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Abstract
Enterprises want their in-cloud services to leverage the per-
formance and security benefits that middleboxes offer in tra-
ditional deployments. Such virtualized deployments create
new opportunities (e.g., flexible scaling) as well as new chal-
lenges (e.g., dynamics, multiplexing) for middlebox man-
agement tasks such as service composition and provisioning.
Unfortunately, enterprises lack systematic tools to efficiently
compose and provision in-the-cloud middleboxes and thus
fall short of achieving the benefits that cloud-based deploy-
ments can offer. To this end, we present the design and im-
plementation of Stratos, an orchestration layer for virtual
middleboxes. Stratos provides efficient and correct composi-
tion in the presence of dynamic scaling via software-defined
networking mechanisms. It ensures efficient and scalable
provisioning by combining middlebox-specific traffic engi-
neering, placement, and horizontal scaling strategies. We
demonstrate the effectiveness of Stratos using an experimen-
tal prototype testbed and large-scale simulations.

1. Introduction
Surveys show that enterprises rely heavily on in-network
middleboxes (MBoxes) such as load balancers, intrusion
prevention systems, and WAN optimizers to ensure appli-
cation security and to improve performance [45, 46]. As en-
terprises move their applications and services to the cloud,
they would naturally like to realize these MBox-provided
performance and security benefits in the cloud as well. Re-
cent industry trends further confirm this transition with an
increasing number of virtual network appliances [2, 11, 13],
and in-the-cloud network services [1, 4, 6, 7, 9].

At a high level, virtualized MBox deployments create
new challenges as well as new opportunities for MBox
composition (also referred to as service chaining [42])
and provisioning to meet desired performance objectives.
The proprietary and non-deterministic nature of processing
make these tasks hard even in traditional network deploy-
ments [30, 41]—thedynamic, virtualized, andmultiplexed
nature of cloud deployments compound the problem, lead-
ing to brittleness, inefficiency and poor scalability (§2).

MBox Composition Enterprises often need to chain multi-
ple MBoxes together; e.g., traffic from a gateway must pass
through a firewall, caching proxy, and intrusion prevention

system (IPS) before reaching an application server. Today,
such policy is implemented by physically wiring the topol-
ogy. Virtualization offers a new opportunity to break this
coupling between the policy and topology. At the same time,
the chaining logic must now be implementedvia forwarding
mechanisms, which raises unique challenges in the face of
dynamic changes to MBox chains. In particular, the state-
ful nature of MBoxes coupled with the complexity of packet
manglingoperations they perform (e.g., NATs rewrite head-
ers and proxies terminate sessions) makes it difficult to en-
sure forwarding correctness and efficiency.

MBox Provisioning Traditional MBox deployments are
typically overprovisioned or require drops in functionality in
the presence of load; e.g., an IDS may disable DPI capabili-
ties under load [12]. Virtualized cloud deployments offer the
ability to flexibly scale MBox deployments as needs change.
At the same time, the heterogeneity in MBox processing,
characteristics of MBox workloads, and multiplexed nature
of cloud deployments makes it challenging to address re-
source bottlenecks in an efficient and scalable manner. Fur-
thermore, poor network placement or routing may introduce
network-level effects that may adversely impact provision-
ing decisions by causing needless scaling.

While many MBox vendors are already making virtual
MBoxes readily available to enable enterprises to deploy in-
cloud MBoxes, there’s a dearth of systematic tools to address
the above composition and provisioning challenges. To this
end, we design and implement, Stratos,a new network-
aware orchestration layer for virtual MBoxes in clouds.

Stratos provides a novel, flexible software-defined net-
working (SDN) solution to the composition problem that
leverages the virtualized nature of the deployment. In con-
trast to prior SDN solutions that require expensive and po-
tentially inaccurate in-controller correlation or changes to
MBoxes [26, 41], Stratos engineers a simpler solution by
marginally over-provisioning an MBox chain to explicitly
avoid potential steering ambiguity in the presence of man-
gling MBoxes (§4).

To ensure efficient and scalable provisioning, Stratos em-
ploys a scalable multi-level approach that carefully synthe-
sizes ideas from traffic engineering [28], network-aware vir-
tual machine placement [20, 49], and elastic compute scal-
ing [10] (§5). As a first and light-weight step, it uses a flow
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distribution mechanism to address transient compute or net-
work bottlenecks, without having to know the nature of the
bottleneck itself. When this is insufficient, Stratos locates
persistent compute or network bottlenecks, and applies pro-
gressively heavier techniques via network-aware horizontal
scaling and migration. The techniques ensure that the net-
work footprint of MBox chains is low, and compute resource
utilization is maximized meeting our efficiency goals.

We have implemented a fully featured Stratos prototype
(≈12K lines of Java code), including a forwarding controller
written as a FloodLight module [5] and a stand-alone re-
source controller. We evaluate this prototype in a 36 ma-
chine testbed using a variety of MBox chains and synthetic
request workloads. We also simulate Stratos to understand
its properties at larger scale. We find that our composition
mechanisms impose a 1ms overhead on the completion time
per flow for each mangling MBox included in a chain. By
construction, Stratos always maintains correct composition,
whereas state-of-the-art techniques have≈19% error rate in
the presence of mangling and dynamic provisioning [41].
Our provisioning mechanisms satisfy application objectives
using up to one-third fewer resources and invoking up to
one-third fewer heavy-weight operations for the scenarios
we consider. Last, we show that Stratos’s controllers can
perform upwards of 50 provisioning operations per second;
given that provisioning occurs on the order of tens of sec-
onds, this is sufficient to support hundreds of tenants.

2. Requirements and Related Work
Our goal is to build a MBox orchestration system that en-
ables cloud tenants to (1)composerich, custom chains atop
their MBox deployments. A chain is a sequence of MBoxes
that process a given traffic subset: e.g., an enterprise may re-
quire traffic from a remote office to a company web server
to pass through a firewall and caching proxy (chain 1), and
traffic from home users to pass through a firewall, proxy, and
intrusion prevention system (chain 2) (Figure 1); and (2) au-
tomaticallyprovisiona suitable amount of resources for each
chain to optimally serve tenants’ workloads.

We argue that such a system must simultaneously meet
the following requirements:
• Correctness: The physical realization of chains must

correctly apply high level policies to traffic sub-streams.
• Application-specific objectives and efficiency: The sys-

tem should enable tenants to use the minimal amount
of resources necessary to realize application-specific
service-level objectives (SLOs).

• Scalability: The system should scale to hundreds-to-
thousands of MBox chains from many tenants.

Meeting these requirements is challenging on four key
fronts. (i) the closed natureof third-party MBoxes that
makes it difficult to instrument them; (ii ) diversity, both in
the nature of actions applied to packet streams and in the
amount of resources, such as CPU, memory, and network

Figure 1: Example MBox deployment with two chains
(shown in red/blue).

Figure 2: Interaction between the requirements for com-
position and provisioning and the challenges imposed by
middleboxes and cloud deployments

bandwidth, consumed during packet processing; (iii ) the
shared natureof cloud environments; and (iv) the dynam-
icity arising from tenant workload variations (and potential
MBox migration).

Next, we explain how these factors make existing compo-
sition and provisioning solutions ineffective for meetingour
requirements. In the interest of brevity, we highlight only
salient aspects and summarize the interactions in Figure 2.

2.1 Composition

We first need a mechanism to enforce the appropriate steer-
ing of traffic subsets across a chain of MBoxes.

A steering mechanism must meet two high-level correct-
ness requirements. First, at the granularity of an individ-
ual MBox, we note that many MBoxes arestatefuland re-
quire both directions of TCP sessions for correct function-
ality. Thus, when a workload shift forces anMBox deploy-
ment changedue to re-provisioning (§2.2), forwarding rules
must be updated to preserveflow affinity. Second, at the
granularity of an individual MBox chain, we need to en-
sure that a packet goes through the desired processing se-
quence. However, many MBoxesmanglepackets by dynam-
ically modifying packet fields; e.g., NATs rewrite headers
and caching proxies terminate connections. Thus, the traffic
steering rules must account for modifications to determine
the next hop MBox for mangled packets.

Existing approaches to steering fail to address at least one
of these requirements. Some techniques (e.g., PLayer [30]
and SIMPLE [41]) are designed forstatic MBox deploy-
ments. As such, they lack a nuanced approach for adjusting
the fraction of traffic assigned to specific MBox instances.
They simply re-divide the flow space among the available
instances and replace existing steering rules; this may cause
some currently active flows to switch instances and violate
the affinity requirement (Table 1). Other techniques (e.g.,
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Handles Maintains No MBox Minimal
Framework Mangling Affinity Changes Rules
PLayer [30] X X X ?
SIMPLE [41] ≈ X X X

Consistent [43, 48] X X X X

Per-Flow Rules X X X X
FlowTags [26] X ? X X

SC Header [21, 42] X ? X ?

Table 1: Comparison of existing approaches for middle-
box composition.

consistent updates [43, 48] or using per-flow rules [22]1)
may be able to ensure that active flows maintain affinity;
however, they do not account for mangling.

Tackling the mangling problem is specially difficult be-
cause MBoxes are closed and proprietary. Existing solutions
fall into two categories: (i) use flow correlations to reverse-
engineer the mangling relationships (e.g., SIMPLE [41]),
or (ii ) require MBoxes to add persistent network handles
to packets (e.g., FlowTags [26] and service chaining head-
ers [21, 42]). The former is both expensive (requiring multi-
ple packets to be sent to the controller) and error-prone (e.g.,
SIMPLE has 19% error), while the latter needs MBox mod-
ifications (Table 1).

Efficiency implies minimal memory footprint in the
switches and low latency overhead in the controller that
manages switch forwarding rules. Existing solutions to this
issue [48, 50] apply exclusively to simple routing and load
balancing scenarios, and cannot accommodate mangling
MBoxes and ensure affinity. As such, we need new schemes.

As we will see in§4, Stratos leverages the virtualized
deployment to engineer simpler more efficient solutions for
both stateful forwarding and to handle mangling MBoxes.

2.2 Provisioning

Two related issues must be addressed to ensure that tenant
applications meet their service-level objectives: (i) detec-
tion to determine where a resource bottleneck (or excess)
exists in an MBox chain, and (ii ) provisioning decisions on
how/where resources need to be added (or removed) for the
chain. At a high-level, existing approaches for detection can
lead to inefficiency in the MBox context, and existing pro-
visioning mechanisms can cause both inefficiency and scal-
ability issues.

2.2.1 Resource bottleneck detection

A common approach (e.g., RightScale [10]) is to monitor
CPU and memory consumption on individual virtual ma-
chines (VMs) and launch additional VMs when some crit-
ical threshold is crossed. Unfortunately, the shared nature
of clouds, and the unique and diverse resource profiles of
MBoxes together cause this approach to both miss bottle-

1 When a new flow starts, a central controller installs flow-specific rules
along the entire path for an MBox chain.

necks (impacting applications) and incorrectly infer bottle-
necks (impacting efficiency). For instance, running multi-
ple virtual MBoxes on the same host machine can lead to
a memory cache bottleneck [23]. Unfortunately, existing ap-
proaches will not lead to an appropriate scale-out response
in such cases, impacting application performance. Similarly,
MBoxes that use polling to retrieve packets from the NIC
will appear to consume 100% of the CPU regardless of
the current traffic volume [24]. In such cases, existing ap-
proaches will cause spurious scale-out and reduce efficiency.

Furthermore, these approaches do not consider network-
level effects, which can lead to further impact on appli-
cations and inefficiency. Indeed, MBox deployments in
clouds are often impacted by transient network problems
that may cause application flows traversing MBoxes to
get backlogged and/or timed-out [40]. Persistent network
hotspots [19] can have a similar effect. Thus, we may incor-
rectly conclude that the bottlenecks lie at MBoxes experi-
encing backlogs leading to ineffective scale-out response.

2.2.2 Provisioning decisions

In a general setting, we can use one of three options to alle-
viate bottlenecks: (1)horizontal scalingto launch more in-
stances based on resource consumption estimates [25]; (2)
migrateinstances to less loaded physical machines [49]; and
(3) choose appropriateplacementto avoid congested links
(e.g., [18, 34, 36, 47]). Unfortunately, the dynamicity of
clouds coupled with the varying resource consumption of
some MBoxes renders existing techniques, and combina-
tions thereof, inefficient and/or not scalable.

For instance, MBox resource consumption is quite di-
verse and workload dependent [27]. Thus, scaling based on
specific resource indices may be inefficient and may not re-
ally improve end-to-end application performance. Similarly,
the bandwidth consumption of MBoxes can vary with the
traffic mix (e.g., the volume of traffic emitted by a WAN op-
timizer depends on how much the traffic is compressed [15])
and data center workloads can vary on the order of tens of
seconds to minutes [19], so placement decisions may only be
optimal for a short period of time. Frequently invoking mi-
gration or scaling to accommodate these changes will result
in over-allocation of compute resources. It will also intro-
duce significant management overhead (for VM provision-
ing, virtual network set up, etc.) that can limit system scala-
bility.

Thus, we need a systematic framework for resource pro-
visioning that ensures MBox chain efficiency and system
scalability in the face of MBox and cloud dynamics.

3. Stratos Overview
Figure 3 shows an overview of the Stratos system with the
interfaces between the different components that we discuss
briefly below. Stratos is a network-aware orchestration layer
for virtual MBoxes in clouds. We synthesize novel ideas with
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Figure 3: Stratos overview

existing mechanisms to meet the provisioning and composi-
tion requirements discussed in§2.

Tenant Input. Tenants provide a logical specification of
their MBox chains, including the applications/users associ-
ated with each chain and the VM images to use for each
MBox.

Forwarding Controller. The data plane, composed of vir-
tual switches and tunnels, is programmed to forward traffic
through MBox instances according to chain specifications
and computed flow distributions. Stratos pre-processes the
input chains to handle packet mangling. It carefully manages
individual flows uses a combination of tag-based and per-
flow rules to ensure correctness and efficiency (§4). The for-
warding controller also receives new provisioning strategies
output by the resource controller (see below), and updates
the data plane configuration to ensure correct composition
during and after these dynamic provisioning decisions.

Resource Controller. Stratos uses end-to-end application
performance as a common, resource-agnostic indicator of an
MBox chain facing performance bottlenecks. It monitors ap-
plication performance and receives resource statistics from
the individual MBox and application VMs as well as net-
work utilization statistics. Note that cloud providers already
provide extensive APIs to export this monitoring informa-
tion to tenants [1]. (As such, the design of such a monitoring
infrastructure is outside the scope of this paper.)

It uses a combination of three mechanisms—flow distri-
bution, horizontal scaling, and instance migration—applied
at progressively coarser time-scales to identify and address
bottlenecks in an efficient and scalable manner (§5). Intu-
itively, flow distribution rebalances the load at fine time-
scales to MBox replicas to address transient compute and
network bottlenecks. This is lightweight and can be applied
often and in parallel across many chains, aiding control plane
scalability. Horizontal scaling eliminates persistent compute
bottlenecks. Congestion-aware instance migration and hor-
izontal scaling address persistent network bottlenecks. In
both cases, scaled/migrated instances are provisioned in a
network-aware fashion, and flow distribution is applied to
improve efficiency.

In the next two sections, we present the detailed design of
the Stratos forwarding and resource controllers.

4. Stratos Forwarding Plane
Our key insight to overcome the challenges discussed in§2.1
is that we can leverage unique features of the virtualized
environment to engineer efficient composition approaches
that handle mangling middleboxes and maintain affinity.

4.1 Addressing MBox Mangling

As discussed in§2, mangling/connection terminating (M/CT)
MBoxes interfere with the ability to correctly forward pack-
ets to the appropriate downstream MBoxes. First, the iden-
tifiers required for selecting the appropriate sequence of
downstream MBoxes may be obscured by an M/CT MBox’s
packet modifications. Second, flow forwarding rules set up
in switches downstream from an M/CT MBox will cease to
be valid when packet headers change.

Stratos addresses the former issue by identifying poten-
tial sources of forwarding ambiguity in the set of logical
chainsC provided by a tenant and applying a correctness-
preserving transformation to generate a logically equivalent
C ′ that is used for all subsequent forwarding decisions. The
latter is addressed by logically dividing a chainc into sub-
chains and installing per-flow forwarding rules for a particu-
lar subchain when the first packet of a flow is emitted by the
first MBox in that subchain.

Prior to applying either mechanism, Stratos must identify
the set of MBoxes in theC that are potential M/CT MBoxes
using either: (1) operators’ domain expertise2, or (2) moni-
toring the ingress/egress traffic of each MBox and checking
if the output packets fall in an expected region of the flow
header space [31].

Correctness-Preserving Transformation.Given the set of
chainsC , we can create a logical graphG = 〈V,E〉, where
eachv ∈ V is an MBox in a tenant specified logical deploy-
ment and an edgem → m ′ exists if there is a chainc with
the corresponding sequence. For each M/CT MBoxm, we
exhaustively enumerate all downstream paths in the graphG

starting fromm; let this bedownstreamm . Then, we create
|downstreamm | clonesof m with the clonemi solely re-
sponsible for theith path indownstreamm . For example, in
Figure 4(a), there are two downstream paths from the proxy;
thus we create two copies of the proxy. The intuition here is
that the appropriate pathi for a packet emitted bym may be
ambiguous due to packet changes made bym; by explicitly
allocating isolated instancesmi for each pathi we avoid any
confusion due to mangling. We rewrite each affected chain
c ∈ C with the corresponding clonemi instead ofm, and
add the rewritten chain toC ′.

We acknowledge that this transformation potentially in-
creases the number of MBox instances that need to be used:
e.g., even if one proxy instance was sufficient to handle the
traffic load for both chains, we would still need two clones—

2 While prior work [30] required a detailed model of M/CT MBoxes’ man-
gling behavior, Stratos only requires operators to identify which MBoxes
are M/CT MBoxes.
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m1

m2

downstream2

downstream1

(a) Transformation result; identified subchains

(b) Paths and assigned tags for the blue chain

(c) Proactive and reactive tag-based rules

(d) Additional tag-based rules following provisioning

Figure 4: Steps for forwarding plane setup

that are then provisioned independently—to ensure correct
composition. We believe that the simplicity and correctness
guarantees made without modifying MBoxes, in contrast to
prior solutions [26, 41], makes this tradeoff worthwhile.

Setting up forwarding rules. GivenC ′ and knowledge of
M/CT MBoxes, we logically split each chain into one or
more subchains, with M/CT MBoxes delineating the sub-
chains: e.g., the black lines in Figure 4(a) indicate subchains.
Conceptually, a subchain represents a logical segment where
the packet traverses the network without modifications to
packet header fields that uniquely identify a flow.

Stratos needs to reactively set up flow rules when a packet
for a new flow is emitted by the first MBox (or client/server)
in a subchain. The Stratos forwarding controller chooses
one of the possibleinstance pathsthat implement this spe-
cific subchain—i.e., an instance path contains a particular
instance of each MBox in the subchain. (The specific path
will be chosen using weighted round-robin with the weights
determined by Stratos’ flow distribution module described
in §5.1.) The Stratos forwarding controller installsexact
match rulesin the virtual switches to which the MBox (and
client/server) instances in the path are connected; the virtual
switches themselves are connected by tunnels. Stratos also

installs flow rules for the reverse flow in order to maintain
the flow affinity.

4.2 Maintaining Efficiency and Scalability

The above approach guarantees correctness in the face of
mangling. However, we can further optimize rule installa-
tion both in terms of the number of rules required and the im-
posed load on the controller. The main insight here is that we
can proactively install forwarding rules in virtual switches to
forward trafficwithin each subchainusing rules that forward
on the basis oftagsincluded in packet headers. Tags are set
at the first instance of each subchain by reactive rules, as
described above.

Using tag-based rules (versus per-flow rules) for forward-
ing within subchains reduces the total number of rules in-
stalled in virtual switches, leading to faster matching andfor-
warding of packets [37]. Additionally, proactively installing
some rules reduces the number of rules the Stratos forward-
ing controller must install when new flows arrive, enabling
fast forwarding and controller scalability. We quantitatively
show these performance benefits in§7.2.

Initially there is only one instance of each MBox in a sub-
chain, and thus only one possible instance path. We assign
two tags to this path, one for the forward direction and one
for the reverse: e.g., Figure 4(b) shows the paths and tags
for the two subchains associated with the blue chain. A tag
should uniquely identify both a subchain and a direction, so
each tenant has a single tagspace.

Stratos installs wildcard rules that match both the forward
(or reverse) tag and the virtual switch port of the prior MBox
instance and output packets to the virtual switch port for the
next MBox instance on the forward (or reverse) path: e.g.,
Figure 4(c) shows the rules for the blue chain. Per-flow rules
are reactively installed as described in§4.1, but only at the
first element in each sub-chain on the forward and reverse
paths.

In our prototype, we place tags in the type-of-service field
in the IP header, limiting us to 64 unique paths across all
of a tenant’s subchains; recent IETF drafts suggest adding a
special header in which such a tag could be stored [21, 42].3

4.3 Affinity in Face of Dynamics

As additional MBox instances are provisioned, there become
more possible paths for a subchain. Stratos allocates new
forward and reverse tags just for the new paths, and installs
the corresponding rules. The tags and forwarding rules for
existing paths remain unchanged to ensure all packets of
a flow traverse the same set of MBox instances in both
directions; this is important for ensuring stateful MBoxes
operate correctly. Figure 4(d) shows the additional rules that
would be installed if the proxy was horizontally scaled; the
rules shown in Figure 4(c) remain untouched.

3 We assume the MBoxes do not modify these tag header bits, otherwise
they would be treated as mangling MBoxes.
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5. Provisioning
Stratos’ network-aware control plane closely manages chain
performance to satisfy application SLOs. In order to bal-
ance the two requirements ofefficiency(i.e., use minimal re-
sources for each MBox chain while meeting application ob-
jectives) and scalability (i.e., time/overhead of reconfigura-
tion), we use the following multi-stage approach (Figure 5):

Figure 5: Process for detecting and addressing resource
bottlenecks
1. To determine the existence of a bottleneck, Stratos lever-

ages end-to-end application-specific metrics, as sug-
gested by some prior approaches [17, 49]. Ultimately,
these are the true indicators of whether the chain is in
need of extra resources; they can detect chain perfor-
mance issues arising from fine-grained workload varia-
tions.

2. Given that the most common situation is for MBox chains
to face transient compute or network bottlenecks, we de-
sign a light-weight flow distribution scheme - that can be
invoked often without impacting scalability - to address
such bottlenecks. The scheme does not need to know the
nature of the bottleneck to address it – whether com-
pute or network, or even whether transient or persistent.
It does not add new compute resources focusing instead
on using them more efficiently (§5.1).
When this scheme fails, we identify if this persistent is a
compute or network bottleneck before taking appropriate
measures.

3. We synthesize a suite of techniques to identify persistent
compute bottlenecks. Each bottlenecked MBox is hori-
zontally scaled by the minimal number of extra instances
necessary (§5.2.1).

4. We use light-weight passive monitoring to identify per-
sistent network bottlenecks. Since addressing such bot-
tlenecks can be tricky, we use a multi-pronged approach
to ensure scalability. We first attempt to migrate instances
in an inverse congestion-sorted order. If this does not
help, we horizontally scale instances affected most by
network congestion (§5.2.2).

5. When #2 and #3 fail, we fall back to horizontally scaling
all MBoxes by a fixed amount.
In #3, #4, and #5 above, we directly monitor application
level metrics to identify if our decisions were effective,
and we employ network-aware placement and re-invoke
flow distribution so that the scaled/migrated instances are
used in the most efficient fashion.
Thus, our careful design systematically and accurately,

addresses performance bottlenecks, and ensures efficient and
scalable operation.

5.1 Flow Distribution

Flow distribution adjusts the fraction of flows assigned to
a specific set of MBox instances so as to: (i) balance load
on MBox instances to accommodate variations in the rates,
sizes, and types of flows traversing the chain [25] and (ii )
control transient network congestion from changing load on
network links [19].

We cast this problem as a linear program (LP). Letc de-
note a specific chain and|c| denote the number of MBoxes
in that chain. The MBox (e.g., caching proxy, IPS) at posi-
tion j in the chainc is denoted byc[j ]. Mc[j ] is the set of
instances of MBoxc[j ]; we usei ∈ Mc[j ] to specify that
i is an instance of this MBox.Vc denotes the total volume
(bytes) of traffic that must traverse chainc; we discuss in
§5.4 how we determine the value ofVc.

Our goal is to split the traffic across the instances of each
MBox such that: (a) the processing responsibilities are dis-
tributed roughly equally across them, and (b) the aggregate
network footprint is minimized. In contrast with prior works
that focus on equalizing MBox load [28, 41, 44], our for-
mulation has the benefit of eliminating (or reducing) com-
puteand network bottlenecks, and reducing the likelihood
of them occurring in the future.

We need to determine how the traffic is routed between
different MBox instances. Letf (c, i , i

′

) denote the volume
of traffic in chainc being routed from MBox instancei to
MBox instancei

′

. As a special case,f (c, i) denotes traffic
steered to the first MBox in a chain from a source element.4

Cost(i → i ′) denotes the network-level cost between
two instances. In the simplest case, this is a binary variable—
1 if the two MBox instances are on machines in different
racks and 0 otherwise. We capture current available band-
width: Let r denote a specific rack, andi ∈ r indicate that
i is located in that rack. The current bandwidth available be-
tween two racksr and r ′ is denoted byb(r , r ′). §5.4 de-
scribes how we measure available bandwidth in a scalable
fashion.

LP Formulation. Figure 6 formalizes the flow distribution
problem that Stratos solves. Eq (1) captures the network-
wide footprint of routing traffic between instances of thej th

MBox in a chain to thej + 1th MBox in that chain. For
completeness, we consider all possible combinations of rout-
ing traffic from one instance to another. In practice, the opti-
mization will prefer combinations that have low footprints.

Eq (2) models a byte conservation principle. For each
chain and for each MBox in the chain, the volume of traffic
entering the MBox has to be equal to the volume exiting it.
However, since MBoxes may change the aggregate volume
(e.g., a WAN optimizer may compress traffic), we consider a
generalized notion of conservation that takes into accounta
gain/drop factorγ(c, j ): i.e., the ratio of ingress-to-egress

4 For clarity, we focus only on the forward direction of the chain.
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Minimize

∑

c

|c|−1∑

j=1

∑

i,i
′
s.t

i∈Mc[j ];i
′
∈Mc[j+1]

Cost(i, i
′
) × f (c, i, i

′
) (1)

subject to

∀i, ∀c, s.t. i ∈ Mc[j ] & j > 1 :
∑

i
′
:i
′
∈Mc[j−1]

f (c, i
′
, i) =

∑

i
′
:i
′
∈Mc[j+1]

f (c, i, i
′
) × γ(c, j) (2)

∀c :
∑

i:i∈Mc[1]

f (c, i) = Vc (3)

∀r, r′ :
∑

c

∑

i,i′s.t.

i∈r;i′∈r′

f(c, i, i′) ≤ b(r, r′) (4)

∀i :
∑

c:i∈Mc[j ];j 6=1

∑

i
′
:i
′
∈Mc[j−1]

f (c, i
′
, i)

+
∑

c:i∈Mc[1]

f (c, i) ≈
∑

c:i∈c;i∈Mc [j ]

Vc

|Mc [j ]|
× Πj

l=1γ(c, l) (5)

Figure 6: LP formulation for the flow distribution prob-
lem. The ≈ term in the last equation simply represents
that we have some leeway in allowing the load to be
within 10–20% of the mean.

traffic at the positionj for the chainc. Stratos computes
these ratios based on virtual switch port statistics (§5.4).

We also need to ensure that each chain’s aggregate traffic
will be processed; we also model this coverage constraint in
Eq (3). We also need to ensure that total chain traffic across
any two racks does not exceed the available bandwidth be-
tween the two racks; we model this bandwidth constraint in
Eq (4). Finally, we use a general notion of load balancing
where we can allow for some leeway; say within 10-20% of
the targeted average load (Eq (5)).

5.2 Identifying and Addressing Bottlenecks

There are cases when flow distribution will be insufficient to
improve end-to-end performance: e.g., when all instances of
an MBox, or all paths to those instances, are heavily loaded,
or when network/MBox loads are such than a redistribution
is simply infeasible. In such cases, Stratos is forced to iden-
tify the type of bottleneck (compute or network) that exists
and address it. To overcome the challenges outlined in§2,
we adopt decouple the actions for dealing with the two types
of bottlenecks: we focus on addressing compute bottlenecks
first, followed by network bottlenecks.

5.2.1 Compute Bottlenecks

Stratos leverages a combination of host-level and per-packet
metrics to determine whether a compute bottleneck exists,
and for which MBoxes. Host-level metrics are used by ex-
isting scaling frameworks because these can be easily gath-
ered from VMs [10, 49]. In addition to the host-level met-
rics, we rely on the packet processing time as it can cap-

tureanycompute-related bottleneck, including CPU, mem-
ory space/bandwidth, cache contention [23], and disk or net-
work I/O.5

Stratos declares an MBox instance to be bottlenecked if
either: (i) average per-packet processing time increased by
at least a factorδ over a time window, or (ii ) CPU or mem-
ory utilization exceeds a thresholdα and has increased by
at least a factorβ over a sliding time window.6 We select
these thresholds heuristically based on observing middlebox
behaviors in controlled settings and varying the offered load.
§5.4 discusses a scalable approach for gathering these met-
rics.

Horizontal Scaling. When compute bottlenecks are iden-
tified, Stratos horizontally scales each bottlenecked MBox
and adds more such instances of. (Our current implementa-
tion increases only one instance at a time to avoid overprovi-
sioning, but we could consider batched increments as well.)
Crucially, these instances must be launched on machines that
have, and likely will continue to have, high available band-
width to instances of other MBoxes in the chain. This helps
maximize the extent to which the new resources are utilized
and minimizes the need to perform migration (which can
hurt scalability) or further scaling (which can hurt efficiency)
in the future.

We use a network-aware placement heuristic similar to
CloudNaaS [20]: We try to place a new MBox instance in
the same rack as instances of the neighboring MBoxes (or
clients/servers) in the chain; if the racks are full, we try racks
that are two hops away, before considering any rack. For
each candidate rack, we calculate the flow distribution (§5.1)
as if the new instance was placed there, and we choose the
rack that results in the best objective value (i.e., minimizes
the volume of inter-rack traffic).

A bottleneck at one MBox in a chain may mask bottle-
necks at other MBoxes in the chain: e.g., a bottleneck at the
proxy in Figure 1 will limit the load on the IPS; when the
proxy bottleneck is resolved, load on the IPS will increase
and it may become bottlenecked. Thus, we look for com-
pute bottlenecks multiple times and perform scaling until no
MBoxes in a chain exhibit the conditions discussed above.

5.2.2 Network Bottlenecks

Network bottlenecks may arise at any of the physical links
that form the underlay for the virtual links (VLs) connecting
neighboring MBox instances (i.e., the link fromi ∈ Mc[j ]

to i ′ ∈ Mc[j±1]). Using active probing to measure VLs’
available bandwidth is not scalable: probing must occur
(semi-)serially to avoid measurement interference caused
by multiple VLs sharing the same underlying physical
link(s). Hence, Stratos detects bottlenecked VLs by pas-

5 This may not apply to MBoxes that do not follow a “one packet in, one
packet out” convention (e.g., a WAN optimizer), and in thesecases we can
only use traditional CPU and memory utilization metrics.
6 The increase factor avoids constant scaling of MBoxes whichuse polling.
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sively monitoring the individual physical links that underly
VLs. This requires gathering metrics from all physical net-
work switches and identifying the physical links (e.g., using
traceroute7) that form each VL; these tasks can easily be par-
allelized, as described in§5.4. A VL is bottlenecked when
the minimum available bandwidth across the physical links
that form the VL is less than a thresholdδ.

Instance Migration. When a network bottleneck is iden-
tified, Stratos migrates affected MBox instances to less
congested network locations. Since migrations are costly
operations—involving, in our prototype, the instantiation
of a new MBox instance with a more optimal placement
and the termination of the instance affected by the network
bottleneck(s)—performing the minimum number of migra-
tions is crucial to maintaining system scalability. For this
reason, Stratos first migrates MBox instances with the high-
est number of incident congested VLs and measures the mi-
gration’s impact on end-to-end application performance be-
fore performing additional migrations. An MBox instance’s
new location is selected using the placement heuristic de-
scribed in§5.2.1, with the added requirement that the avail-
able bandwidth between the MBox instance being migrated
(i ∈ Mc[j ]) and the instances of neighboring MBoxes in
the chain (i ′ ∈ Mc[j±1]) must be greater than the current
bandwidth consumed byi times some factorρ.

In some cases, the network bottleneck(s) impacting an
MBox instance may arise predominantly due to heavy traffic
involving the instance itself (e.g., bandwidth needs may out-
strip compute needs [27]). In these cases, and cases where all
portions of the cloud network are congested, the network-
aware placement routine will not yield a feasible solution.
We address this situation by horizontally scaling the instance
using the technique described in§5.2.1. This causes chain
traffic to be spread among more MBox instances, reducing
the network bandwidth needed by an individual instance and
eliminating any network bottlenecks. It also causes under-
utilization of compute resources on the affected instance(s),
which reduces efficiency.

5.3 De-provisioning

To maintain efficiency, Stratos also eliminates excess com-
pute resources. Excesses are identified by looking for MBox
instances whose average per-packet processing time has
dropped by at least a factorδ′ over a time window. To
avoid sudden violations of application SLOs, supposedly
unneeded MBox instances are removed from service (but
not yet destroyed) one at a time; flow distribution (§5.1) is
invoked to rebalance load among the remaining instances. If
the SLOs ofall applications associated with the MBox chain
are satisfied, then the instance is marked for permanent re-
moval; otherwise, the instance is immediately restored to
service (using the old flow distribution values). An instance

7 Multipath routing (e.g., ECMP) based on layer 4 headers may interfere
with our ability to do so; we leave this as an issue for future work.

is fully destroyed only after all flows traversing it have fin-
ished (or timed-out).

5.4 Data Collection

The Stratos resource controller relies on many metrics when
making provisioning decisions, but all of the metrics can
be gathered in a scalable fashion by leveraging distributed
monitoring agents and a centralized object store (e.g., [35]).
Most applications already log end-to-end performance mea-
sures for other purposes; this can simply also be reported to
Stratos. The volume of traffic traversing an MBox chain and
the gain/drop factor and average per-packet processing time
of MBoxes in the chain can be captured by querying the port
statistics from each virtual switch. An agent running on each
machine can perform such queries, as well as report VMs’
CPU and memory utilization. Lastly, a collection of sensors
can poll port statistics from physical switches using SNMP.

6. Implementation
We have implemented a full featured Stratos prototype con-
sisting of several components (Figure 7). Stratos’ modular
design makes it easy to scale individual components as the
number of tenants and the size of the cloud increases.

Forwarding Controller and Data Plane. The Stratos data
plane is a configurable overlay network realized through
packet encapsulation and SDN-enabled software switches.
Each machine runs an Open vSwitch [8] bridge to which
the virtual NICs for the VMs running on the machine are
connected. Thenetwork managerestablishes a full mesh of
VXLAN tunnels for each tenant, connecting the vSwitches
to which a tenant’s VMs are connected.

The forwarding controller is implemented as a module
(≈2400 lines of Java code) running atop the Floodlight
OpenFlow Controller [5]. Floodlight handles communica-
tion with the vSwitches, and the forwarding module inter-
faces with the resource controller and network manager us-
ing Java Remote Method Invocation (RMI).

Resource Controller.The chain manager(≈6000 lines of
Java) forms the core of the resource controller. It monitors
the performance of tenant applications (through queries to
themetric datastore) and executes the provisioning process
(Figure 5) when SLO thresholds are crossed. Flow distri-
bution is computed using CPLEX [3] and applied by the
forwarding controller; scaling and migration decisions are
applied by theplacement manager(≈ 3300 lines of Java).
When placement decisions are made, thecompute manager
communicates with the Xen [14] hypervisor to launch VMs.

The metrics required for provisioning decisions reside
in the metric datastore, currently a simple in-memory data
store written in Java. AVM monitorruns on each machine
and reports the CPU, memory, and network metrics for run-
ning VMs based on output from Xen. Thenetwork monitor
queries port statistics from physical switches using SNMP
and reports current utilization for each physical link.
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Figure 7: Stratos prototype implementation

Figure 8: Initial instance placement and background
traffic patterns for provisioning evaluation

7. Evaluation
We use a combination of testbed (§7.1) and simulation ex-
periments to evaluate Stratos’ ability to satisfy our key re-
quirements (§2):

• First, we examine the ability of the Stratos forwarding
plane to correctly and efficiently realize complex MBox
chains in the presence of dynamics. (§7.2.)

• Second, we measure how adequately and efficiently
Stratos’ provisioning mechanisms satisfy application ob-
jectives, highlighting how key aspects of our provisioning
process contribute to the observed outcomes. (§7.3.)

• Last, we establish the scalability of Stratos’ forwarding
and resource controllers. (§7.4.)

7.1 Testbed Setup

The majority of our evaluation is conducted in a small cloud
testbed. The testbed consists of 36 machines (quad-core
2.4GHz, 2.67GHz, or 2.8GHz CPU and 8GB RAM) de-
ployed uniformly across 12 racks. Each machine, running
Xen and Open vSwitch, has 3 VM slots. The racks are con-
nected in a simple tree topology with 12 top-of-rack (ToR)
switches, 3 aggregation switches, and 1 core switch.

We run a variety of MBoxes, including an IPS (Suri-
cata [13]), redundancy eliminator (SmartRE [16]), and two
synthetic Click-based [32] MBoxes:passthroughforwards
packets unmodified, andmanglerrewrites packets’ source
IP (in the forward direction) and destination IP (in the re-
verse). We also run Apache web server and a custom work-
load generator. The workload generator runs 8 client threads
that draw tokens from a bucket filled at a specified rate. For
each token, a client thread issues an HTTP POST of a fixed
size (0.2KB, 10KB, 50KB, or 100KB), and receives a reply
of the same size, with a request timeout of 1 second. Client
threads block if no tokens are available; the number of out-
standing tokens (maximum 100) indicates unmet demand.

We generate background traffic between pairs of ma-
chines using iperf to send UDP packets at a fixed rate.

 0  60  120  180  240  300  360  420  480  540

Time (Sec)

Distribute
Scale
Migrate

Transient Link Load
Persistent Link Load
Demand Increase

Figure 9: Timeline of load changes and provisioning ac-
tions

7.2 Composition Efficiency and Correctness

We first examine the ability of Stratos’ forwarding controller
to efficiently realize complex MBox chains in the presence
of dynamics.

Efficiency. First, we measure the inflation in per-flow re-
quest completion time per-flow caused by the need to in-
stall per-flow rules. We construct a chain consisting only of
a workload generator and web server (placed on different
physical machines), and forward traffic between them with
and without the Stratos’ forwarding plane. We generate 100
requests/sec for 10 minutes and vary the request sizes for
each run between 0.2KB and 100KB. Comparing the aver-
age request completion time with and without Stratos’ for-
warding plane, we observe that the average inflation is no
more than 1ms per flow. (In general, for a chain withN man-
gling MBoxes, the increase in latency will beN ms higher
in the worst case.)

We also benchmarked the performance of our tag-based
forwarding and found that the overhead is minimal; this
is consistent with prior reports on the performance of the
OpenvSwitch dataplane [39].

Correctness.To evaluate affinity, we pick a chain with a
workload generator, passthrough MBox, mangler MBox,
and web server. Every two minutes, we add an instance of
one of the MBoxes and compute a new flow distribution. We
cycle through the MBoxes in round robin order. We repeat
the process for two rounds. Throughout an experiment, we
generate a constant workload of 50KB requests at a rate of
50 requests/sec.

We run tcpdump on each MBox during an experiment
and afterwards feed each trace to Bro [38] which produces
a log of all connections. For each flow (which Bro identifies
with a hash based on key packet header fields), we compare
the flags, byte counts, and packet counts across the connec-
tion logs for the workload generator, web server, and each
MBox. Since the mangling MBox modifies packet headers,
and hence results in different connection hashes, we only
compare the connection logs from each half of the chain.
If affinity were to be broken, discrepancies can arise in the
logs; e.g., connections whose packets are split between mul-
tiple MBox instances will appear in the logs of multiple
MBoxes and the log entries will indicate that not all key
packets (e.g., SYN and FIN) were seen by a given instance.
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We conducted the above experiment on two chains—
workload generator, passthrough, mangler, server and work-
load generator, passthrough, passthrough, server—and found
no such discrepancies in the logs, thus affirming that Stratos’
steering ensures affinity.

We note that our approach of unsharing MBoxes to han-
dle mangling is correct by construction; nevertheless, we
also validated the correctness using a similar logging ap-
proach. We do not discuss this in the interest of brevity.

7.3 Provisioning Adequacy and Efficiency

We use a single chain consisting of a workload generator,
an RE MBox, an IPS MBox, and a web server. Two initial
instances of each MBox are placed at fixed locations, as
shown in Figure 8, to simulate placements that might occur
in a cloud with existing tenants. The workload we use (the
Demandline in Figure 10(a)) starts with 90 requests/sec and
increases by 10 requests/sec at varying frequencies to reach
an ending rate of 175 requests/sec after 9 minutes; the size
of each request is 100KB.

Throughout the experiment, we apply three different
background traffic patterns, shown in Figure 8: (i) at ex-
periment start, 600Mbps of traffic is exchanged between a
pair of racks under each of two aggregation switches; (ii ) 75
seconds into the experiment, the background traffic switches
to 740Mbps between a rack under each of the two aggrega-
tion switches, and this lasts for 1 minute; (iii ) roughly 6.75
minutes into the experiment, the background traffic switches
to 820Mbps between a pair of racks under one of the aggre-
gation switches.

An illustrative run. The provisioning actions taken by
Stratos, along with workload and link load changes are
shown in Figure 9. Stratos leverages each of its provision-
ing mechanisms at appropriate points in the scenario: flow
distribution occurs when transient network load shifts (and
before all other provisioning action), scaling occurs follow-
ing a significant increase in demand, and migration occurs
when a persistent network load is introduced. We validate
each of the actions below in our discussion of how well
Stratos addresses application objectives and efficiency.

To understand how different pieces contribute to Stratos’
performance, we compare Stratos against three alternative
designs that progressively exclude specific Stratos compo-
nents: (1)HeavyWgt, a system that does not proactively use
flow distribution to alleviate bottlenecks but only invokesit
after scaling or migration events; (2)LocalView, which is
similar to HeavyWgt, except that it only monitors the CPU,
memory, and network link consumption at VMs to identify
bottlenecks, and initiates scaling (it does not consider net-
work effects beyond access links of VMs, and hence it does
not try migration); and (3)UniformFlow, which is similar
to LocalView, except flows are uniformly distributed across
MBox instances (as opposed to invoking Stratos’ flow distri-
bution) following horizontal scaling.

Application Objectives.While the design of Stratos is quite
general and can accommodate many different types of appli-
cation SLOs (i.e., in our evaluation, we consider two such
metrics – throughput and request backlog – shown in Fig-
ure 10(a) to illustrate Stratos’ ability to satisfy application
objectives. Specifically, we configure Stratos to initiate the
provisioning process (Figure 5). whenever average request
latency exceeds 45ms and/or the backlog exceeds 10 re-
quests for at least a 10 second time period.

Figure 10(a) shows that Stratos’ provisioning actions re-
store application performance to acceptable levels relatively
quickly: within 10 secs during the transient link load change
(that occurs at 75 secs) and the demand spike (that occurs at
155 secs), and within≈ 50 secs when the persistent link load
change occurs (at 405 secs). The response takes longer in
the latter case because migration is more heavyweight than
flow distribution or scaling; it takes 45 secs to perform a VM
launch (35 secs) and termination (10 secs), plus there is a 20
sec delay between flow distribution and detection of network
bottlenecks while Stratos waits to see if flow distribution was
sufficient to address the bottleneck. Overall, with Stratos, ap-
plication requests served closely tracks application demand.

Excluding Stratos components leads to inefficiency and/or
inability to meet application objectives. Consider the time
period with transient network load: HeavyWgt and Lo-
calView have clear gaps between the demand and served
load, and a full backlog. (As noted in§7.1, the maximum
backlog is 100 requests.) LocalView has no appropriate
mechanism to address this bottleneck at all, and application
performance suffers. Without flow distribution as a first-
order provisioning option, HeavyWgt attempts horizontal
scaling. While this succeeds eventually, request have back-
logged in the interim, HeavyWgt ends up using more in-
stances than absolutely necessary, and management over-
head (to launch a VM) is higher.

There is no bottleneck with UniformFlow at this point
in the scenario because the starting flow distribution sends
only half of the application workload over the link with the
transient load, and there is sufficient capacity remaining on
the link to handle this fraction of the load. For comparison,
Stratos’ initial flow distribution sends the entire workload
across the affected link, but Stratos invokes flow distribution
again when the transient network load occurs to reduce this
load to half, resulting in the same situation as UniformFlow.

Now consider the time period with persistent congestion.
Recall that such bottlenecks occur infrequently [19]. Stratos’
backlog is better than all alternatives except HeavyWgt. In
contrast with Stratos, which first attempts flow distribution
for scalability reasons, HeavyWgt addresses the network
bottleneck directly by invoking migration. View across the
timeline, Stratos is better in all respects than HeavyWgt: it
invokes strictly fewer heavy weight operations (such as VM
launch), it results in lesser backlog on average, and it uses
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Figure 10: Provisioning decisions and application throughput and backlog under various systems

# MBox Avg IPS CPU Avg Link Utilization
System Instances Utilization ToR-Agg Agg-Core
Stratos 5 70% 128Mbps 144Mbps
HeavyWgt 6 65% 128Mbps 165Mbps
LocalView 7 53% 145Mbps 146Mbps
UniformFlow 6 64% 145Mbps 188Mbps

Table 2: Efficiency under various systems

resources at least as efficiently (a topic we will cover in more
detail shortly).

We found that Stratos’ performance is similarly competi-
tive with respect to application latency as well. We omit the
results for brevity.

Efficiency. We examine Stratos’ provisioning efficiency
from three perspectives: number of MBox instances re-
quired, compute resource utilization, and network link uti-
lization.

The number of MBox instances used to satisfy applica-
tion objectives has a direct impact on the costs (for cloud
infrastructure, MBox licensing, etc.) incurred by tenants.
Stratos is highly effective at optimizing this metric. The RE
MBox is never scaled or migrated in any of our experiments,
as the packet processing capacity of a single RE instance is
≈3x higher than a single IPS instance. In contrast, the IPS
MBox is horizontally scaled once with Stratos and 2-3 times
with the other system designs. The extra MBox instances
launched by the other systems (Table 2) hurt efficiency.

Directly related to instance count is the utilization of each
instance, where higher is better as it indicates that MBox re-
sources are being used effectively. Table 2 shows the aver-

age CPU utilization of the IPS instances. With Stratos the
average utilization (70%) is 15% less than our CPU utiliza-
tion threshold for compute bottlenecks (85%). In contrast,
other systems have 5% to 17% lower average CPU utiliza-
tion compared to Stratos.

Finally, network link utilization indicates the likelihood
of future network load changes inducing bottlenecks that af-
fect the MBox chains. Table 2 shows the average bandwidth
the chain utilizes on top-of-rack switch to aggregation switch
links (4 links are used) and aggregation switch to core switch
links (2 links are used). We observe that the both the ToR-
Agg and Agg-Core links have the lowest utilization with
Stratos, while UniformFlow (the most naive approach) is the
worst.

7.3.1 Provisioning at Scale

To examine Stratos’s ability to efficiently satisfy application
objectives across many MBox chains, we use a custom sim-
ulation framework. Our simulator places 200 chains within
a 500-rack data center. The data center is arranged in a tree
topology with 10 VM slots per rack and a capacity of 1Gbps
on each network link. All chains have the same elements and
initial instance counts: workload generators (3 instances),
MBox-A (2), MBox-B (1), MBox-C (2), and servers (4);
the capacity of each MBox instance is fixed at 60, 50, and
110Mbps, respectively, and the workload from each genera-
tor is 100Mbps. We perform flow distribution and horizontal
scaling (no migration) for each chain until its full demand is
satisfied or no further performance gain can be achieved.
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Figure 11: Simulation results to evaluate the efficiency of Stratos with a larger deployment

For ease of visualization and brevity, we only show the
results comparing Stratos vs. UniformFlow, noting that the
other solution strategies fall in between these two extremes.

Application Objectives.We first look at the fraction of each
chain’s demand that can be satisfied using Stratos and Uni-
formFlow (Figure 11(a)). With Stratos, at least 30% of the
demand for all chains is satisfied, with 85% of demand sat-
isfied for 40% of the chains. In contrast, with UniformFlow,
only 20% of chains have at least 30% of their demand satis-
fied.

Efficiency. Next, we examine how well the MBox instances
are utilized. Figure 11(b) shows, for each chain, the volume
of traffic served divided by the number of instances used.
With Stratos, 90% of instances process at least 5Mbps of
traffic and 50% process more than 12Mbps; with Uniform-
Flow, 90% of instances process less than 5Mbps of traffic
and 50% process less than 3Mbps.

Lastly, we examine the amount of inter-rack traffic gener-
ated by each chain (Figure 11(c)). Interestingly, with Stratos,
a higher percent of the network is utilized by chains. This
is because network-aware flow distribution allows chains to
scale up more and more closely match their demand, thereby
pushing more bytes out into the data center network. On the
whole, the network is more effectively utilized.

7.4 Scalability of Controllers

The primary tasks of Stratos’ resource controller are mon-
itoring application performance, computing flow distribu-
tions, and placing/migrating instances. We can leverage prior
techniques for scalable monitoring [29], so we focus on the
resource controller’s ability to perform the later two tasks for
large clouds and many tenants.

We run the resource controller on a machine with an 8-
core 2.27GHz CPU and 12GB of RAM. We assume a data
center topology consisting of 20K racks, with 20 machines
per rack, 625 aggregation switches, and 20 core switches.
Inter-rack bandwidth and chain traffic volume metrics are
randomly generated. We initially place 1000 tenants with
3 MBox chains each. Subsequently, we invoke either flow
distribution or placement for many tenants in parallel, mea-
suring the latency required to complete each task and the
maximum sustained number of operations per second.

API Ops/Sec Latency Coordinated?
Flow distribution 51 183ms X
Placement 67 506ms X

Table 3: Scalability of primary provisioning tasks

Table 3 summarizes our findings. We observe that com-
puting a flow distribution for a single tenant takes, on av-
erage, 701ms. Our prototype spends a large fraction of this
time performing file I/O; solving the LP using CPLEX takes
only 183ms. One controller instance can compute 51 flow
distributions/sec, but we can significantly increase this ca-
pacity by running additional instances of thechain man-
ager module (§6) and assigning subsets of tenants to each
instance, as no synchronization between tenants is required
when computing flow distributions. For placements, the sus-
tained rate is 67 placements/sec, each of which takes 506ms
on average. Placement must be coordinated among tenants,
making it inherently less scalable. However, the data center
can be divided into sections, with a separateplacement man-
agerresponsible for each section. Moreover, placement (and
migration) is invoked less frequently than flow distribution,
requiring a lower operational capacity.

Stratos’ forwarding controller can be scaled using exist-
ing approaches [33]; we exclude a scalability analysis for
brevity.

8. Conclusions
Enterprises today cannot correctly and efficiently deploy vir-
tual middleboxes to improve the performance and security
of cloud-based applications. The challenges arise as a com-
bination of two related factors: (1) the closed and proprietary
nature of middlebox behaviors (e.g., resource consumption
and packet modifications) and (2) the dynamic and shared
nature of the cloud deployments.

To address this challenge, we designed a network-aware
orchestration layer called Stratos. Stratos allows tenants to
realize arbitrarily complex logical topologies by abstract-
ing away the complexity of efficient MBox composition
and provisioning. First, to ensure correct forwarding, even
in the presence of middlebox mangling and dynamic provi-
sioning, Stratos’ forwarding controller combines lightweight
software-defined networking mechanisms that also exploits
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the virtualized nature of the deployment. Second, Stratos’
provisioning controller provides a scalable network-aware
strategy that synthesizes and extends techniques from traf-
fic engineering, elastic scaling, and VM migration.

Using testbed-based live workloads and large-scale simu-
lations, we showed that: (1) Stratos ensures efficient and cor-
rect composition; (2) Stratos’ control logic can easily scale
to several hundred tenants even on a single server; and (3)
Stratos generates scalable yet near-optimal provisioningde-
cisions and outperforms a range of strawman solutions illus-
trating that all the components in Stratos’ provisioning logic
contribute to the overall benefits.

References
[1] Amazon web services.http://aws.amazon.com.

[2] Aryaka WAN Optimization.http://www.aryaka.com.

[3] Cplex. http://ibm.com/software/commerce/
optimization/cplex-optimizer.

[4] Embrane: Powering virtual network services.http://
embrane.com.

[5] Floodlight openflow controller. http://floodlight.
openflowhub.org.

[6] Midokura – network virtualization for public and private
clouds.http://midokura.com.

[7] One convergence.http://oneconvergence.com.

[8] Open vSwitch.http://openvswitch.org.

[9] Plumgrid: Virtual network infrastructure. http://
plumgrid.com.

[10] Right Scale.http://rightscale.com.

[11] Silverpeak wan optimization. http://www.
computerworld.com/s/article/9217298/
Silver_Peak_unveils_multi_gigabit_WAN_
optimization_appliance.

[12] Snort.http://snort.org.

[13] Suricata.http://openinfosecfoundation.org.

[14] Xen. http://xen.org.

[15] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee.
Redundancy in Network Traffic: Findings and Implications.
In SIGMETRICS, 2009.

[16] A. Anand, V. Sekar, and A. Akella. SmartRE: An Architecture
for Coordinated Network-wide Redundancy Elimination. In
SIGCOMM, 2009.

[17] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. Maltz,
and M. Zhang. Towards Highly Reliable Enterprise Network
Services Via Inference of Multi-level Dependencies. InSIG-
COMM, 2007.

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-
wards Predictable Datacenter Networks. InSIGCOMM, 2011.

[19] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. InIMC, 2010.

[20] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS:
A Cloud Networking Platform for Enterprise Applications. In
SoCC, 2011.

[21] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, P. Yegani,
J. Guichard, and P. Quinn. Differentiated Network-
Located Function Chaining Framework. Internet-Draft
draft-boucadair-network-function-chaining-02, IETF Secre-
tariat, July 2013.

[22] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: taking control of the enterprise. In
SIGCOMM, 2007.

[23] M. Dobrescu, K. Argyarki, and S. Ratnasamy. Toward Pre-
dictable Performance in Software Packet-Processing Plat-
forms. InNSDI, 2012.

[24] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: exploiting parallelism to scale software routers.
In SOSP, 2009.

[25] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Predict-
ing the resource consumption of network intrusion detection
systems. InRAID, 2008.

[26] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul. Flow-
Tags: Enforcing Network-Wide Policies in the Presence of
Dynamic Middlebox Actions. InHotSDN, 2013.

[27] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-
Resource Scheduling for Packet Processing. InSIGCOMM,
2012.

[28] V. Heorhiadi, M. K. Reiter, and V. Sekar. New Opportuni-
ties for Load Balancing in Network-Wide Intrusion Detection
Systems. InCoNEXT, 2012.

[29] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and
Y. Zhang. Star: self-tuning aggregation for scalable monitor-
ing. In VLDB, 2007.

[30] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware
Switching Layer for Data Centers. InSIGCOMM, 2008.

[31] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: static checking for networks. InNSDI, 2012.

[32] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router.TOCS, 18:263–297,
2000.

[33] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: a distributed control platform for large-scale
production networks. InOSDI, 2010.

[34] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan. Choreo:
Network-Aware Task Placement for Cloud Applications. In
IMC, 2013.

[35] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system.SIGOPS Oper. Syst. Rev., 44(2):35–40,
Apr. 2010.

[36] X. Meng, V. Pappas, and L. Zhang. Improving the Scalability
of Data Center Networks with Traffic-aware Virtual Machine
Placement. InINFOCOM, 2010.

[37] M. Moshref, M. Yu, A. Sharma, and R. Govindan. vCRIB:
Virtualized Rule Management in the Cloud. InHotCloud,
2012.

[38] V. Paxson. Bro: a system for detecting network intruders in
real-time. InUSENIX Security Symposium (SSYM), 1998.

13

http://aws.amazon.com
http://www.aryaka.com
http://ibm.com/software/commerce/optimization/cplex-optimizer
http://ibm.com/software/commerce/optimization/cplex-optimizer
http://embrane.com
http://embrane.com
http://floodlight.openflowhub.org
http://floodlight.openflowhub.org
http://midokura.com
http://oneconvergence.com
http://openvswitch.org
http://plumgrid.com
http://plumgrid.com
http://rightscale.com
http://www.computerworld.com/s/article/9217298/Silver_Peak_unveils_multi_gigabit_WAN_optimization_appliance
http://www.computerworld.com/s/article/9217298/Silver_Peak_unveils_multi_gigabit_WAN_optimization_appliance
http://www.computerworld.com/s/article/9217298/Silver_Peak_unveils_multi_gigabit_WAN_optimization_appliance
http://www.computerworld.com/s/article/9217298/Silver_Peak_unveils_multi_gigabit_WAN_optimization_appliance
http://snort.org
http://openinfosecfoundation.org
http://xen.org


[39] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker. Extending networking into the virtualization layer.
In 8th ACM Workshop on Hot Topics in Networks, 2009.

[40] R. Potharaju and N. Jain. Demystifying the Dark Side of the
Middle: A Field Study of Middlebox Failures in Datacenters.
In IMC, 2013.

[41] Z. A. Qazi, C.-C. Tu, C.-C. Tu, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying Middlebox Policy Enforcement Using SDN.
In SIGCOMM, 2013.

[42] P. Quinn, R. Fernando, J. Guichard, S. Kumar, P. Agarwal,
R. Manur, A. Chauhan, M. Smith, N. Yadav, B. McConnell,
and C. Wright. Network Service Header. Internet-Draft draft-
quinn-nsh-01, IETF Secretariat, July 2013.

[43] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consis-
tent updates for software-defined networks: change you can
believe in! InHotNets, 2011.

[44] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter.
Network-Wide Deployment of Intrusion Detection and Pre-
vention Systems. InCoNEXT, 2010.

[45] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi.
The middlebox manifesto: enabling innovation in middlebox
deployment. InHotNets, 2011.

[46] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Rat-
nasamy, and V. Sekar. Making Middleboxes Someone Else’s
Problem: Network Processing as a Cloud Service. InSIG-
COMM, 2012.

[47] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H.Liu,
and S. Banerjee. Application-aware virtual machine migration
in data centers. InINFOCOM, 2011.

[48] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-Based
Server Load Balancing Gone Wild. InWorkshop on Hot Top-
ics in Management of Internet, Cloud, and Enterprise Net-
works and Services (HotICE), 2011.

[49] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-
box and gray-box strategies for virtual machine migration.In
NSDI, 2007.

[50] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with difane. InSIGCOMM, 2010.

14


	1 Introduction
	2 Requirements and Related Work
	2.1 Composition
	2.2 Provisioning
	2.2.1 Resource bottleneck detection
	2.2.2 Provisioning decisions


	3 Stratos Overview
	4 Stratos Forwarding Plane
	4.1 Addressing MBox Mangling
	4.2 Maintaining Efficiency and Scalability
	4.3 Affinity in Face of Dynamics

	5 Provisioning
	5.1 Flow Distribution
	5.2 Identifying and Addressing Bottlenecks
	5.2.1 Compute Bottlenecks
	5.2.2 Network Bottlenecks

	5.3 De-provisioning
	5.4 Data Collection

	6 Implementation
	7 Evaluation
	7.1 Testbed Setup
	7.2 Composition Efficiency and Correctness
	7.3 Provisioning Adequacy and Efficiency
	7.3.1 Provisioning at Scale

	7.4 Scalability of Controllers

	8 Conclusions

