take multiple passes over data and
when samplers execute early in the query plan. We present a new
universe sampler which is able to sample multiple join inputs. By
incorporating samplers natively into a cost-based query optimizer,
we automatically generate plans with appropriate samplers at ap-
propriate locations. We devise an accuracy analysis method using
whichwe ensure that query planswith samplers will notmiss groups
and that aggregate values are within a small ratio of their true value.
An implementation on a cluster with tens of thousands of machines
shows that queries in the TPC-DS benchmark use a median of 2×
fewer resources. In contrast, approaches that construct input sam-
ples even when given 10× the size of the input to store samples im-
prove only 22% of the queries, i.e., a median speed up of 0×.

1. INTRODUCTION
_is paper considers the problem of approximating jobs in big-

data clusters. Jobs speciûed as a mash-up of relational expressions
and user-deûned code increasingly dominate the big-data ecosys-
tem, due in large part to the growth of frameworks such asHive [40],
Pig [37], SCOPE [18], Spark-SQL [12] and Dremel [33].

Queries in big-data clusters are approximatable but are complex
and use many datasets. As an example, consider a production clus-
ter at Microso� with tens of thousands of machines that supports
millions of queries per day for Bing and other services. (1) _e dis-
tribution of queries over inputs is heavy-tailed. We ûnd that the
smallest subset of inputs which supports half of the queries is 20PB
in size. _e next 30% of queries touch another 40PB of inputs. (2)
Further, queries are complex. _ey have many joins; median value
is 3 and 90th percentile is 11. _e execution graphs are deep, with
the median graph having 192 operators and a depth of 28. Further,
queries touch many columns from each dataset; the median query
uses 8 columns per dataset and 49 at the 90th percentile. However,
queries also have aggregations and their output ismuch smaller than
the input indicating the potential for speed-up from approximation.
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Approximating big-data queries, i.e., trading oò degradation in
answer quality to improve performance, hasmany use cases. We use
performance colloquially here to refer to both query response time
and cluster throughput. Since queries process large volumes of data
on expensive clusters, even amodest decrease in resource usage, say
2×, would reduce the bill from Azure by 2× and production clusters
which are capacity limited can run 2×more queries. Data scientists
can tolerate imprecise answers for exploratory analysis and faster
responses increase productivity [17, 25]. Two use cases are especially
important: (a) queries that generate aggregated dashboard reports
by analyzing logs if sped up would increase the refresh rate of the
dashboards at no extra cost and (b) machine learning queries that
build models by iterating over datasets (e.g., k-means) can tolerate
approximations in their early iterations.

Unfortunately, state-of-art techniques cannot approximate com-
plex queries. Most SQL databases and big-data systems oòer the
uniform sample operator. _e user can sample as desired. But the
systems do not reason about the accuracy of the resulting answer.
A rich vein of prior research [6, 7, 9, 14, 20, 39] builds samples over
input datasets. _ey deliver immense beneût to predictable queries
that touch only one large dataset, i.e., any joins have to be with small
dimension tables on foreign keys. However, they cannot support
joins over more than one large table, queries that touch less fre-
quently used datasets or query sets that use a diverse set of columns.
As explained above, such queries and datasets dominate in big-data
clusters. For example, on the TPC-DS [4] benchmark, our exper-
iments show that when given 1×(4×) the size of the input to store
samples, a state-of-the-art input sampling system BlinkDB [9] of-
fers a beneût for 11% (17%) of the queries.

Our system, Quickr, has three goals. First, oòer turn-key sup-
port for approximations: that is, given a query, decide whether or
not it can be sampled and output an appropriate query plan with
samplers. In particular, input samples, views or indices may not be
available. Next, support complex queries, i.e., support the large por-
tion of SQL shown in Table 1. Finally, ensure that answers will be
accurate; that is, with high probability (whp), none of the groups
will be missed in the answer and that the computed value of aggre-
gations is within a bounded ratio of their true value (say ±10%). We
are unaware of any system that achieves these goals.
A key observation in Quickr is that big-data queries perform

multiple passes over data. _is is partly due to the queries being
complex and partly due to parallel plans. For example, a hash join
requires two passes over data and one shuøe across the network.
If data were sampled in the ûrst pass, all subsequent computation
could be sped up. _e novel advantage of such inline sampling is
that the gains from sampling have negligible apriori overhead. _e
disadvantage is that the best case gains are potentially smaller rela-
tive to apriori sampling which can execute the query on a very small
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sample of input. In our cluster, the median query has 2.4 eòective1
passes over data and 6.5 passes at the 90th percentile. Furthermore,
the ûrst pass over data is o�en embarrassingly parallel. Hence, inline
sampling oòers sizable performance gains without apriori overhead.

We note that Quickr is complementary to building apriori sam-
ples. _e latter is suited for simple predictable queries on popu-
lar datasets whereas Quickr can approximate the more complex
queries over infrequently used datasets with zero overhead.
A novel aspect that lets Quickr cover many more queries than

prior methods is a universe sampler that samples multiple join in-
puts. It is well known that joining a p probability sample of inputs
is akin to a p2 probability sample of the join output [21, 24]. Hence,
sampling the join inputs improves performance at the cost of sub-
stantial degradation in answer quality. On the other hand, when
queries join large inputs, sampling the join output oòers limited
speed-up. With the universe sampler, joining a p probability sample
of inputs is statistically equivalent to a p probability universe sam-
ple of the join output. _e key idea is to consistently sample the join
inputs without any coordination (such as exchanging histograms of
join keys [6, 22]). We will show that the universe sampler is appli-
cable broadly, i.e., it supports multiple equi-joins and only requires
the group-by columns and the value of aggregates to be uncorrelated
with the sampled column set.

Quickr oòers turn-key support for approximations by picking
for every newly arriving query an execution plan with samplers. In
this paper, we pick the best performing plan among those that have
no worse than the speciûed amount of error. Since queries can be
unapproximable (more on this later), a legitimate outcome is to out-
put a planwithout samplers. Quickr solves several challenges along
the way. Which sampler to pick and where to place the samplers in
the plan is a complex decision, in part, because Quickr uses three
diòerent samplers each of which is most appropriate under some
conditions. _e universe sampler is described above. _e uniform
sampler mimics a Bernoulli process. _e distinct sampler ensures
that no groups will be missed by stratifying, i.e., picking some rows
for every distinct value of the group-by columns. To place these
samplers at arbitrary locations in the plan, Quickr requires that
samplers run in one pass over data, with bounded memory and in
parallel; that is, diòerent sampler instances independently process
partitions of data.

_ere are two broad ways to ûnd a good plan with samplers: add
samplers on top of the plan output by a query optimizer or treat sam-
plers as ûrst-class operators within the query optimizer. Quickr
adopts the latter approach because the former is computationally
expensive and leads to poor quality plans. Since any operator can be
followed by a sampler, there are exponentially many sampled plans.
Reasoning about the performance and accuracy of each of these pos-
sible plans is complex and requires statistics that are harder to ac-
quire outside theQO.Most importantly, adding samplers can lead to
dramatically diòerent query plans. For example, because a sampler
reduces cardinality, joins may become implementable more cheaply
or parallel portions of the plan can be replaced with the much sim-
pler sequential plans. By treating samplers as ûrst-class operators
in a Cascades-style [27] cost-based query optimizer, Quickr eòec-
tively navigates a large space of possible sampled plans.

We call the resulting algorithmASALQA, short for place appropriate
samplers at appropriate locations in the query plan automatically.
ASALQA begins by placing a sampler optimistically before every ag-
gregation. _en, several new transformation rules generate alter-
native plans by moving samplers closer to the input, i.e., to before
database operators such as join, select, and project. ASALQA picks

1computed as (∑task t inputt + outputt) / (job input + job output)

Selection Arbitrary (user-deûned) expressions speciûed as
f(col1, col2, . . . ) <=> Constant. Also, composing
several such literals with ∨ or ∧.

Aggregates DISTINCT, COUNT, SUM, AVG and their *IF equiva-
lents. User-deûned aggregates need annotations.

Join All but full-outer join. Includes joins over multiple ta-
bles, outer joins and star queries with foreign key joins.

Others Projects, Order By, Windowed aggregates, . . .
Table 1: Types of parallel SQL queries that are handled by Quickr. In
particular Quickr can deal with arbitrary depth queries.

the best plan by costing both performance and accuracy. To do so,
ASALQA uses statistics such as cardinality and distinct value counts
which are computed in one eòective pass by the ûrst query that
touches an input and are derived by ASALQA for sub-expressions.
_e plans output by ASALQA o�en have multiple samplers. Many
plans have samplers deep in the query plan. ASALQAdeclares roughly
25% of the TPC-DS queries to be unapproximable for various rea-
sons. An illustrative example is in §2.
ASALQA can reason about the accuracy of a sampled expression.

Our method transforms a query expression with arbitrarily many
samplers to an equivalent expression with one sampler at the root.
In particular, we generalize prior work that only considered SUM-
like aggregates [35] to the case where answers can have groups. We
also generalize the method to a broader class of samplers that are
not generalized-uniform-samplers; our universe and distinct sam-
plers are not uniformly random. Furthermore, we compute the error
metrics for ASALQA plans in one eòective pass over data whereas in
general error bounds require a self-join [35] or bootstrap [10, 44].
We have implemented Quickr in a production query optimizer.

Experiments over queries in theTPC-DSbenchmark showamedian
reduction of 2× in resources used; a few queries improve by over 5×.
For over 90% of queries, Quickr does not miss groups. Most of the
misses are due to LIMIT 100 on the aggregation column. When
considering the full answer, Quickr does not miss groups for 99%
of queries. Aggregations are within ±10% of their true value in 80%
of the queries; 92% of queries are within ±20%. We carefully explain
the causes of high error. In contrast, BlinkDB [9] has a median gain
of 0% even when given 10× the input size to store samples. _at is,
at least half the queries receive no beneût. In a parameter sweep,
we ûnd that the best coverage is 22% of queries and the best median
speed-up among the covered queries is 35%.

To sum up, our key contributions are:
● Quickr oòers a new way to lazily approximate complex ad-

hoc queries with zero apriori overhead.
● _rough careful analysis over queries in a big-data cluster, we
ûnd apriori samples are untenable because query sets make
diverse use of columns and queries are spread across many
datasets. _e large number of passes over data per querymakes
the case for lazy approximations.

● We introduce a new sampler operator – universe – that eòec-
tively samples multiple join inputs.

● We consider query optimization over samplesmuchmore ex-
tensively. Our ASALQA algorithm automatically outputs sam-
pled query plans only when appropriate.

● We present implementation results from a production big-
data system.

We believe that this is just the ûrst step towards practical lazy ap-
proximations. Queries can be sped up further by reusing sampled
views [28] and by progressive execution [29]. In the rest of this pa-
per, we describe our analysis of queries from our production clus-
ter in §3. We describe our samplers in §4.1, the ASALQA algorithm
in §4.2 and our accuracy analysis is in §4.3. Experimental results
and a summary of related work are in §5 and §6.



Technique How sampled
Input sampling Stratify store_sales on {item_sk, date_sk, customer_sk}
Quickr Universe sample all three fact tables on customer_sk
Figure 1: A simple example that mimics many TPC-DS queries.

2. MOTIVATING EXAMPLE
Consider the query in Figure 1. Per item color and year, the query

computes the total proût from store sales and the number of unique
customers who have purchased and returned from stores and pur-
chased from catalog. Item and date are dimension tables joined on
a foreign key. _e other three are large fact tables joined on shared
keys. Since joining a pair of fact tables requires two reads and one
shuøe, this query incurs many passes over its input data.

Stratiûcation on a column set C guarantees that the sampler
will pick some rows for every distinct value of C. _e most use-
ful input sample stratiûes store_sales on {item_sk, date_sk,
customer_sk} because store_sales is the largest table and not
stratifying can miss groups in the answer. However, such a sample
is as large as the input since the three columns have many distinct
combinations leading to zero performance gains.

_e universe sample on a column set C picks all rows whose
hash of the value of columns in C falls in a randomly chosen sub-
space. Quickr yields a very diòerent sampled query plan: at ex-
traction on all fact tables, universe sample on customer_sk. _is
works because Quickr reasons that (a) universe sampling all fact
tables on the join key customer_sk and then joining them is iden-
tical to a universe sample of the join output, (b) the group columns
{i_color, d_year} are independent with customer_sk since dif-
ferent random subsets of customers have similar likelihood of pur-
chasing diòerent colored items over years and (c) the group has only
a few distinct values and since the fact tables have over 109 rows,
there are many rows per group. Interestingly, the universe sam-
ple can also estimate the number of unique customers, which is the
same column whose value it sub-samples on. _e reason is that the
number of unique customers in the chosen subspace can be pro-
jected up by the fraction of subspace that is chosen. Quickr speeds
up this query substantially. _e data in-�ight a�er the ûrst pass re-
duces by the sampled probability and there are up to 4 subsequent
passes over this dataset.

Note that small changes in the query can lead to very dif-
ferent sampled plans. If some user-deûned operator applies on
store_sales, Quickr could place the universe sampler a�er that
UDO. Indeed, we ûnd in our evaluation that many queries have
samplers in the middle of the query plan. Consider a more sub-
stantial change: if the query only had store_sales, i.e., no joins
with the other fact tables, Quickr would prefer a uniform sample
of store_sales. Aswe show later, the uniform sampler has smaller
variance than the universe sampler. If the answer were also grouped
on i_category and i_name from item, the group could then con-
tain so many distinct values that Quickr would distinct sample the
store_sales table on ss_item_sk. _at is, Quickr stratiûes on
join keys to mimic stratiûcation on columns from item. Finally, if
the answer has one group per day, that is group on d_date instead of
d_year, then Quickr may declare the query unapproximable since
stratifying store_sales on {ss_item_sk, ss_date_sk} will not
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(a) Usage of inputs is heavy tailed.

Metric Percentile value
25th 50th 75th 90th 95th

# of Passes over Data 1.83 2.45 3.63 6.49 9.78
1/ûrstpass duration fract. 1.37 1.61 2.09 6.38 17.34
# operators 143 192 581 1103 1283
depth of operators 21 28 40 51 75
# Aggregation Ops. 2 3 9 37 112
# Joins 2 3 5 11 27
# user-deûned aggs. 0 0 1 3 5
# user-deûned functions 7 27 45 127 260
size of QCS+QVS 4 8 24 49 104

(b) Characterizing someO(108) queries that ran in a production big-data
cluster over a two month span.
Figure 2: Analysis of the queries and datasets used in a large cluster.
Equivalent estimates for publicly available benchmarks are in Table 9.

reduce rowcount. In our evaluation, we see that all three samplers
are used o�en. Many plans use multiple samplers. Quickr ûnds
that 25% of the examined TPC-DS queries are unapproximable.
A ninja data scientist can probably reason about this large space

of sampled plans quickly and correctly. Early in the project, it took
us about an hour to manually analyze each query. Quickr oòers a
turn-key solution. In practice, Quickr also generates slightly bet-
ter plans since we found that human experts fail to fully explore the
space of possible plans. Also, experts did not have access to auto-
matic derivations of cardinality and the number of distinct values.

3. PRIMER: APPROXIMABILITY OF BIG-
DATA QUERIES

A key departure in Quickr is to inject sampling operators into
the query plan. Suppose query Q over input I has answer Q(I).
Apriori sampling techniques search for the best sample of input I′
such that Q(I′) ≈ Q(I). Instead, Quickr searches over the space
of sampled query plans for the best plan Q′ such that Q′

(I) ≈ Q(I).
In both cases, best can imply best performance subject to the accu-
racy needs or vice-versa. Clearly the approaches are complementary.
Here, we document aspects of queries observed in a large produc-
tion cluster that lead us to believe that Quickr is necessary.
We analyzed the production queries in Microso�’s Cosmos clus-

ters over a twomonth period. _e clusters have tens of thousands of
servers. Overall, O(108) queries were submitted by O(104

) unique
developers. _e query language is a mash-up of relational and user-
deûned operations [18]. _equery set includes: ad-hoc queries writ-
ten by developers and production jobs which cook new data (e.g.,
ETL), or mine logs to construct dashboard reports. Figure 2 sum-
marizes our ûndings.
Heavy Tail over Inputs: If most queries touch a small number of
inputs, then it may be worthwhile to store apriori samples for those
inputs. Per Figure 2a however, we ûnd that queries access many dif-
ferent inputs. _e ûgure is generated as follows for a two week pe-
riod: (1) Per input, compute the total cluster hours used by queries
that read the input. (2)When a query hasmultiple inputs, apportion
its cluster hours among the inputs proportional to input size. (3)
Sort inputs in decreasing order of their cluster hours. (4) Travers-
ing in that order, compute the cumulative size of the input and the



cumulative cluster hours. We see that jobs that account for half the
cluster-hours touch 20PBs of distinct ûles. _e last 25% of queries,
the tail, access another 60PBs of ûles.

To store diòerently stratiûed samples, apriori storage techniques
typically use sample storage of 1× to 10× the size of the input (eg.
BlinkDB [9]). We see from Figure 2a that the smallest input set used
by 20% of queries is 3PB. Hence, assuming input popularity can be
predicted perfectly, covering 20% of queries will require between
3PB and 30PB of apriori samples. Such a large sample set is already
a substantial fraction of the total input size (120PB). Quickr targets
the vast majority of other queries and needs no apriori samples.

Recall that no stored samples implies that Quickr has to read all
input data once. Per Figure 2b, themedian query in the cluster takes
2.25 eòective passes over data.2 By sampling on the ûrst pass, we
can estimate that Quickr may speed-up the median job by 2.25×.
10% of queries can speed up by over 6×. _e practical gains can be
less because not all queries are approximable (for reasons below) or
muchmore because the samplers can also speed up the computation
on the ûrst pass (e.g., fewer data to partition and write out).
Query Approximability: Query answers can be aggregates such
as a SUM, COUNT, AVG or aggregations over groups such as
SELECT X, SUM(Y). _e goal of approximation is to avoid processing
all the data, yet still obtain (a) an unbiased estimate of the answer
per group3 that is within a small ratio of the true answer with high
probability (orwhp.), (b) ensure that no groups aremissedwhp., and
(c) oòer an estimate of the expected error per aggregation. Queries
for which this is possible, we say, are approximable.
A key intuition behind the approximability of a query is the sup-

port per group of the answer. By support we refer to the number
of data rows in the input that contribute to each group. Simple ag-
gregations have support equal to the number of rows in the input.
_e support may vary across groups. In general, queries with large
support receive high performance gains from approximation since
even a small probability sample can produce an answer that is close
to the true answer. If the underlying data value has high variance,
more support is needed (more on this later). We observe that typical
big data queries have large support due in part to their large inputs.

Per Figure 2b, typical queries also have joins, selects, projects and
user-deûned code, all of which further complicate approximability.
We distinguish between row-local operations that take one or more
columns and yield a column such as DayOf(X ∶ date) and aggrega-
tions that take a collection of rows having a common value of the
group-by columns and yield zero or more rows such as X, MODE(Y).
We call the former user-deûned functions (UDFs) and the latter
user-deûned aggregates (UDAs). _e median query has tens of
UDFs and a few UDAs. _e median query also has a handful of
joins, several of which are not foreign-key joins.

To quantify the complexity of these operations, we co-opt the
phrase Query Column Set (QCS) from BlinkDB [9] to refer to
the subset of the input columns that appear in the answer or im-
pact which rows belong in the answer. For example, the QCS
of SELECT X, SUM(Y) WHERE Z > 30 is {X, Z}. _e corresponding
query value set (QVS) is {Y}, i.e., the columns that appear in ag-
gregates. We recursively replace newly generated columns that ap-
pear in theQCS orQVSwith the columns that were used to generate
that column. We see that the size of QCS ∪ QVS is over 8 for 50%
of queries. Further, the size of the median QCS is also 8. Compar-
ing with equivalent estimates for benchmarks in Tables 3 and 9, we
see that queries in the production cluster tend to be more complex.
BlinkDB [9] constructs stratiûed samples on the QCS sets. Observ-

2computed as (∑task t inputt + outputt) / (job input + job output)
3true sum ≈ 20 ∗ sum for a 5% sample. Also see Table 8.

ing that the value of columns in the QVS can have high skew, Strat-
iûedSampling [20] stratiûes on QCS ∪ QVS.
Armed with the above background, we posit that apriori sam-

pling has poor query coverage even when given storage space that
is many times the size of that dataset. First, the QCSets have many
columns. Since the goal of stratiûcation is to store some rows for ev-
ery distinct value of the columns in QCS, the more columns in the
QCS, the more the distinct values and larger the stratiûed sample
for that QCS. Second, queries have very diverse QCSets. Queries
with diòerent QCS will not beneût from the same stratiûed sample.
Roughly, the smaller the intersection between the two QCSets, the
less useful the sample will be. In the extreme case, when the QCSets
have no overlap, sharing the sample can have the same error proûle
as a random sample4 or worse if the QCSets have correlated values.
As a result, given a storage budget, apriori sampling techniquesmust
choose very carefully which QCSets to stratify on to help the largest
set of queries [9, 20]. By injecting samplers into the query graph,
Quickr completely avoids this problem.
Further,many queries that appear unapproximable for input sam-

ples can be sped up by Quickr. Consider a query with a large
QCS. A stratiûed sample on that QCS may be as large as the in-
put. However, Quickr can place a sampler a�er selections or joins
whose (complex) predicates contributedmany of the columns in the
QCS. If the selects are pushed down to the ûrst parallel pass on data,
the gains from Quickr will be substantial.
Handling Joins: None of the known approximation systems han-
dle joins well. Note that join between a fact and a dimension ta-
ble is eòectively a select since the foreign key relationship ensures
that exactly one row will match out of the dimension table. Most
prior work samples only one of the join inputs; doing so does not
speed up queries where both input relations require a lot of work.
To understand the issue with sampling both inputs, consider a two
table join where T1 has 80 rows with X = 1 and T2 has 1 row with
X = 1. _e join is on column X. To ensure that each tuple appears
in the output with the same probability, a 25% sample on the join
output requires 50% samples of both inputs.5 _at is, the join inputs
have to be sampled with a quadratically higher probability. Even so,
sample-and-join has a higher variance. For example, the probability
that rows with X = 1 disappear a�er sample-and-join is 0.5 whereas
with join-and-sample, it is 10−10 .6 _e problem arises because the
join output depends on the joint distribution over the two inputs but
such joint distribution does not exist apriori. Further, it is expensive
to compute when these relations are intermediate content generated
in themidst of executing a deep query. A better sampler would have
over-sampled the rows with X = 1 in T2 since that value occursmore
o�en in T1 . Such correlation-aware samplers exist [6, 7, 21] but they
are cumbersome to implement in parallel (since they build statistics
and indices on one join input and use that to sample the other input)
and are somewhat ineòective because the sampler cannot be pushed
down further on the inputs. Quickr’s universe sampler uniquely
samples both join inputs without any data exchange between the in-
puts at runtime, thereby allowing Quickr to speed-up many more
queries than prior work.

In summary, our analysis reveals the following:
● Distribution of queries over input datasets is heavy-tailed.

Individual queries use many columns and a diverse set of

4uniform sample = strat sampler with empty QCS.
5since a tuple will appear in output only if both its constituent tuples
in the inputs are sampled and 0.25 = 0.5 ∗ 0.5
6T1 , T2 andT1&T2 have 80, 1, 80 rowswith X = 1 respectively. Hence,
the probability of missing X = 1 in join-and-sample is (1−0.25)80 =
10−10 and in sample-and-join is (1 − 0.5)80 + 0.5 = 0.5.



(a) Work�ow of Quickr
(b) Apriori sampling

Figure 3: Overview of Quickr and how it diòers from prior methods.

columns such that the additional storage space required to
store samples can be prohibitively large.

● Queries typically have aggregation operators, large support,
and output≪ input, so they are approximable.

● Several factors hinder approximability: queries use a di-
verse set of columns requiring extensive stratiûcation. Many
queries join large input relations.

● Queries are deep, involvingmultiple eòective passes over data
including network shuøes.

4. JUST-IN-TIME SAMPLING
Figure 3a shows an overview of Quickr. Quickr uses statistics

of the input datasets to generate at query optimization time an exe-
cution plan with samplers placed at appropriate locations. _e sam-
plers are described in §4.1. _e algorithm that determines how best
to place the samplers is in §4.2. Analysis of the error and properties
of the transformation rules is in §4.3. We brie�y recount our goals:

● Minimal overhead to the administrator: _at is, assume no
apriori samples, indices or views and support ad-hoc queries.

● Support a large fraction of the queries in SQL and big-data
scenarios; including general joins and UDFs.

● Performance gains should be sizable; either reducing the re-
source needs of a query or a faster completion time or both.

● Oòer accurate answers: _at is, with high probability miss
no groups, oòer conûdence intervals, and estimate aggregate
values to within a small ratio of their true values.

4.1 Samplers
Quickr uses three types of samplers. Each sampler passes a sub-

set of the input rows. _e subset is chosen based on the policies
that we describe next. In addition, each sampler appends a meta-
data column representing the weight associated with the row. _e
weight is used to estimate the true value of aggregates and the con-
ûdence intervals. Our samplers are required to run in a streaming
and partitionablemode. _ey have to execute in one pass over data
with a memory footprint well below the size of the input or out-
put. Furthermore, whenmany instances of a sampler run in parallel
on diòerent partitions of the input, the union of their output should
mimic the output of one sampler instance examining all of the input.
_eseminimal assumptions enable placing the samplers at arbitrary
locations in a parallel query plan.

4.1.1 Uniform sampler
Given probability p, the uniform sampler ΓU

p lets a row pass
through with probability p uniformly-at-random. _e weight col-
umn is set to 1/p. In contrast, alternatives that pick a desired num-
ber of input rows uniformly-at-random with or without replace-
ment [24] are neither streaming nor partitionable. If implemented
with reservoir sampling so as to ûnish in one pass over data, their
memory usage grows up to the desired output size and the parallel
instances have to be synchronized and coordinated. _e number of
rows output by ΓU

p is governed by a binomial distribution and each
row can be picked at most once.

4.1.2 Distinct sampler
_e uniform sampler is simple but it has some issues that

limit it from being used widely. Queries with group-by such as
SELECT X, SUM(Y) GROUP BY X can miss groups in the answer, es-
pecially those corresponding to values of X that have low support.
For such queries, Quickr uses a distinct sampler which intuitively
guarantees that at least a certain number of rows pass per distinct
combination of values of a given column set. _e distinct sampler
also helps when aggregates have high skew. To see this problem,
consider a three row input with the values 1, 1, 100 for column Y.
_e true answer for SUM(Y) is 102 but the projected answer changes
dramatically based on whether the value of 100 is sampled or not;
even at 50% sampling, the most likely answers are 2 and 202, each of
which happen with likelihood 1/4.

Given a column set C, a number δ, and probability p, the distinct
sampler ΓD

p ,C ,δ passes at least δ rows for every distinct combination
of values of the columns in C.7 Subsequent rows with the same value
are let throughwith probability p uniformly-at-random. _eweight
of each passed row is set correspondingly; i.e., 1 if the row passes
because of the frequency check and 1/p if it passes due to the proba-
bility check. Quickr picks the parameters {C , δ, p} as a by-product
of query optimization+sampling (§4.2)

To see how the distinct sampler improves over the uniform sam-
pler, consider the following examples. Columns that form the group
and those used in predicates can be added to the column set C. Since
the distinct sampler will pass some rows for every distinct value of
the columns in C, none of the groups will be missed and some rows
will pass the predicate. Quickr also allows stratifying on functions
over columns. For the skewed aggregates example (input has Y =

{1, 1, 100}) stratifying on ⌈Y/100⌉ ensures that Y = 100 will appear
in the sample.

Since Quickr may employ the distinct sampler on any interme-
diate relation, the sampler must execute in a single pass, have a
bounded resource footprint, and be partitionable. A naive imple-
mentation would maintain the observed frequency count per dis-
tinct value of column set C. _en, it would pass a row while the
frequency seen thus far is below δ with weight 1 and pick subse-
quent rows with probability p and hence a weight of 1/p. _is naive
approach has three problems. _e ûrst problem is bias. _e ûrst
few rows always pass through and are more likely to impact the
answer. Worse, the ûrst few rows picked in the probabilistic mode
have a relatively disproportionate impact on the answer since their
weight 1/p is much larger than the previous rows whose weight is
1. Only the more frequently occurring values of C are free from bias
since enough rowswill be picked for those values in the probabilistic
mode. Second, the memory footprint can be as large as the number
of distinct values in C. Finally, when running in a partitionedmode,
it is not possible to track how many rows with a particular value of
C have been selected by the other (parallel) instances of the sam-
pler. Hence, it is hard to ensure that all instances cumulatively pass
at least δ rows and p probability henceforth.

Quickr solves the problems of the naive approach. To be parti-
tionable, we carefully adjust δ based on the degree-of-parallelism
of the sampler D. _at is, each instance of the distinct sampler takes
a modiûed parameter set {C , ⌈ δD ⌉ + ε, p} wherein ε is carefully cho-
sen to tradeoò between passing too many rows and passing too few
rows by considering these two extreme cases–(1) all rows with the
same value of C are seen by one sampler instance or (2) rows are
uniformly spread across instances. _e total number of rows passed
by all instances is (δ/D)+ ε for case (1) and δ+Dε for case (2). Case
(1) is less frequent, but can happen if the input is ordered by the col-

7Precisely, at least min(δ, number of rows with that distinct value of C)



umn set C. Quickr uses ε = δ/D since, in practice, the distribution
of rows across instances more closely resembles case (2).
For small memory footprint, Quickr adapts a sketch that iden-

tiûes heavy hitters in one pass over data [32]. Crucially, using this
sketch Quickr maintains approximate frequency estimates for only
the heavy hitters in memory that is logarithmic in the number of
rows. Our key insight is that the distinct sampler’s gains arise from
probabilistically dropping rows that correspond to values of C that
occur very frequently; tracking only the heavy-hitters achievesmost
of these gains. In particular, for an input of sizeN and constants s, τ,
our sketch identiûes values with frequency above sN ± τN and es-
timates their frequency to within ±τN oò their true frequency. _e
memory usage is log(τN)/τ. Quickr uses τ = 10−4 and s = 10−2

for a memory footprint of 20MB with N = 1010 input rows.
To reduce bias, Quickr holds in a reservoir rows that are early

in the probabilistic mode and passes them with the correct weight.
In more detail: per distinct value, pass the ûrst δ rows with weight
1. Subsequently, maintain a reservoir of size S. When more than
δ + S/p rows are seen, �ush the rows held in the reservoir with
weight 1/p. From then on, pick rows with probability p, i.e., with-
out a reservoir. When the sampler has seen all rows, �ush the rows
in all non-empty reservoirs with weight (freq − δ)/S where freq is
the number of observed rows. To see this method in action, sup-
pose δ = 10, p = 0.1, S = 10. It is easy to see that distinct values
of C with freq in [1, 10] will not use a reservoir. All their rows pass
with weight 1. _ose with freq in (δ, δ + S/p] = [11, 110] are more
interesting. For a value with freq of 30, its ûrst ten rows pass right
away, the next twenty go into the reservoir and a random subset of
ten rows will be �ushed at the endwith a weight of (freq − δ)/S = 2.
Notice that the probability of a row numbered in [11, 30] to be emit-
ted is 1/2. Finally, values with freq above 110 lose their reservoir once
the 111’st row is seen. At that point, ten rows from the reservoir are
passed with weight of 10. _ismethod reduces bias because samples
passed by the reservoir receive a weight that exactly corresponds to
the probability withwhich the rowwas chosen. Further, only a small
reservoir is kept (no more than S) and only for distinct values that
have observed frequency between δ and δ+S/p. Hence, thememory
footprint is much smaller than straightforward reservoir sampling.

In summary, we are not aware of any other stratiûed sampler that
functions in a streaming and partitionable manner. Furthermore,
we believe that supporting stratiûcation over functions of columns
is novel. _ough we use a column set C in the above description,
this sampler can support a vector of functions whose domain is a
subset of C. _is allows for just enough stratiûcation.

4.1.3 Universe sampler
Universe sampler is a new operator that uniquely allows Quickr

to sample the inputs of joins. Consider this example:

SELECT COUNT(DISTINCT order), SUM(ws.profit)

FROM ws JOIN wr ON ws.order = wr.order

Web-sales (ws) and web-returns (wr) are large fact tables being
joined on a shared key. As discussed in §3, uniform sampling both
the join inputs is not useful. Distinct sampling both the inputs has
limited gains if the join keys have many columns and hence, many
distinct values. Correlation-aware samplers [6, 21, 22, 24] are inef-
ûcient (since they construct histograms or indices on join inputs)
and ineòective (since they require samplers to immediately precede
the join). More details are in §6. Generalizing this example, simi-
lar cases happen with self-joins and set operations such as counting
the number of orders that occur in one table, both tables, or exactly
one table. All such cases are approximable (have aggregations and
output≪ input) but existing samplers do not help.

We now explain the insight behind universe sampler. Much of
the trouble in sampling join inputs arises because the inputs have
to sampled independently and their joint behavior has to be statisti-
callymeaningful. Suppose the value of the join keys is projected into
some high dimensional space (e.g., using a hash function) and sam-
plers on both inputs pick the same random portion of this space.
_at is, on both join inputs pick all rows whose value of join keys
falls in some chosen subspace. For example, pick from the tables
ws and wr rows that have Hash(order)%4 = 2. _is yields a 25%
sample. A join over these samples is statistically equivalent to sam-
pling a�er the join (i.e., picking rows in join output that belong to
the chosen subspace). Our implementation uses a cryptographically
strong hash function. Hashing lets us pick a subspace without apri-
ori knowledge of the range of values and we can vary the desired
sample size by choosing a corresponding portion of the hash range.

More formally, the universe sampler takes as input a column set
C and a fraction p. It chooses a p fraction of the value space of the
columns in C. And, passes all rows whose value of columns in C
belong to the chosen subspace. Related pairs of samplers will pick
the same subspace. Note that the universe sampler is partitionable
and needs only one pass: whether or not a row passes depends only
on the values of the columns in C, so the sampler keeps no state
across rows. As a corollary, diòerent instances that process diòerent
subsets of the input would make the same decisions.

4.1.4 Limitations and interactions between samplers
We summarize the applicability of each sampler (e.g., guard con-

ditions) and how the samplers complement each other and together
expand the applicability of samplers as a family. All three samplers
are broadly applicable in the sense that we can ensure commutativ-
ity with other database operations; although analyzing the accuracy
of answers generated by universe and distinct samplers requires new
methods because these samplers are not uniformly random (§4.3).
Among the samplers, the uniform sampler is the most general.
Quickr uses the uniform and universe samplers only when the
stratiûcation requirements, if any, can bemet. _at is, either there is
high support per group or the columns that need stratiûcation (e.g.,
group by columns) are independent with the universe columns. For
some aggregations, such as COUNT and COUNT DISTINCT, we note
that column independence is not needed for the answer to be unbi-
ased (e.g., COUNT DISTINCT order in §4.1.3). _e universe sampler
is applicable for equi-joins over arbitrarily many columns. Further,
the universe sampler can be used for multiple joins in a query as
we saw in Figure 1. More precisely, universe sampling can be used
for exactly one set of columns in any query sub-tree that has an ag-
gregate at the root. _e three samplers together expand the range of
applicability of samplers. _at is, by integrating with the query opti-
mizer (§4.2), Quickr considers various join orders, choices of strat-
iûcation and/ or universe columns, and choices of sampler locations
to pick an appropriate plan. Consequently, our results will show that
many otherwise unapproximable queries beneût from Quickr.

4.2 Samplers + QO (or ASALQA)
Since every operator in the plan can potentially be followed by

a sampler, the search space of possible sampled plans is very large.
Further, for each possible choice of samplers and locations in the
plan, one has to reason about the performance and accuracy of the
corresponding plan. Given an input query, ASALQA outputs an exe-
cution plan with appropriate samplers inserted at appropriate loca-
tions. Our current target is the plan that achieves the best perfor-
mance with accuracy as the constraint.

_ere are at least two choices as to how we can obtain a good
plan that contains samplers: (a) Insert samplers a posteriori into a



Figure 4: Seeding samplers into the query.

plan that is output by a traditional relational query optimizer or (b)
Incorporate samplers as ûrst-class operators along with the other
database operators and explore the larger combined space of possi-
ble plans within a query optimizer. Notice that option (b) can yield
plans that cannot be obtained from using option (a). For example,
when a sampler reduces cardinality downstream join operations can
be implemented diòerently and more eõciently as a cross join in-
stead of a hash-join [8]. As another example, for queries with many
joins and selects, option (a) may oòer a plan on which all simple ed-
its to insert samplers appear infeasible (inaccurate). Yet, a diòerent
ordering of the joins or selects may allow samplers to be inserted.
Hence, we chose option (b); we oòer a new ASALQA algorithm that
incorporates samplers as native operators into aCascades-style cost-
based optimizer [18, 27].

Query optimization in Cascades consists of two main phases. In
the logical plan exploration phase, a set of transformation rules gen-
erate alternative plans. _e physical plan creation phase converts
each logical operation to a physical implementation. ASALQAmodi-
ûes both these phases and proceeds as follows. Samplers are injected
into the query execution tree before every aggregation (§4.2.2). In-
tuitively, this represents the potential to approximate at that loca-
tion. Next, Quickr has a set of new transformation rules that
push samplers closer to the raw input (§4.2.3–§4.2.5). _e alter-
natives generated by a rule have no worse accuracy but can have
better performance. Furthermore, a new rule changes the degree-
of-parallelism (§A) of sampled query sub-expressions which can in
turn trigger other changes to the overall plan. Finally, plan costing
uses data statistics to identify the best plan, both in terms of perfor-
mance and accuracy (§4.2.6, §4.3).

4.2.1 Sampler: logical and physical state
During the logical exploration phase, the requirements on a sam-

pler are encoded in what we call the logical state. _e requirements
of the sampler change when the samplers aremoved by the transfor-
mation rules. Furthermore, they may be implementable by one or
more physical samplers. A�er logical exploration, ASALQA picks the
best sampler that meets the requirements (§4.2.6). We denote the
logical state by {S ,U , ds, sfm}. S and U are the columns that the
sampler needs to stratify or universe sample upon respectively. We
also refer to them as strat cols and univ cols respectively. ds and sfm
are short for downstream selectivity (i.e., the cumulative selectivity
of operators between the sampler and the answer) and stratiûcation
frequency multiplier; their use will be described shortly.

4.2.2 Seeding samplers
We seed samplers by replacing each statement that has aggrega-

tions with three statements–a precursor, a sampler and a successor–
as shown in Figure 4. _is is optimistic; that is, ASALQA replaces the
sampler with a pass-through operation if the error goal cannot be
met. _e precursor mimics the original statement but for aggrega-
tions. In particular, the precursor receives all of the JOIN clauses,
WHERE clauses, UDOs and AS projections from the original state-
ment. Aggregations in the precursor are replaced with their corre-
sponding input columns. _e successor performs these aggregations
by replacing each with (a) an unbiased estimator of the true value

Figure 5: Pushing sampler past select: See §4.2.3.

Figure 6: Pushing sampler past join: See §4.2.4.

computed over the sampled rows and (b) appends an optional col-
umn that oòers a conûdence interval. Table 8 shows how Quickr
rewrites some example aggregations. _e successor also receives the
HAVING clause from the original statement. A sampler statement is
introduced between the precursor and successor. Columns that ap-
pear in the answer, e.g., A in Figure 4, are added to the stratiûcation
column requirement (S) in the sampler. Further, columns in the∗IF
clauses, in SUM and in COUNT(DISTINCT) (e.g., C, E in Figure 4) are
optionally added to the set S (details in §4.2.3). Recall from §4.1 that
stratiûcation on these columns ensures that no groups are missed
and corrects for value skew. Figure 4 also shows the initial values
for the rest of the logical state (U = ∅;ds = 1; sfm = 1).

4.2.3 Pushing sampler past Select
We start with a simple yet non-trivial transformation rule that

pushes samplers past select operators. For the expression on the le�
in Figure 5, ASALQA generates the two alternatives on the right. Here
σC denotes a select that uses columnsC in its predicate. Let σ ss be its
selectivity.8 We only show the relevant ûelds in the logical sampler
state. To understand why this rule helps, note the following logic.
Alternative A1 (Figure 5 middle) stratiûes additionally on the

predicate columns C. Doing so guarantees that the error will be no
worse than the expression on the le� since at least some rows pass
the sampler for every distinct value of C. Unfortunately, the perfor-
mance can be worse by a lot. _is is because themore columns in C,
the greater the number of distinct values in the stratiûed column set
S ∪ C, forcing the sampler to pass many more rows. _e second al-
ternative A2 (Figure 5 right) retains perf gain potential at the cost of
additional error. If the sampler were to not stratify on the columns
in C, its performance is no worse than before. But, there will be
fewer rows in the answer by a factor of σ ss. _erefore, this plan is
more likely to miss groups or have a higher variance for aggregates.
It is easy to see when each alternative is preferable: (a) if the select
has many predicate columns but is not very selective, A2 is better;
(b) if the select is highly selective, A1 may be better; (c) otherwise,
neither alternative is better.

Observe also that in both alternatives the sampler reduces the
work for the select since it now operates on fewer rows. If the se-
lect is a conjunctive predicate (“and”), the logic above is applied per
conjunction. When some predicate columns C are already in the
strat cols S, observe that A1 needs no correction. For A2, ASALQA
uses a heuristic to reduce ds by a smaller amount than σ ss.

4.2.4 Pushing sampler past Join
We highlight the transformation rules to push sampler past an

equi-join because it has deep implications on performance and illus-
trates novel aspects of our technical contributions. As shown in Fig-
ure 6, the sampler can be pushed down to one or both inputs. Let
L, R be the input relations andK l ,Kr be the corresponding join keys.
When pushing a sampler past join, two key considerations arise: (i)
continue to meet the stratiûcation and universe requirements in the
8σ ss = rows in output of σ/rows in input.



Inputs:
S : Sampler state = {S ,U , sfm, ds}

L, R: relational inputs of join with columns Lc , Rc respectively
K l , Kr : Columns used as join keys // assume equi-join

Output: Vector of alternate samplers on one or both inputs of join.

1 Func: NumDV(R,C) ∶ // distinct value count of columns C in R

2 Func: ProjectColSet(S , πC1→C2): // S ,C1 ,C2 are column sets.
∣C1 ∣ = ∣C2 ∣. Replace columns in S ∩ C1 with corresponding ones in C2 .

3 Func: OneSideHelper(S , L, R, K l , Kr ,U l ):
4 A⃗ ← {} // vector of state of alternative samplers on le� relation
5 S f ← ProjectColSet(S .S , πKr→K l )//Normalize; these are “full” strat
cols

6 S l ← S f ∩ Lc // strat cols deûned on le�
7 sfm← S .sfm
8 if ∣S f − S l ∣ > 0 and ∣K l − S l ∣ > 0// missing some strat cols then

9 sfm← sfm ∗
min(NumDV(L ,K l−S l ), NumDV(R ,S f −S l ))

NumDV(R ,ProjectColSet(K l−S l ,πKl→Kr ))

10 S l ← S l ∪ K l // append join keys to strat cols
11 Krem ← K l − S l
12 foreach subset S of Krem do
13 Sskip ← Krem − S// will strat on S, these join keys remain.
14 ds← S .ds / NumDV(L, Sskip) ∗ // penalize by increasing ds

min (NumDV(L, Sskip), NumDV(R, ProjectColSet(Sskip , πK l→Kr )))

15 // omitted detail: check for dissonance
16 A⃗ ← {S l ∪ S , U l , sfm, ds}

17 return A⃗

18 Func: PrepareUnivCol(U , K):
19 if U = ∅ or U = K then return K // Else, cannot do universe ;

20 Func: PushSamplerOnOneSide(S , L, R, K l , Kr):
21 U l ← ProjectColSet(S .U , πKr→K l )
22 if U l − Lc = ∅// can push to one side iò other side has no univ col. then
23 return OneSideHelper(S , L, R, K l , Kr ,U l )

24 return {} // no alternatives

25 Func: PushSamplerOntoBothSides(S , L, R, K l , Kr):
26 U l ← PrepareUnivCol(ProjectColSet(S .U , πKr→K l ), K l )

27 Ur ← PrepareUnivCol(ProjectColSet(S .U , πK l→Kr ), Kr)

28 if U l = ∅ orUr = ∅ then return {}// cannot use univ ;
29 A⃗l ← OneSideHelper(S , L, R, K l , Kr ,U l )

30 A⃗r ← OneSideHelper(S , R, L, Kr , K l ,Ur)

31 return A⃗l × A⃗r // cross product, output is vector of state-pairs

Figure 7: Pseudocode for pushing samplers past join.

sampler’s logical state S and (ii) account for the additional changes
to the answer due to the join following the sampler.

_e PushSamplerOnOneSide function in Figure 7 shows how
ASALQA considers pushing the sampler to the le� input. Its goal is to
ûnd sampler Sl such that ΓSl (L) & R is an alternate for ΓS(L & R).
We ûrst try to satisfy the universe and stratiûcation requirements
in S . If any of the universe columns S .U appear only on the right
relation, then pushing to the le� is not possible; since some univ
cols are unavailable on the le�, picking rows in the desired value
subspace of S .U is not possible. (See the check for U l − Lc = ∅ in
PushSamplerOnOneSide.) If some of the strat cols S .S are miss-
ing on the le�, however, ASALQA stratiûes on the le� join keys. (See
lines 8–10 in OneSideHelper.) In the example in Figure 1, strat-
ifying store_sales & date on d_year can be approximated by
stratifying store_sales on the le� join key sold_date_sk. Intu-
itively, stratifying on join key ensures that some rows will appear on
the sampled le� to match every row from the right. However, the
join keys may have more or fewer distinct values than the columns
that they replace. In the above example, the join key has 365×more

row count
Average∗, Variance∗

per interesting† columnNumber of Distinct Values
Heavy-Hitter Values and Freq.
∗ ∶ for columns with numerical values; † ∶ columns that appear in
select ûlters, join clauses or contained in the eventual answer.
Table 2: Statistics used by Quickr to facilitate sampler selection

distinct values than d_year; hence the support per group appears
much smaller than it is. ASALQA uses sfm (stratiûcation frequency
multiplier) to correct for this diòerence. Intuitively, when replacing
a stratiûed column with a join key having more (or fewer) distinct
values, the value of sfm goes up (or down) and sfm is used as amulti-
plier when computing the group support (§4.2.6). We note that this
has been a crucial enabler in pushing samplers onto large relations
while properly accounting for stratiûcation needs. Finally, account-
ing for the additional changes to the answer due to the join is similar
to the case of select (see §4.2.3). Either the new sampler stratiûes on
the join keys or gets a smaller downstream selectivity. Lines 12–16
ofOneSideHelper show how ASALQA considers diòerent subsets of
Krem to add to strat cols and adjusts ds accordingly.

_e PushSamplerOntoBothSides function in Figure 7 shows
how ASALQA considers pushing a sampler to both join inputs.
Its goal is to ûnd samplers Sl ,Sr such that ΓSl (L) & ΓSr (R) is
an alternate for ΓS(L & R). Note the calls to OneSideHelper to
push on to each side of the input. _e only substantial change
is adding join keys to the corresponding univ cols. As shown
in PrepareUnivCol (line#19), ASALQA adds new universe require-
ments if univ cols do not exist already (U = ∅) or if they are identi-
cal to the join keys (U = K) as in the example query in Figure 1. As
before, ASALQA picks the best option from among these alternatives.
ASALQA checks for dissonance between the stratiûcation and uni-

verse requirements (line#15 in Figure 6). Columns that appear in
both the S and U sets are troublesome because the universe sam-
pler will only pick a subset of the values of such columns whereas
stratiûcation requires all values. ASALQA allows overlap in the re-
quirements only when ∣S ∩U ∣ ≪ ∣S∣; i.e., if only a few columns
overlap, the column sets can be considered eòectively independent.
Further, overlap is allowed for columns that appear in S only be-
cause of COUNT or COUNT DISTINCT since such aggregates can be
estimated correctly (see Table 8).

4.2.5 Other transformation rules, Parallel plans and
Global constraints

Weconclude the discussion of transformation rules by noting that
ASALQA pushes samplers past many other operators including pro-
jections, union-alls and outer joins. In some cases, it is strictly better
to push down the sampler. In other cases, ASALQA uses the costing
that will be described in §4.2.6 to decide whether pushing down a
sampler is better and to pick among the various choices. We men-
tion two important issues here, the details of which are in §A. First,
for the universe sampling property to hold, both input relations of
a join should have an identical universe sampler (same column sets
and probability). We ensure that this and other such global require-
ments are satisûed on the bottom-up pass of the query optimiza-
tion. Next, parallel plan performance can improve further if sam-
plers are followed by exchanges since the cardinality reduction due
to the sampler can translate into a degree-of-parallelism reduction
leading to more eõcient serial sub-plans or better implementation
choices. More details are in §A.

4.2.6 Costing Sampled Expressions
In this section, we describe how to cost sampled expressions.

Costing helps pick between alternatives and determines how best
to implement a sampler while meeting all of its requirements.



A key input to costing is the cardinality estimates per relational
expression (how many rows) and the number of distinct values in
each column subset. Table 2 shows the statistics that Quickr col-
lects for each input table. If not already available, the statistics
are computed by the ûrst query that reads the table [8]. Using
these input statistics, ASALQA derives the corresponding statistics
for each query sub-expression. _e derivation improves upon prior
work [16] by using heavy hitter identity and frequency.
Armed with the above stats, we reason about how best to imple-

ment a sampler so as tomeet the requirements encoded in its logical
state S = {S ,U , sfm, ds}. We use two high level simpliûcations. To
ensure that the performance gains are high, we disallow sampling
with probability above 0.1. Next, we use a ûxed error goal: with high
probability, do not miss groups in answer and keep aggregate value
within ±10% of the true value. We defer a more graceful trade-oò
between speed-up and accuracy to future work.

Meeting these goals translates to the following sequence of
checks: (C1) Is stratiûed column requirement S empty or can some
sample probability p ∈ [0, 0.1] ensure that, with high probability,
each distinct value of the columns in S receives at least k rows? (C2)
Is univ col requirement U empty? Answering C1 requires the car-
dinality and distinct value derivations described above for the input
relation. Further, these numbers are multiplied by ds ∗ sfm. Recall
that downstream selectivity ds is the probability that a row passed
by this sampler will make its way to the answer (a�er downstream
selections or joins). And, sfm is a multiplier to correct the eòect
of replacing strat cols with join keys (§4.2.4). If the answer to both
C1 and C2 is true, the sampler is implemented using the uniform
sampler (§4.1.1). If only C1 is true, a universe sampler is chosen. If
only C2 is true, a distinct sampler may be chosen; we check whether
there will be any data reduction, i.e., at least k l rows exist per dis-
tinct value of columns in S. We choose k l = 3. _e default option is
to not-sample i.e., implement sampler as a pass-through operator.

Intuitively, the reasoning is that if S and U are empty or if there
is substantial support, a uniform sampler suõces. Universe sam-
pler has higher variance and is chosen only when needed (U ≠ ∅)
and stratiûcation needs are met (S = ∅, or enough support, or
∣S ∩ U ∣ ≪ ∣S∣). Finally, a query plan without samplers is chosen
and is the desired option when (a) the per-group support is small
or (b) downstream selectivity ds is so small or stratiûcation require-
ments are so restrictive that the number of rows per distinct value
of S is below k l . Physical sampler parameters (e.g., sample proba-
bility p, δ for distinct) are chosen as the smallest values that satisfy
(C1). We use k = 30 because anecdotally 30 samples are needed
by central-limit-theorem which we use to estimate conûdence in-
tervals. In our evaluation, a parameter sweep shows that the plans
output by ASALQA are similar for k ∈ [5, 100].

4.3 Accuracy analysis
Given a query plan E , with many samplers at arbitrary locations,

Quickr oòers unbiased estimators of aggregate values as well as the
probability of missing groups and the conûdence intervals for ag-
gregates. We brie�y describe how to do this. First, suppose that a
sampler immediately precedes the aggregation and group by opera-
tor. We use the well-known Horvitz-_ompson (HT) estimator [24]
to calculate unbiased estimators of the true aggregate values and the
variance of these estimators. _edetails are in §B.1. _en, we can use
central-limit-theorem to compute conûdence intervals. _is does
not suõce, however, because the samplers in E can be arbitrarily far
away from the aggregates. In fact, Quickr pushes samplers further
away to improve performance.

Next, to analyze the case when samplers are at arbitrary locations
we introduce a novel notion of dominance between query expres-

sions whose output is identical when samplers are removed from
both: E2 is said to dominate E1 denoted as E1

∗

⇒ E2 , iò the accuracy
of E2 is no worse than that of E1 . _is deûnitionmathematically dis-
tills the necessary and suõcient conditions to ensure that E2 has no
worse variance of estimators and no higher probability of missing
groups than E1 . _e details are in §B.2, Proof of Proposition 5.

We then show that dominance transitively holds across database
operators. Suppose that π, σ ,& denote a project, select and join.

Proposition 1 (Dominance Transitivity). For pairs of expressions E1,
E2 and F1, F2 that are equivalent if all samplers were removed:

i) E1
∗

⇒ E2 implies π(E1)
∗

⇒ π(E2);
ii) E1

∗

⇒ E2 implies σ(E1)
∗

⇒ σ(E2);
iii) E1

∗

⇒ E2 andF1
∗

⇒F2 implies E1&F1
∗

⇒ E2&F2, if samplers
in Ei are independent on samplers in Fi or Ei and Fi share the same
universe sampler.

_e proof is in §B.2 Proposition 1.
To analyze the accuracy of a plan, we use the dominance rules to

inductively unroll ASALQA. _at is, just for the sake of analysis, we
ûnd an equivalent query expression E ′ which has only one sampler
just below the aggregation such that E ′ ∗

⇒ E . We use the above HT
estimators on E ′. By dominance, the accuracy of E is no worse. An
illustration of this process for the query in Figure 1 is in Figure 9.
Finally, we can prove that the analysis above requires only one

eòective pass over the sample; the details are in §B.1 Proposition 2.

Proposition 2 (Complexity). For each group G in the query out-
put, Quickr needs O(∣E(G)∣) time to compute the unbiased estima-
tor of all aggregations and their estimated variance where ∣E(G)∣ is
the number of sample rows from G output by expression E .

In summary, we colloquially mention three novel aspects of our
accuracy analysis; the details are in the Appendix. Note that prior
work [35] applies for SUM-like aggregates, uniformly-random sam-
plers and uses self-joins to compute variance. In contrast, ASALQA
handles diòerent aggregate types including the case when the an-
swer has multiple aggregates. Next, we compute all relevant error
measures in one eòective pass over data. Finally, to analyze a more
general class of samplers, we use two ideas. Any sampler that is
strictly more likely to pass a row relative to some uniformly ran-
dom sampler is analyzable. Further, any sampler that has equivalent
error when convolved with all database operators is also analyzable.
Our distinct and universe samplers fall into each category respec-
tively. We believe that other samplers exist in each category. _ese
intuitions lead to our deûnition of sampler dominance.

5. EVALUATION
We have implemented Quickr’s samplers and query optimiza-

tion and deployed it in our production clusters. Here, we present
results to answer the following questions:

● Howmuch do queries speed-up? Our evaluation is relative to
a version of the QO that is identical in all respects to Quickr
except for samplers. We also compare with a state-of-the-art
input sampling technique–BlinkDB [9].

● How o�en are the output plans correct? Every query that re-
ceives a sampled plan should meet its error guarantee (with
high probability, no groups are missed in the answer and all
aggregates are within a small ratio of true value). Further, un-
approximable queries should receive a plan with no samplers.

● Where do the gains come from? And, how may these results
translate to other queries?
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Figure 8: Comparing Quickr with Baseline– the production QO in our cluster that is identical to Quickr except for samplers

5.1 Methodology
Comparables: Both of the systems that we compare Quickr
against are state-of-the-art. We refer to the production QO with-
out samplers as Baseline. _ousands of man-years have gone into
developing Baseline, and it is hardened from several years of pro-
duction use. Baseline supports almost the entirety of T-SQL, has
extensive support for UDOs, generates parallel plans and has care-
fully tunedparallel implementations ofmany operators. _e authors
of BlinkDB shared their MILP algorithm to choose which samples
to construct. BlinkDB’s logic to match a query to available input
samples requires queries to recur in order to build the error-latency-
proûle. We give BlinkDB the beneût of perfect matching by running
each query on all of the input samples and use the “best” sample.
Query sets: To share results publicly, we use the queries and datasets
from theTPC-DS benchmark [4]. _e results here are from a 500GB
dataset (scale factor: 500). Results for the 2TB dataset were simi-
lar. Table 3 shows some query characteristics. Comparing with Fig-
ure 2b we see that TPC-DS queries are simpler than the queries
in our cluster– they have fewer passes over data, fewer joins, and
smaller QCS. Table 9 reports similar measures for queries from a
variety of benchmarks (these queries were run on a Hive cluster)
and shows that queries in other benchmarks are even simpler. We
chose TPC-DS because it is closest to the workload on our cluster.
PerformanceMetrics: To compare performance, wemeasure query
runtime as well as the usages of various resources. Machine-hours
is the sum of the runtime of all tasks. _is translates to cluster oc-
cupancy and is a measure of throughput. Intermediate Data is the
sum of the output of all tasks less the job output, i.e., corresponds
to the intermediate data written. Shuøed Data is the sum of data
that moves along the network across racks. Together, the last two
measure the excess IO footprint of the query.
ErrorMetrics: ByMissedGroups, we refer to the fraction of groups
in the answer that are missed. Aggregation Error denotes the aver-
age error between the estimated and true value of all aggregations in
a query. We compute these metrics by analyzing the query output.
Cluster:We evaluate Quickr on the same cluster that ran the pro-
duction queries that were analyzed in Figure 2b. _e servers in this
cluster are datacenter-standard. _at is, each has about ten cores,
roughly 100GB of memory, a couple of high RPM disks, some SSDs
and a couple of 10Gbps NICs.

5.2 Performance gains
Figure 8a plots a CDF of the various performance metrics. _e

x axis is a ratio between the values of Baseline and Quickr. An
x-value of 2 represents 2× improvement whereas those below 1 rep-
resent a regression. We see from the line with star points (“machine-
hours”) that Quickr lowers resource usage of the median query by
over 2×. _e improvements in runtime, the line with x points, can
be more or less than that of the resource usage due to two factors.

Metric Percentile value
10th 25th 50th 75th 90th 95th

# of passes 1.12 1.18 1.3 1.53 1.92 2.61
Total/First pass time 1.26 1.44 1.67 2 2.63 3.42
# Aggregation Ops. 1 1 3 4 8 16
# Joins 2 3 4 7 9 10
depth of operators 17 18 20 23 26 27
# operators 20 23 32 44 52 86
size of QCS + QVS 2 4 5 7 12 17
size of QCS 0 1 3 5 9 11
# user-defined func. 1 2 4 9 14 24

Table 3: Characteristics of the TPC-DS queries used in evaluation.

(1) Queries that process a small amount of data such as TPC-DS q22
are critical-path limited. _at is, since our cluster oòers much more
degree-of-parallelism than needed by some queries, their runtime
equals the sum of duration of tasks on the critical path. (2) Other
queries gain in runtime by more than expected. When the work
to be done reduces, as it does with sampled plans, schedulers can
marshall their tasks better. Overall, we ûnd that query runtime im-
proves by a median 1.6×. Roughly 20% of the queries speed up by
over 3×. A handful speed up by over 6×. Please note however that
roughly 20% of the queries have slightly longer runtimes. _is is pri-
marily because (a) query runtime is in�uenced by task failures and
outliers [11, 41] and (b) our cluster scheduler uses fair-sharing and
hence the resources oòered to queries vary substantially from one
execution to another [8, 26]. Regression in machine-hours happens
less o�en and to a smaller degree; this is mostly because our sam-
plers are in C#, but the rest of the query executes in C++which leads
to needless overhead in converting rows from one language format
to another. In general, we ûnd runtime to be a noisy metric on our
cluster and believe machine-hours which is akin to jobmakespan to
be a more stable metric to compare plan eõciency.

We now focus on some reasons behind these gains. _e line with
circular points (“interm. data”) shows that the total amount of inter-
mediate data written by sampled plans ismuch smaller. Almost 40%
of the queries have reductions larger than 4×. For about 50% of the
queries, the intermediate data written is about the same and some
plans write even more data. _e line with triangle points (“shuøed
data”) shows that the shuøed volume does not decrease as much as
intermediate data. Two facts explain these ûndings. (1)Quickr trig-
gers parallel plan improvements that build upon the reduced cardi-
nality due to samplers (§A)._at is, when the data in �ight becomes
small, Quickr decreases degree-of-parallelism (DOP) so that hash
joins are replaced with cheaper broadcast joins etc. _e beneût is
faster completion time. _e cost, however, is that more data has to
be shuøed and written to adjust the DOP (§A). (2) Quickr outputs
planswithout samplers for roughly 25% of the queries. _ese queries
still receive a limited beneût (an average of 25%) because Quickr
triggers parallel plan improvements when cardinality reduces due
to other aspects such as ûlters. Such queries will shuøe more data.

To summarize, Quickr oòers substantial performance gains to
a large fraction of the complex queries in the TPC-DS benchmark.



Metric Percentile value
10th 25th 50th 75th 90th 95th

Baseline QO time 0.38 0.49 0.51 0.54 0.56 0.57
Quickr QO time 0.48 0.5 0.52 0.55 0.57 0.58

Table 4: Query Optimization (QO) times (sec.)

Metric Value
0 1 2 3 4 9

Samplers per query 25% 51% 9% 11% 2% 2%
Sampler-Source dist. 60% 12% 10% 17% 0% 0%
Table 5: Number of samplers per query and their locations

Since production queries have many more passes over data, we ob-
serve larger gains overall but defer those results for future work.

5.3 Quantifying error
Figure 8b plots a CDF of the error metrics over all the exam-

ined TPC-DS queries. _e line with star points (“Missed Groups”)
shows that up to 20% of queries have missing groups. Upon care-
ful examination, we ûnd that every one of these cases is due to ap-
plying LIMIT 100 on the answer a�er sorting over the aggregation
column. Errors in aggregates change the rank of groups and hence
the approximate answer picks a diòerent top 100. We acknowledge
that Quickr should more carefully consider this case. To the best
of our knowledge, none of the prior AQP schemes handle this sce-
nario either. We make one change to the queries: output the answer
before LIMIT 100 and call that the full answer. _e line with tri-
angle points (“Missed Groups: Full”) shows that Quickr misses no
groups in full answers (line is a point on the top le�). _is is indeed
the desired behavior.

In Figure 8b, the lines with circle and x points (“Agg. Error” and
“Agg. Error: Full”) depict the error for aggregates. We see that
80% of the queries have error within ±10% and over 90% are within
±20%. _is is quite good. Careful examination of the outliers reveals
two prevalent causes. (a) Support is skewed across groups. Since
Quickr assumes an even distribution except for heavy hitters, some
groups receive fewer rows than desired and have high error. (b) SUMs
that are computed over values with high skew have high error. As
discussed in §4.1.1, the ûx is to stratify on such columns. However, a
complication is that value skew changeswhen passing through pred-
icates. For example, WHERE X > 106 ∨ X < 10−3 increases skew and
WHERE X ∈ [10, 11] decreases it. We are working towards deriving
the value skew statistic. If both of these causes are ûxed, and we
believe they can be, over 95% of the TPC-DS queries will have ag-
gregates within ±10% of true answer.

5.4 Characterizing what Quickr does
Figure 8c correlates the performance gains with query character-

istics. It shows the average metric value for a range in the machine-
hours gains. _e line with circle points (“Sampler-Source dist.”)
shows that the gains increase when the samplers are closer to the
sources. We next compare some query aspects between the baseline
plans and Quickr. _e line with x points (“Total/First pass time”)
and the one with star points (“# of passes”) show that the gains due
to Quickr are larger for deeper queries. Finally, the line with tri-
angle points (“Interm. Data/10”) shows that queries that gain most
by Quickr have substantial reductions in intermediate data (up to
19×, since the graph shows values divided by 10).

Table 4 shows the query optimization time for Quickr and Base-
line. We expect longer QO times for Quickr since it considers sam-
plers natively and hence explores more alternatives. We ran each
query three times and pick the median QO time. _e table shows
that the increase in QO latency is below 0.1 seconds.

Table 5 shows that 51% of the queries have exactly one sampler.
Many have multiple samplers. Further, 25% of the queries are un-
approximable. _e table also shows where the samplers are in the

Storage
Budget

Coverage Median
Perf. gain:
All

Median
Perf. gain:
Covered

Median
Error

Default parameters (speciûcally, K=M=105).
0.5× 0/64 0% – –
1× 0/64 0% – –
4× 9/64 0% 27% 6%
10× 14/64 0% 24% 5%

Tuned for small group size (K=M=101).
0.5× 8/64 0% 35% 6%
1× 7/64 0% 35% 6%
4× 11/64 0% 32% 6%
10× 12/64 0% 24% 6%

Table 6: BlinkDB’s performance on TPC-DS.

query plan. “Sampler-Source distance” is the number of IO passes
between the extraction stage and the sampler. We see that 60% of
the samplers are on the ûrst pass on data. Recall that sampling on
the ûrst pass is likely to improve performance the most. We also
see that Quickr places samplers in the middle of the plan in many
queries; moving such samplers past the next database operator does
not yield a better performance vs error tradeoò.

Table 7 shows how o�en various samplers are used. Overall, uni-
form sampler is used roughly twice as frequently as the distinct and
universe samplers. _e distinct sampler is o�en replaced by the
uniform because when there is enough support for groups, the lat-
ter is accurate enough but has better performance. Analogously,
the universe sampler is o�en optimized away because it is domi-
nated by both the uniform and the distinct samplers (see Proposi-
tion 6 in §B.3). Quickr uses the universe sampler only for queries
that join two large relations. _is happens more o�en in our pro-
duction queries. We note that even complex queries with multiple
joins receive plans with only a few samplers. A key reason is that
Quickr converts stratiûcation requirements on columns from the
smaller relations to stratiûcation over join keys in the larger rela-
tions (see discussion on sfm in §4.2.4). Without our sampling+QO
logic (§4.2), evaluating the accuracy and performance of the many
possible sampled plans requires complex reasoning and is time-
consuming even for an experienced data scientist.

5.5 Quickr vs. Apriori samples
_e fundamental problem with apriori samples is the poor cov-

erage for any feasible storage budget. _at is, when queries are
rich, tables have many columns and a dataset has many tables, any
choice of diòerently stratiûed samples of the inputs has poor cover-
age for feasible storage budgets. To illustrate this aspect, we evaluate
BlinkDB [9], the best exemplar systemof this approach, on the TPC-
DS benchmark. BlinkDB’s MILP to decide which samples to obtain
works only for one table and extending to multiple tables is non-
trivial due to reasons described below. We use theMILP to generate
samples for the store_sales table because (a) it is the largest table
in the TPC-DS benchmark and (b) it has the highest potential to im-
prove query performance; out of the 64 queries that we consider, 40
use the store_sales table. Next, we run each query on all of the
samples chosen by the MILP and pick the sample with the best pos-
sible performance thatmeets the error constraint (no groupsmissed
and less than ±10% error for aggregates). We vetted our methodol-
ogy and the results with the authors of BlinkDB.

Table 6 shows our ûndings when using the same parameter val-
ues as in the BlinkDB paper. We ran the queries in Hive [40] atop
Tez [2]. _e samples are not explicitly stored in memory but the
ûle-system cache does help since no other queries ran on the cluster
during our experiment. We see that very few queries beneût. For
most queries, none of the constructed input samples yield an an-
swer with zero missed rows and within ±10% error on aggregates.



For sample-set sizes equal to or smaller than the input, the best cov-
erage was 13%. A parameter sweep on BlinkDB’s internal parameters
reveals that the best coverage overall was 22%, obtained at 10× the
size of the input. Of the 14 queries that beneûted, the median speed-
up was 24%. It is more feasible to store the entire input in memory
than such large sample-sets.
Digging a bit further, we ûnd that BlinkDB’sMILP generates over

20 diòerently stratiûed samples on store_sales. Most are on one
column but several are on column pairs. Many TPC-DS queries
have a large QCS (see Table 3); large QCSets have a large sample
size and hence samples on column-pairs were picked by the MILP
only at high storage budgets.

We take care to point out that apriori samples can be useful. Pre-
dictable aggregation queries that touch only one large dataset will
greatly beneût. Especially if the data distribution is sparse, i.e. the
number of distinct values per group is much smaller than the row
count. _en, each stratiûed sample will be small and many dif-
ferent stratiûed samples can be feasibly stored per popular dataset.
However, this does not happen in TPC-DS or in our production
clusters. Further complications include: keeping samples consistent
when datasets churn continuously and choosing which among the
available samples (if any) would help an ad-hoc query that diòers
from the queries used when constructing samples. Storing apriori
samples for queries that join more than one large table is problem-
atic because the same tables can be joined on multiple columns and
the samples constructed for a particular join-of-tables do not help
queries that join in a diòerent manner (for example, nine queries
join store_sales and store_returns in TPC-DS with four dif-
ferent options for join columns).

6. RELATED WORK
Many big data systems support relational queries [12, 18, 33, 37,

40]. Several oòer a (uniform) sampler operator. But none automat-
ically decide which queries can be sampled, place appropriate sam-
plers at appropriate locations or oòer guarantees on answer quality.
A rich vein of literature samples input datasets. See [24] for an

excellent overview. Some update the samples as datasets evolve [6].
Most assume knowledge of the queries and the datasets. Congres-
sional sampling [7] keeps both uniform and stratiûed samples on
the group-by columns used by queries. STRAT [20] computes the
optimal sample-set to store given a budget. Chaudhuri et.al. [19]
maintains an outlier index to better support skew. Babcock et.
al. [14] stores the more uncommon values explicitly. SciBORQ [39]
stores multiple layers of impressions where each layer can have a
diòerent focus and level of detail. Similar to STRAT, BlinkDB [9]
also optimally chooses stratiûed samples. Uniquely, it stores sam-
ples inmemory and computes an error-latency-proûle for repetitive
queries to meet error or performance targets. For complex ad-hoc
queries with a heavy-tailed distribution on inputs, apriori sampling
has substantial shortcomings (see §5.5).

Online aggregation (OLA) [29, 30, 43] progressively processes
more of the input and keeps updating the answer. _e use-case is
exciting since the user can run the query until the answer is satis-
factory. Quickr looks at all tuples once (early in the plan) and re-
tains a small subset for the remainder of the query. Hence, Quickr
can oòer good error bounds without any assumptions on physical
layout (e.g., input being randomly ordered) and with less computa-
tional overhead (e.g., does not need bootstrap). Further, OLA re-
quires specialized join operators and in-memory data-structures to
eõciently update the answers of a complex query [23, 38].

When sampling, Quickr does not use existing indices on tables
as well as some others do [24, 36]. While this choice makes Quickr
more widely applicable, for example on unstructured data or when

no index exists, leveraging such metadata can make Quickr more
eòective. For example, by sampling blocks or sub-trees of a B-tree
instead of examining every tuple. _is is key future work.

Our accuracy analysis technique (§4.3) improves in three ways
over the closest related technique [35]. First, the previous tech-
nique [35] only applies for generalized uniform samplers (GUS).
Neither our universe nor our distinct sampler belong to the class
of GUS. We oòer a new notion of sampler dominance that is a sig-
niûcant generalization. Second, we also analyze the likelihood of
missing groups and consider aggregates beyond SUM (see §B, §C).
Finally, while [35] requires self-joins to compute the variance,
Quickr computes variance and other error metrics in eòectively
one pass (§4.3).

Recently, there has been some work in using bootstrap to deter-
mine which apriori sample is suited for a query [10]. Since boot-
strap can need thousands of trials, each of which resample from a
sample [44], recent work shows how to symbolically execute boot-
strap (by using probability annotations and new relational opera-
tors that convolve random variables) [44]. However, neither oòset
the shortcomings of apriori samples. Since Quickr samples in-line,
our accuracy analysis is simpler, faster and has good guarantees.

Our uniform sampler (§4.1.1) is the standard Poisson sampler [24]
used by several prior works. _e novelty in our distinct sam-
pler (§4.1.2) derives largely from its execution in a streaming and
partitionedmanner: speciûcally in thewaywe lower bias and reduce
memory footprint. To the best of our knowledge, the universe sam-
pler (§4.1.3) is novel. Prior eòorts on sampling both inputs of a join
aremuchmore complex [6, 21, 22, 24]. _ey use detailed statistics or
indices on one or more of the input relations of the join (e.g., Strat-
egy Stream Sample [21]). Since the join inputs in big data queries are
intermediate data that is generated on the �y, obtaining such statis-
tics has substantial overhead. It requires an additional pass over data
and aòects parallelism since the sampler on one input has to wait for
the stat collector on the other. Worse, prior work requires samplers
to immediately precede the join. _at is, they cannot be pushed down
past other database operations sincemaintaining the required statis-
tics becomes evenmore complex. Our universe sampler requires no
data exchange between the join inputs at execution time (the hash
function and the portion of hash space to be picked are parameters
from the query plan). Finally, we are aware of no prior work that
reasons about samplers natively in the context of a query optimizer.

7. FINAL THOUGHTS
We oòer a new way to approximate complex ad-hoc queries. Our

insight is to leverage the many passes over data that such queries
perform to sample lazily on the ûrst pass. _e ability to sample
multiple join inputs precisely and reasoning about samplers natively
in a query optimizer allowed us to oòer a turn-key solution where
the user only needs to submit a query and the system would au-
tomatically determine if and how best that query can be approxi-
mated. Initial results are very promising. In regimes where previ-
ously known techniques deliver no gains, Quickr oòers substantial
speedup. _e speed-up o�en translates to lower cost (e.g., when us-
ing public clouds), faster results or the ability to support manymore
queries without increasing cluster size by up to 2×. We also extend
the state-of-art in analyzing the error of sampled expressions.
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APPENDIX
A. FURTHER DETAILS OF ASALQA

In §4.2.6, we see how Quickr translates each logical sampler
to a physical implementation. Next, the QO costs sampled sub-
expressions. To enable this, we make the following changes: (1) As-
sign the correct cardinality for the samplers based on their sample
probability p except for the distinct sampler which will leak more
rows due to the requirement to pass at least δ rows for each distinct
value of strat cols. (2) Assign the correct processing costs to the sam-
plers per input and output row. _e uniform sampler is the most
eõcient since it only tosses a coin per row. _e universe sampler
comes next since it uses a cryptographic hash. _e distinct sampler
has the highest processing cost because it invokes the heavy-hitter
sketch andusesmorememory for both the sketch and the reservoirs.
Sampler→{Sampler, Exchange}: Reducing the degree-of-
parallelism (DOP) is necessary to get more gains from samplers.
To see why, say a sampler reduces the number of rows in a rela-
tion by 10×, the work does become 1

10 ’th now but start-up costs and
other overheads remain the same. Reducing theDOP amortizes this
overhead and triggers further improvements later in the plan. For
example, hash joins can be replaced with cross joins, re-partitions
can be avoided and parallel plans can be replaced with a serial plan
when data in �ight is small [8]. Quickr introduces exchange oper-
ators to reduce the DOP. However, since an exchange shuøes data it
increases the cost (in terms of latency and resources to shuøe) and
hence ASALQA places an exchange only when the cost is smaller than
the gains in subsequent portions of the execution plan.
Global requirements and Caveats: To ensure that both sides of a
join are implemented with the same universe sampler parameters (if

http://bit.ly/1uyuBE8
http://tez.apache.org/
http://bit.ly/1HlFRH0
http://bit.ly/1J6uDap
http://bit.ly/1KRK5gl
http://bit.ly/1b4RKoZ


Metric Sampler Type
Uniform Distinct Universe

Distribution across samplers 54% 26% 20%
Queries that use at least 1 sam-
pler of a certain type

49% 24% 9%

Table 7: Frequency of use of various samplers.

True value Estimate rewritten by Quickr
SUM(X) COUNT(*) SUM(w⋅ X) SUM(w)
AVG(X) SUM(w ⋅ X)/SUM(w)
SUM(IF(F(X)? Y: Z)) SUM(IF(F(X)? w⋅ Y: w⋅ Z))‡
COUNT(DISTINCT X) COUNT(DISTINCT X)⋅(univ(X)? w:1)
‡ ∶ COUNTIF and COUNT(X) are rewritten analogous to SUMIF.

Table 8: How Quickr rewrites aggregation operations.

Figure 9: For the example in Figure 1, the query plan computed by
ASALQA. _e dashed arrows show how our error analysis unrolls ASALQA
and the dominance rules (§B.3) used at each step. _e result is an expres-
sion with a single sampler just below the aggregation.

Metric Percentile values
50th 90th

Total/First pass time 1.2 1.4 1.3 2.8 4.3 2
# of Passes over Data 3.1 1.1 1.0 4.0 1.2 1.3
# Aggregation Ops. 3 1 2 8 3 5
# Joins 4 2 2 9 5 7
depth of operators 20 18 16 26 24 27
size of QCS+QVS 5 5 5 12 9 4
size of QCS 3 3 4 9 8 3

Table 9: Analyzing query attributes from diòerent workloads: TPC-
DS [4], TPC-H [5] and Other (BigBench [3] ∪ BigData [1] ∪ . . .). Queries
are written in Hive and executed with Tez as the AM in Yarn.

at all), on the bottom-up pass of the query optimization, ASALQA re-
jects plans that do not satisfy such global requirements. It then falls
back to the next best choice. Further, Quickr does not allow nested
samplers. Because the performance gains from sampling a relation
that has been sampled already is not worth the added potential for
error. _is too is implemented during the bottom-up pass. Finally,
we admit that a few aspects of Quickr are as yet unimplemented.
Quickr does not push samplers past spools and full outer joins.
Heavy hitter information is not used as well as it should be. And,
though we obtain column value variance at the inputs, we do not yet
derive the value variance past other operations. In our evaluation,
we point out the eòect of these caveats. _e ûrst two lower Quickr’s
coverage and performance gains– fewer queries beneût and by less
than they should– and the last adds to error when computing SUM
over skewed columns. Our results are already quite good, however.

B. ANALYZING SAMPLED PLANS
We formally analyze our samplers and push-down rules. We

focus here on queries that perform SUM-like aggregations over
groups; other aggregates are covered in §C. Let group G denote all
the tuples that have the same value in group-by columns of the out-
put. _e answer contains for each group G the aggregate w(G) =

∑t∈G w(t), where w(t) is the value associated with tuple t. Given a
query E, Quickr’s ASALQA algorithm outputs a query plan E with
samplers at various locations. Our goal is to compare the answer
of E (unsampled query) with that of E on two aspects: the expected

squared error of group values (i.e., variance of w(G)) and the group
coverage probability (i.e., likelihood of not missing a group).
For all three samplers used by Quickr, we ûrst oòer closed-form

expressions upon immediate use. _at is, when the samplers are
placed near at the root of the query plan just before group-by and ag-
gregation (see §B.1). To compute similar expressions when samplers
are at arbitrary locations in the query tree, intuitively, we address the
following issue: when pushing a sampler past another database op-
erator, how do the error expressions change? (See §B.2.) We intro-
duce the concept of sampling dominance between query expressions
which ensures that the error is no worse. Using this, we establish in
§B.3 a collection of sampler transformation rules. which guide our
exploration of alternatives as well as our accuracy analysis.

B.1 Estimating Sampler Accuracy
Quickr uses the Horvitz-_ompson (HT) estimator [24] to relate

the answers on sampled query plans to their true values and to esti-
mate the expected squared error. For each group G in the answer of
an unsampled query E, the sampled plan E outputs a subset of the
rows in G, E(G) ⊆ G. We estimate w(G) as:

ŵE(G) = ∑
t∈E(G)

w(t)
Pr [t ∈ E(G)]

. (1)

It is easy to see that the above (HT) estimator is unbiased, i.e.,
E [ŵE(G)] = w(G). Hence, its variance is expected squared error:

Var [ŵE(G)] = ∑
i , j∈G

(
Pr [i , j ∈ E(G)]

Pr [i ∈ E(G)]Pr [ j ∈ E(G)]
− 1)⋅w(i)w( j).

From the sample E(G), Var [ŵE(G)] can be estimated as:

V̂ar [ŵE(G)] = (2)

∑
i , j∈E(G)

(
Pr [i , j ∈ E(G)]

Pr [i ∈ E(G)]Pr [ j ∈ E(G)]
− 1) ⋅ w(i)w( j)

Pr [i , j ∈ E(G)]
.

Recall our three samplers: uniform sampler ΓU
p (uniform sampling

probability p), distinct sampler ΓD
p ,C ,δ (each value of column set C has

support at least δ in the sample), and universe sampler ΓV
p ,C (sam-

pling values of column set C with probability p). It could help to
think of the universe sampler as a predicate that passes only the rows
whose values of C belong to the chosen subspace.

We apply the HT estimator to compute variance for all the
samplers. To do so, we compute the terms Pr [i ∈ E(G)] and
Pr [i , j ∈ E(G)] for each sampler as follows:

Proposition 3 (To Compute HT Estimator and the Variance).
● For ΓU

p , for any tuples i , j ∈ G, we have Pr [i ∈ E(G)] = p, and,
if i ≠ j, Pr [i , j ∈ E(G)] = p2.

● For ΓD
p ,C ,δ , let g(i) be the set of tuples with the same values on C

as tuple i in the input relation. We have

Pr [i ∈ E(G)] = {
1 ∣g(i)∣ ≤ δ
max(δ/∣g(i)∣, p) ∣g(i)∣ > δ

;

if i ≠ j, Pr [i , j ∈ E(G)] = Pr [i ∈ E(G)]Pr [ j ∈ E(G)] .
● For ΓV

p ,C , let g(i) be the set of tuples with the same values on C
as i in the input relation. We have Pr [i ∈ E(G)] = p, and

Pr [i , j ∈ E(G)] = {
p g(i) = g( j)
p2 g(i) ≠ g( j)

, if i ≠ j.

A few imprecisions are worth mentioning. _e universe sampler
does choose its subspace at random. So while the formula above is



technically accurate, tuples that belong to the subspace will be in the
sample and those outside the subspace would not. Our implemen-
tation of the distinct sampler, because of its requirements to ûnish
in one pass and with a small memory footprint, introduces some
correlation between tuples and a slight bias as noted already.

Complexity of Computing Estimate and Error.
Proposition 2 posits that the computation requires only one eòec-
tive pass over the sample. _e proof follows from Proposition 3
and Equations(1)-(2). Since each tuple i in the sample E(G) also
contains the probability Pr [i ∈ E(G)] in its weight column, ŵE(G)

can be computed in one scan using Equation(1). A naive way to
compute V̂ar [ŵE(G)] using (2) requires a self-join and can take
quadratic time since it checks all pairs of tuples in the sample. We
do better by observing that only the pairs having Pr [i , j ∈ E(G)] ≠

Pr [i ∈ E(G)]Pr [ j ∈ E(G)]need to be considered. For the uniform
and distinct samplers, the summation in (2) goes to zero for i ≠ j
and so their variance can be computed in one pass. For the universe
sampler, there are two types of pairs: i) (i , j) with g(i) = g( j), and
ii) (i , j) with g(i) ≠ g( j). Per Proposition 3, the summation term
is zero for pairs of the latter type. For the former type, we maintain
per-group values in parallel and use a shuøe to put them back into
(2). Since the number of groups can be no larger than the number of
tuples, the computation is linear. Further the shuøe o�en has much
less work to do (per group) than the ûrst pass (per sampled tuple)
leading to our one-eòective-pass claim.
Group Coverage Probability.
A groupG will miss from the answer if all the tuples inG are missed
in the sample E(G). We show how Quickr makes this unlikely.

Proposition 4 (Group Coverage Probability). When samplers im-
mediately precede the aggregate, the probability that a group G ap-
pears in the answer is:

● For ΓU
p , Pr [G] = 1 − (1 − p)∣G∣.

● For ΓD
p ,C ,δ ,

Pr [G] {
= 1, if C contains the group-by dimensions
≥ 1 − (1 − p)∣G∣ , otherwise

.

● For ΓV
p ,C , Pr [G] = 1 − (1 − p)∣G(C)∣, where G(C) is the set of

distinct values of tuples in G on dimensions C.

Using Proposition 4, we see that both uniform and distinct sam-
plers rarely miss groups. Recall that Quickr checks before in-
troducing samplers that there is enough support, i.e., p ∗ ∣G∣ ≥

k (§4.2.6). For example, when k = 30 and p = 0.1, the likelihood
of missing G is below 10−14 . For the universe sampler, note that
∣G(C)∣ ∈ [1, ∣G∣]. However, recall that Quickr uses the universe
sampler only when the stratiûcation requirements can be met. _at
is, the overlap between universe columns and those deûning the
group is small. Hence, ∣G(C)∣ ∼ ∣G∣ and groups are missed rarely.
Sampling from Join.
_e advantage of universe sampler ΓV

p ,C lies in sampling from join.
To draw a p fraction of tuples from the join of two relations, the
universe sampler only needs a p fraction from input relations. But,
both the uniform and distinct samplers need to draw a√p fraction
of tuples. Not only is the √p sample more expensive to compute
but both the variance and the group coverage probability become
worse (when p is replaced with √p in Propositions 3 and 4).

B.2 Sampling Dominance
We now formalize our notion of sampling dominance between

query expressions. Suppose E is an expression on database relations

possibly with samplers. _e core Λ(E) denotes the expression gen-
erated by removing all samplers from E . We say an expression E1 is
dominated by another expression E2 if and only if the expressions
have the same core and E2 has no higher variance and no higher
probability of missing groups than E1 . More formally, we have:
Deûnition 1 (Sampling Dominance). Given two expressions E1 and
E2 with Λ(E1) = Λ(E2) and havingR1 andR2 as the respective out-
put relations, we say E2 dominates E1, or E1

∗

⇒ E2, iò

(v-dominance E1
v
⇒ E2) ∀i , j ∶ (3)

Pr [i ∈ R1 , j ∈ R1]

Pr [i ∈ R1]Pr [ j ∈ R1]
≥

Pr [i ∈ R2 , j ∈ R2]

Pr [i ∈ R2]Pr [ j ∈ R2]
, and

(c-dominance E1
c
⇒ E2) ∀t ∶ Pr [t ∈ R1] ≤ Pr [t ∈ R2] . (4)

Note that sampler dominance subsumes the SOA-equivalence def-
inition from [35]. Two expressions E1 , E2 are SOA equivalent iò
E1

∗

⇒ E2 and E2
∗

⇒ E1 . Intuitively c-dominance says that all tu-
ples are strictlymore likely to appear in the output and v-dominance
helps relate the variance. By using (3) and (4) in (1) and the above
propositions, it is not hard to see that if E2 dominates E1 , ŵE2(G) is
better than ŵE1(G) in terms of variance and group coverage proba-
bility. We formally state this result below.
Proposition 5 (Dominance and Accuracy). For any group G in the
output of a SUM-like aggregate query, consider two execution plans E1
and E2 with independent (uniform, distinct, universe) samplers, with
the same core plan Λ(E1) = Λ(E2). If E1

v
⇒ E2, we have

Var [ŵE1(G)] ≥ Var [ŵE2(G)] .

And if E1
c
⇒ E2 and the values on the join dimension and the grouping

dimension (if any) are sampled independently, we have

Pr [G is missed in E1] ≥ Pr [G is missed in E2] .

Hence, E1
∗

⇒ E2 , implies that the latter has a strictly better answer.
Dominance Transitivity across Database Operators.
Eventually, we want the dominance relationship to hold at the root
of a plan so that we can bound the variance and the group-missing
probability in the answer according to Proposition 5. We show that
dominance is transitive across database operators, from the root to
leaves in the plan. We focus on three operators: πC (projection on a
subset of columns C), σC (selection on C), and &C (join on C).

_is leads us to Proposition 1 which states the conditions under
which the dominance relationship is transitive. _e proof follows.

Proof. Note that projection holds by deûnition. We focus on se-
lect (ii) and join (iii) below.

Let Ri be the set of rows output by Ei , and R be the set of rows
output by Λ(Ei). For a row i ∈ σC(R), we have

Pr [i ∈ σC(Ri)] = {
Pr [i ∈ Ri] i ∈ σC(R)
0 i ∉ σC(R)

. (5)

ii) can be proved by putting (5) into (3) and (4).
To prove E1 &C F1

∗

⇒ E2 &C F2 , it suõces to prove E1 × F1
∗

⇒

E2 × F2 (i.e., cross product) since &C is equivalent to composing ×
with selection σC andwe can apply ii) for the latter. SupposeSi is the
set of rows output by Fi , and S is the set of rows output by Λ(Fi).
For E1 ×F1

∗

⇒ E2 ×F2 to hold, we need to show that
Pr [(r, s) ∈ R1 × S1 , (r′ , s′) ∈ R1 × S1]

Pr [(r, s) ∈ R1 × S1]Pr [(r′ , s′) ∈ R1 × S1]

≥
Pr [(r, s) ∈ R2 × S2 , (r′ , s′) ∈ R2 × S2]

Pr [(r, s) ∈ R2 × S2]Pr [(r′ , s′) ∈ R2 × S2]
. (6)



To this end, we consider the following two cases.
Case a) Ei and Fi share a universe sampler ΓV

p ,D . Let rD be the
value of a row r on dimensions D. In this case, the event “(r, s) ∈

Ri×Si” is equivalent to that r and s have the same values on dimen-
sions D, i.e., rD = sD , and the value rD is picked by the universe
sampler. Because, when rD ≠ sD or r′

D
≠ s′
D
, we have both sides of

(6) equal to 0; when rD = sD and r′
D
= s′
D
, we have

Pr [(r, s) ∈ Ri × Si , (r′ , s′) ∈ Ri × Si] = Pr [r ∈ Ri , r′ ∈ Ri]

and Pr [(r, s) ∈ Ri × Si] = Pr [r ∈ Ri] . (7)

From (7) and E1
∗

⇒ E2 , F1
∗

⇒F2 we have E1 ×F1
∗

⇒ E2 ×F2 .
Case b) Ei and Fi do not share a universe sampler. In this case,

we know that samplers on the two sides of the join operator (or ×)
are independent, i.e., rows fromRi and the ones from Si are drawn
independently. So based on this independence condition, we have

Pr [(r, s) ∈ Ri × Si , (r′ , s′) ∈ Ri × Si]

=Pr [r ∈ Ri , r′ ∈ Ri] ⋅ Pr [s ∈ Si , s′ ∈ Si] , and (8)

Pr [(r, s) ∈ Ri × Si] = Pr [r ∈ Ri] ⋅ Pr [s ∈ Si] . (9)

Putting (8) and (9) into (6), we can see that E1
∗

⇒ E2 and F1
∗

⇒ F2

suõce for E1 ×F1
∗

⇒ E2 ×F2 .

B.3 Sampler Switching and Pushing Rules
For the same sampling rate p, we have the following ranking

among samplers in the order of accuracy from lower to higher.

Proposition 6 (Switching Rule). For any relation R, we have
ΓV
p ,C(R)

∗

⇒ ΓU
p (R)

∗

⇒ ΓD
p ,C ,δ(R).

_e proof follows from observing the terms for variance and
group coverage of each sampler. Since the distinct sampler has lower
performance gain, it is used only when needed for accuracy.

We now list a few useful transformation rules based on our dom-
inance deûnition and transitivity proofs.

Proposition 7 (Pushing past Projection). For any relation R and a
projection πC where C is a subset of columns of R, we have
Rule-U1: ΓU

p (πC(R))
∗

⇒ πC(ΓU
p (R));

Rule-D1: ΓD
p ,D ,δ(πC(R))

∗

⇒ πC(ΓD
p ,D ,δ(R)), ifD ⊆ C;

Rule-V1: ΓV
p ,D(πC(R))

∗

⇒ πC(ΓV
p ,D(R)), ifD ⊆ C .

_e rules show that it is strictly better to push samplers below
projects. Indeed, the sampler column setD is always a subset of the
columns returned by the project C.

Pushing samplers past selections is complicated by one aspect. If
the columns used in the select are not explicitly stratiûed, the group
sizes vary before and a�er pushing. Hence, we introduce the weak
dominance relationship, denoted as ∼

⇒. With weak dominance, v-
and c- dominance only hold for large groups in a probabilistic way.

Proposition 8 (Pushing past Selection). For any relation R and a
selection σC with selection formula on a subset C of columns of R,
Rule-U2: ΓU

p (σC(R))
∗

⇒ σC(ΓU
p (R));

Rule-D2a: ΓD
p ,D ,δ(σC(R))

∗

⇒ σC(ΓD
p ,D∪C ,δ(R));

Rule-D2b: ΓD
p ,D ,δ(σC(R))

∼

⇒ σC(ΓD
p ,D ,δ/σss(R));

Rule-D2c: ΓD
p ,D ,δ(σC(R))

∼

⇒ σC(ΓD
p ,D ,δ(R));

Rule-V2: ΓV
p ,D(σC(R))

∼

⇒ σC(ΓV
p ,D(R)), if ∣D ∩ C∣ ≪ ∣D ∪ C∣.

_e selectivity of σC on R, denoted as σss, is ∣σC(R)∣/∣R∣.

Finally, we list the rules for pushing samplers past joins.

Proposition 9 (Pushing past Join). For relations R1 and R2, with
columns Ci respectively and an equi-join &C on columns C, we have
Rule-U3: ΓU

p (R1 &C R2)
c
⇒ ΓU

p1(R1) &C ΓU
p2(R2), if p = p1 ⋅ p2 ;

Rule-D3a: ΓD
p ,D ,δ(R1 &C R2)

∗

⇒ ΓD
p ,D∪C ,δ(R1) &C R2 ;

Rule-D3b: ΓD
p ,D ,δ(R1 &C R2)

∼

⇒ ΓD
p ,D ,δ(R1) &C R2 , if D ⊆ C1 ;

Rule-V3a: ΓV
p ,D(R1 &C R2)

∗

⇒ ΓV
p ,D(R1) &C ΓV

p ,D(R2), if C =

D or D ⊆ C1 , C2 ;
Rule-V3b: ΓV

p ,D(R1 &C R2)
∼

⇒ ΓV
p ,D(R1) &C R2 , if D ⊆ C1 .

Note that Rule-U3 includes the cases when uniform sampler is
pushed to only one side, i.e., set p1 = 1 or p2 = 1. Observe that for
rules D3a, D3b and V3b, wherein the sampler is only pushed to R1 ,
there are analogous rules that push the sampler only to R2 .

C. GENERAL AGGREGATIONS
So far, we have considered groups with SUM-like aggregates.

Here, we extend our analysis to other aggregations such as COUNT
and to the case where a result has multiple aggregations such as
SELECT x, SUM(y), COUNT(z). Quickr allows users to annotate
user-deûned aggregates with functional expressions which it uses
to obtain various accuracy measures; details are le� for future work.
Other aggregations: Analyzing COUNT directly follows from SUM

by setting w(t) = 1 ∀t. AVG translates to SUM
COUNT

but its variance
is harder to analyze due to the division [24]. In implementa-
tion, Quickr substitutes AVG by SUM/COUNT and divides the cor-
responding estimators. Quickr also supports DISTINCT, which
translates to a group with no aggregations and COUNT(DISTINCT).
Error for the former is akin to missing groups analysis. For
COUNT(DISTINCT), the value estimator varies with the sampler– by
default it is the value computed over samples. Only when universe
sampling is on the same columns, the value over samples is weighted
up by the probability. Further, distinct sampler oòers unbiased error
and zero variance. With uniform sampler, the variance is small but
there is some negative bias since though unlikely due to Quickr’s
requirement for suõcient support, some rare valuesmay not appear.
We defer analyzing the error for other aggregations to future work.
Multiple aggregation ops: Quickr naturally extends to the case
when multiple aggregations are computed over the same sampled
input relation. _e key observation is that the estimators of true
values for each aggregation only require the value in the sampled
tuple, the corresponding weight which describes the probability
with which the tuple was passed and in rare cases the type of the
sample (e.g., for COUNT DISTINCT). _e ûrst two are available as
columns in the sampled relation. _e third we implement as a cor-
rective rewriting a�er ASALQA chooses the samplers.

D. ADDITIONAL RELATED WORK
We mention a few relevant threads of substantial research: syn-

opses and sketches [15, 20, 42], view matching [28] and data
streams [13, 31, 34]. Sketches and synopses on input datasets can of-
fermore speed-up than samples. However, they are generally harder
to reason with for ad-hoc queries and hence Quickr prefers sam-
pling. However, we do use the heavy-hitter sketch to reduce mem-
ory needs of our distinct sampler. Sampling in data streams has
some similar constraints to what we pose on our samplers such
as bounded memory footprint and streaming execution. How-
ever, while Quickr samples partitioned data in parallel for ad-hoc
queries, streammanagement systems focus on (known) queries that
eòectively execute forever. Reusing sampled sub-expressions gen-
erated by previous queries can improve Quickr and hence view
matching is an area of future work for us.
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