
WHIZ: Data-Driven Analytics Execution

Robert Grandl†∗

Google
Arjun Singhvi†

University of Wisconsin–Madison
Raajay Viswanathan∗

Uber Technologies Inc.

Aditya Akella
University of Wisconsin–Madison

Abstract— Today’s data analytics frameworks are compute-
centric, with analytics execution almost entirely dependent on
the predetermined physical structure of the high-level com-
putation. Relegating intermediate data to a second class en-
tity in this manner hurts flexibility, performance, and effi-
ciency. We present WHIZ, a new analytics execution frame-
work that cleanly separates computation from intermediate
data. This enables runtime visibility into intermediate data
via programmable monitoring, and data-driven computation
where data properties drive when/what computation runs. Ex-
periments with a WHIZ prototype on a 50-node cluster using
batch, streaming, and graph analytics workloads show that
it improves analytics completion times 1.3-2× and cluster
efficiency 1.4× compared to state-of-the-art.

1 Introduction
Many important applications in diverse settings rely on analyz-
ing large datasets, including relational tables, event streams,
and graph-structured data. To analyze such data, several exe-
cution frameworks have been introduced [4, 7, 15, 24, 36, 42–
45, 50, 51]. These enable data parallel computation, where an
analytics job’s logic is run in parallel on data shards spread
across cluster machines.

Almost all these frameworks build on the MapReduce exe-
cution engine [21]. Like MapReduce, they leverage compute-
centric execution (§2). Their execution engines’ focus is on
splitting a job’s computational logic, and distributing it across
tasks to be run in parallel. All aspects of the subsequent exe-
cution of the job are rooted in the job’s computational logic,
and its task-level computation distribution. These include the
fact that compute logic running inside tasks is static and/or
predetermined; intermediate data is partitioned and routed to
where it is consumed based on the task-level structure; and de-
pendent tasks are launched when a fraction of upstream tasks
they depend on finish. These attributes of job execution are
not related to, or driven by, the properties of intermediate data,
i.e., how much and what data is generated. Thus, intermediate

†These authors contributed equally to this work.
*Work done while at University of Wisconsin–Madison.

data is a second-class citizen.
Compute-centricity was a natural early choice: knowing job

structure beforehand simplifies carving containers to execute
tasks; compute-centricity provided clean mechanisms to re-
cover from failures – only tasks on a failed machine needed to
be re-executed; and job scheduling became simple because of
having to deal with static inputs, i.e., fixed tasks/dependency
structures.

Unfortunately, today, compute-centricity severely hinders
analytics performance and cluster efficiency due to four fun-
damental issues (§2, §9): (1) Intermediate data-unawareness
means there is no way to quickly adapt job execution based
on changing run-time data properties (e.g., volume, key dis-
tribution, etc.) to ensure performance- and resource-optimal
data processing. (2) Likewise, static parallelism and interme-
diate data partitioning inherent to compute-centricity prevent
adaptation to intermediate data skew and resource flux which
are difficult to predict ahead of time, yet, common to mod-
ern datasets [30] and multi-tenancy. (3) Execution schedules
being tied to compute structure can lead to resource waste
while tasks wait for input data to become available - an effect
that is exacerbated under multi-tenancy. (4) The skew due to
compute-based organization of intermediate data can result
in storage hotspots and poor cross-job I/O isolation; it also
curtails data locality.

We observe that the above limitations arise from (1) tight
coupling between intermediate data and compute, and (2) in-
termediate data agnosticity in today’s execution frameworks.
To improve analytics performance, efficiency, isolation, and
flexibility, we develop a new execution framework, WHIZ, that
eschews compute-centricity, cleanly separates computation
from all intermediate data, and treats both intermediate data
and compute as equal first-class entities during analytics ap-
plications’ execution. WHIZ applies equally to batch analytics,
streaming and graph processing.

In WHIZ, intermediate data is written to/read from a logi-
cally separate distributed key-value datastore. The store offers
programmable visibility – applications can provide custom
routines for monitoring runtime data properties. The store

notifies an execution layer when an application’s runtime
data satisfies predicates based on data properties. Decoupling,
monitoring, and predicates enable data-driven incremental
computation: based on data properties, WHIZ decides on the
fly what logic to launch in order to further process the data
generated, how many parallel tasks to launch, when/where to
launch them, and what resources to allocate to tasks.

We make the following contributions in designing WHIZ:
(1) We present a scalable approach for programmable interme-
diate data monitoring which forms the basis for data-driven
actions. (2) We show how to organize intermediate data from
multiple jobs in the datastore so as to achieve data locality,
fault tolerance, and cross-job isolation. Since obtaining an
optimal data organization is intractable, we develop novel
heuristics that carefully trade-off among these objectives. (3)
We build an execution layer that incrementally decides all
aspects of the job execution based on data property predi-
cates being satisfied. We develop novel iterative heuristics for
the execution layer to decide, for each ready-to-run analytics
stage, task parallelism, task placement, and task sizing. This
minimizes runtime skew in the data processed, lowers data
shuffle cost and ensures optimal efficiency under resource dy-
namics. The execution layer also decides the optimal per-task
logic to use at run-time.

We build a WHIZ prototype using Tez [47] and YARN [52]
(15K LOC). We conduct experiments on a 50 machine clus-
ter in CloudLab [6]. We compare against several state-of-
the-art compute-centric (CC) batch, stream and graph pro-
cessing approaches. Using data-driven incremental computa-
tion, WHIZ improves median (95%-ile) job completion time
(JCT) 1.3−1.6× (1.5−2.2×) and cluster efficiency 1.4× by
launching the right number of appropriately-sized tasks only
when predicates are met. We observe up to 2.8× improvement
in efficiency due to WHIZ’s ability to change processing logic
on the fly. Furthermore, we observe that the impact on JCT
under failures is minimal due to WHIZ’s data organization.
We observe that WHIZ’s gains relative to CC improve with
contention due to data-driven execution and better data man-
agement which mitigate I/O hotspots and minimize resource
wastage.

2 Compute-Centric vs. Data-Driven
We begin with an overview of existing data analytics frame-
works (§2.1). We then discuss the key design principles of
WHIZ (§2.2). Finally, we list the performance issues arising
from compute-centricity and show how the data-driven design
adopted by WHIZ overcomes them (§2.3).

2.1 Today: Compute-Centric Engines
Frameworks for batch, graph and streaming analytics rely
on execution engines [2, 57]; the engine can be an internal
component of the framework or a stand-alone one that the
system leverages. The engine is responsible for orchestrating
the execution of the analytics job across the cluster.

Physical PlansPhysical Plans

SQL Query Input Tables

Logical Plan

Static Cost Model

Optimized Logical Plan

Physical Plans

Compute Centric
Execution Engine

Internal Planner

SQL Query Input Tables

Logical Plan

Optimized Logical Plan

Whiz Data Driven
Execution Engine

Internal Planner

Execution and Modification
Predicates Addition

Logical
Graph
Stage

Physical
Graph
Task

Data Driven
Logical
Graph Stage

Batch
Framework

Stream
Framework

Graph
Framework

Physical Graph Logical Graph with Predicates

Structure and
task logic

generated at
runtime

Data Driven Logical PlanSelected Physical Plan

Figure 1: Job Execution Pipelines: Today frameworks hand over
physical graphs to the underlying CC execution engine. With WHIZ,
the framework instead hands down a data-driven logical graph and
WHIZ decides the physical graph at runtime.

Users submit their jobs to these frameworks (Figure 1) via
high-level interfaces (e.g., SQL-like query in case of batch
analytics). On submission, the high-level job is handed over
to the internal planner of the framework which decides the
execution plan of the job (expressed in the form of a directed
graph). Specifically, the high-level job is translated to a logical
graph in which different vertices represent different compute
stages of the overall job and edges represent the dependencies.
The logical graph may optionally undergo further optimiza-
tions (e.g., to decide the execution order of the stages) and is
finally converted to a physical graph by undergoing physical
optimizations during which low-level execution details such
as number of tasks per stage (parallelism), dependencies be-
tween tasks, resource needs and exact task processing logic
are decided.

The execution engine takes the physical graph and orches-
trates its execution starting with root stages’ tasks processing
input data to generate intermediate data, which is consumed
by downstream stages’ tasks.

We explain how the execution engine orchestrates the phys-
ical graph and its interplay with intermediate data for different
analytics. Figure 2a is an example of a simple batch analytics
job. Here, two tables need to be filtered based on provided
predicates and joined to produce a new table. There are 3
stages: two maps for filtering and one reduce to perform the
join. Execution proceeds as follows: (1) Map tasks from both
the stages execute first with each task processing a partition
of the corresponding input table. (2) Map intermediate results
are written to local disk by each task, split into files, one per
consumer reduce task. (3) Reduce tasks are launched when
the map stages are nearing completion; each reduce task shuf-
fles relevant intermediate data from all map tasks’ locations,
and generates output.

A stream analytics job (e.g., Figure 2b) has a similar
model [11,37,58]; the main difference is that tasks in all stages
are always running. A graph analytics job, in a framework

1	 1	
M11	

1	 1	
M12	

1	 1	
M21	

1	 1	
M22	

R11	 R12	

Intermediate	Data		
Shuffle	

(a) A batch analytics job.
Intermediate data is parti-
tioned into two key ranges,
one per reduce task, and
stored in local files at map
tasks.

time

CPU idling – S2
CPU idling – S3

Records from S1

100 recordsS2 starts work

(b) Data flow in a streaming job. Tasks
in all stages are always running. Out-
put of a stage is immediately passed
to a task in downstream stage. How-
ever, CPU is idle until task in Stage 2
receives 100 records after which com-
putation is triggered.

Figure 2: Simplified examples of existing analytics systems.

that relies on the popular message passing abstraction [42],
has a similar but simplified model: the different stages are
iterations in a graph algorithm, and thus all stages execute the
same processing logic (with the input being the output of the
previous iteration).
Compute-centricity: Today’s execution engines early-bind
to a physical graph at job launch-time. Their primary goal
is to split up and distribute computation across machines.
The composition of this distributed computation, in terms of
physical tasks and their dependencies, is a first class entity.
The exact computation in each task is assumed to be known
beforehand. The way in which intermediate data is partitioned
and routed to consumer tasks, and when and how dependent
computation is launched, are tied to compute structure. We
use the term compute-centric to refer to this design pattern.
Here, intermediate data is a second class entity as important
aspects of job execution such as parallelism, processing and
scheduling logic are decided without taking it into account
(§2.3).

2.2 WHIZ: A Data-Driven Framework
WHIZ is an execution engine that makes intermediate data a
first class citizen and supports diverse analytics. WHIZ adopts
the following design principles:
1. Decoupling compute and data: WHIZ decouples compute
from intermediate data, and the data from all stages across
all jobs is written/read to/from a logically separate key-value
(KV) datastore (§4), i.e, the datastore resides across the same
set of machines on which computations take place. The store
is managed by a distinct data management layer called the data
service (DS). Similarly, an execution service (ES) manages
compute tasks.
2. Programmable data visibility: The above separation en-
ables low-overhead and scalable approaches to gain visibil-
ity into all runtime data (§5.1). WHIZ DS allows gathering
custom runtime properties of intermediate data, via narrow,
well-defined APIs.
3. Runtime physical graph generation: During the job exe-
cution pipeline, WHIZ skips physical optimization (Figure 1)
and thus, does not early-bind to a physical graph. Instead, the
framework’s internal planner performs data-driven embellish-
ment on the logical graph to give a data-driven logical graph.

This embellishment adds predicates to decide when and what
logic should be used to process data of each stage, and gives
WHIZ the ability to incrementally generate the physical graph
at runtime (§6).
4. Data-driven computation: Building on data visibility and
data-driven logical graphs, WHIZ initiates data-driven com-
putation by notifying applications when intermediate data
predicates within each stage are satisfied (§5.2). Data prop-
erties drive all further aspects of computation: task logic,
parallelism and sizing (§6).

2.3 Overcoming Compute-centricity Issues
We contrast WHIZ with compute-centricity along flexibility,
performance, efficiency, placement, and isolation.
Data opacity, and compute rigidity: In compute-centric
frameworks, there is no visibility into intermediate data of a
job and the tasks’ computational logic are decided a priori.
This prevents adapting the tasks’ logic based on their input
data. Consider the job in Figure 2a. Existing frameworks
determine the type of join for the entire reduce stage based
on coarse statistics [3]; unless one of the tables is small, a
sort-merge join is employed to avoid out-of-memory (OOM)
errors. On the other hand, having fine-grained visibility into
input data for each task enables dynamically determining the
type of join to use for different reduce tasks. A task can use
hash join if the total size of its input is less than the available
memory, and merge join otherwise. WHIZ enables deciding
the logic at runtime through its ability to provide visibility
and incrementally generate the physical graph (§6.1).
Static Parallelism, Partitioning: Today, jobs’ per-stage par-
allelism, inter-task edges and intermediate data partitioning
strategy are decided independent of runtime data and resource
dynamics. In Spark [57] the number of tasks in a stage is de-
termined a priori by the user application or by SparkSQL [10].
A hash partitioner is used to place an intermediate (k,v) pair
into one of |tasks| buckets. Pregel [42] vertex-partitions the
input graph; partitions do not change during the execution of
the algorithm.

This limits adaptation to resource flux and data skew. A
running stage cannot utilize newly available compute re-
sources [26, 27, 41] and dynamically increase its parallelism.
If some key in a partition has an abnormally large number
of records to process, then the corresponding task is signifi-
cantly slowed down [14], affecting both stage and overall job
completion times.

By not early-binding, WHIZ can decide task parallelism and
task size based on resources available and data volume. This
controls data skew, and provisions task resources proportional
to the data to be processed (§6.2).
Idling due to compute-driven scheduling: Modern sched-
ulers [23,52] decide when to launch tasks for a stage based on
the static computation structure. When a stage’s computation
is commutative+associative, schedulers launch its tasks once
90% of all tasks in upstream stages complete [5]. But the

remaining 10% of producers can take long to complete [14],
resulting in tasks idling.

Idling is worse in streaming, where consumer tasks are
continuously waiting for data from upstream tasks. E.g., con-
sider the streaming job in Figure 2b. Stage 2 computes and
outputs the median for every 100 records received. Between
computation, S2’s tasks stay idle. As a result, the tasks in the
downstream S3 stage also stay idle. To avoid idling, tasks
should be scheduled only when, and only as long as, relevant
input is available. In our example, computation should be
launched only after ≥ 100 records have been generated by
an S1 task. Likewise, in batch analytics, if computation is
commutative+associate, it is beneficial to “eagerly” launch
tasks to process intermediate data whenever enough data has
been generated to process in one batch, and exit soon after
it’s done.

Idling is easily avoided with WHIZ as it does data-driven
scheduling: launches tasks only when predicates are met, i.e,
relevant data has been generated (§5.2).
Placement, and storage isolation: Because intermediate
data is spread across producer tasks’ locations, it is impossible
to place consumer tasks in a data-local fashion. Such tasks
are placed at random [21] and forced to engage in expensive
shuffles that consume a significant portion of job runtimes
(∼30% [20]).

Also, when tasks from multiple jobs are collocated, it be-
comes difficult to isolate their hard-to-predict intermediate
data I/O. Tasks from jobs generating large intermediate data
may occupy much more local storage and I/O bandwidth than
those generating less.

Since the WHIZ store manages data from all jobs, it can
enforce policies to organize data to meet per-job objectives,
e.g., data locality for any stage (not just input-reading stages),
and to meet cluster objectives, such as I/O hotspot avoidance
and cross-job isolation (§4).

3 WHIZ Overview
We now describe the end-to-end control flow in WHIZ. The
end-user submits the job through a high-level interface ex-
posed by the application-specific framework. The frame-
work’s internal planner converts the job into a data-driven log-
ical graph through data-driven embellishment during which
each stage in the graph is annotated with execution predicates
and modification predicates.

Execution predicates determine when data generated by
the current stage can be consumed by its downstream stages
(e.g., start downstream processing when number of records
cross a threshold). Modification predicates determine which
processing logic should be chosen at runtime (e.g., decide the
join algorithm for the task, say, sort-merge join or hash join)
based on data properties.

This data-driven logical graph (e.g., directed acyclic graph
in case of batch analytics) , that is expressed via WHIZ APIs
(Appendix. A), is submitted to WHIZ via a client (Figure 3).

Data properties to be
collected and execution

predicates

EXECUTION
SERVICE

Logical graph
and modification

predicates

Manages computation Push intermediate data Manages data

Notification: data ready for processing

1

DATA
SERVICE

1

3
2

WHIZ CLIENT

Job submitted via framework

Figure 3: WHIZ control flow.

The WHIZ client is the primary interface between the frame-
work running atop WHIZ and the core WHIZ services - the DS
and the ES. The client provides the DS with details regard-
ing data properties to be collected and execution predicates.
The client also transfers the logical graph and modification
predicates to the ES (step 1).

The ES runs the first stage(s) of the logical graph and writes
its output to the datastore (step 2). The DS stores the received
data and when the execution predicate corresponding to the
stage(s) is met, it notifies the ES. The DS piggybacks data
statistics (e.g., per-key counts) on this notification to the ES
(step 3). On receiving the notification, the ES checks the mod-
ification predicates to decide the processing logic and then
processes the data. This process repeats. Interactions between
the ES, DS and the client are transparent to the framework.

The DS organizes data from all jobs and ensures both per-
job and cross-job objectives are met (§4) while simultaneously
enabling data visibility through programmable monitoring
(§5). The ES, in addition to deciding the processing logic,
also determines task parallelism, location and resource use at
runtime (§6). In this manner end-users are no longer required
to specify low-level details such as task parallelism and data
partitioning strategy. In the rest of the paper, we focus on
how WHIZ handles data-driven logical graphs and plan to
explore designing data-driven embellishers (responsible for
embellishment of logical graphs with predicates) that can be
added to existing frameworks in the future.

4 Data Store
In WHIZ, all jobs’ intermediate data is written to/read from a
logically separate datastore (managed by the DS), where it
is structured as <key,value> pairs. In batch/stream analytics,
the keys are generated by the stage computation logic itself;
in graph analytics, keys are identifiers of vertices to which
messages (values) are destined for processing in the next
iteration. The DS via a cluster-wide master DS-M organizes
data in the store.

An ideal data organization should achieve three goals: (1)
load balance and spread all jobs’ data, specifically, avoid
hotspots and improve cross-job isolation, and minimize within-
job skew in tasks’ data processing. (2) maximize job data
locality by co-locating as much data having the same key as
possible. (3) be fault tolerant - when a storage node fails,
recovery should have minimal impact on job runtime. Our
data storage granularity, described next, forms the basis for
meeting our goals.

Initial CAPSULES Location Runtime CAPSULES Location
1. Determine number of

machines
2. Pick machines providing

max possible LB, DL and
FT guarantees

3. Spread CAPSULES across
machines

1. Detect machines at risk of
overload

2. Detect hot CAPSULES on
these machines

3. Close these CAPSULES and
pick machines to spread
them

t0 t1

t2 …. end

Figure 4: Data organization flow when a stage starts generating
data.

4.1 Capsule: A Unit of Data in WHIZ

WHIZ groups intermediate data based on keys into groups
called capsules. A stage’s intermediate data is organized into
some large number N capsules; crucially N is late-bound as
described below, which helps meet our goals above. Interme-
diate data key range is split N-ways, and each capsule stores
all <k, v> data from a given range. WHIZ strives to material-
ize all capsule data on one machine; rarely (e.g., when there is
less space left on a machine), a capsule may be spread across
a small number of machines. This materialization property of
capsules forms the basis for consumer task data locality.

Furthermore, WHIZ capsule key ranges are late-bound: we
first determine the set of machines on which capsules from
a stage are to be stored; machines are chosen to maximally
support isolation, load balance, locality and fault tolerance;
the choice of machines then determines the number N for a
stage’s capsules (§4.2).

Given these machines and N, as the stage produces data
at runtime, N capsules are materialized, and dynamically al-
located to right-sized tasks; this enables the ES to preserve
data-local processing, lower skew, and optimally use compute
resources (§6).

4.2 Fast Capsule Allocation
We consider how to place multiple jobs’ capsules on ma-
chines to avoid hotspots, ensure data locality and minimize
job runtime impact on data loss. We formulate an ILP to
this end (see Table 7 in Appendix. B). However, solving this
ILP at scale can take several tens of seconds delaying capsule
placement. WHIZ instead uses a practical approach for the cap-
sule placement problem. First, instead of jointly optimizing
global placement decisions for all the capsules, WHIZ solves
a “local” problem of placing capsules for each stage indepen-
dently while still considering inter-stage dependencies; when
new stages arrive, or when existing capsules may exceed job
quota on a machine, new locations for some of these capsules
are determined (see Figure 4). Second, instead of solving a
multi-objective optimization, WHIZ uses a linear-time rule-
based heuristic to place capsules; the heuristic prioritizes load
and locality (in that order) in case machines satisfying all
objectives cannot be found. Isolation is always enforced.
Capsule location for new stages (Figure4): When a job j is

h1
// Q j: max storage quota per job j and machine m.
Based on fairness considerations across all
runnable jobs J.
// Mv: number machines (out of M) to organize data that
//generated by v of j.

h2
a. Count number machines M j75 where j is using

< 75% of Q j;
b. Mv = max(2,M j75×

M−M j75
M).

// Given Mv, compute list of machines
−→
Mv.

h3

Considers only machines where j is using < 75% of Q j;
a. Pick machines that provide load balance (LB),

data locality (DL) and maximum possible
fault tolerance (FT);

b. If |−→Mv| < Mv, relax FT guarantees and pick machines
that provide LB and DL;
c. If |−→Mv| is still < Mv, pick machines

that just provide LB.
// Given Mv, compute total capsules N.

h4 N = G X Mv, where G = capsules per machine
// Which machines are at risk of violating Q j?

h5
−→
M j: machines which store data of j and j is using
≥ 75% of Q j.

// Which capsules are hot on
−→
M j?

h6
Significantly larger in size or have a higher
increasing rate than others.

Table 1: Heuristics employed in data organization.

ready to run, DS-M invokes an admin-provided heuristic h1
(Table 1) that assigns job j a quota Q j per machine. Setting
up quotas helps ensure isolation across jobs.

When a stage v of job j starts to generate intermediate data,
DS-M invokes h2 to determine the number of machines Mv
for organizing v’s data. h2 picks Mv between 2 and a fraction
of the total machines which are≤ 75% of the quota Q j for job
j. Mv ≥ 2 ensures opportunities for data parallel processing;
a bounded Mv (Table 1) controls the ES task launch overhead
(§6.2).

Given Mv, DS-M invokes h3 to generate a list of machines
−→
Mv to materialize data on. It starts by creating three sub-lists:
(1) For load balancing (LB), machines are sorted lightest-
load-first, and only ones which have ≤ 75% quota usage for
the corresponding job are considered. (2) For data locality
(DL), we prefer machines which already materialize other
capsules for this stage v, or capsules from other stages whose
output will be consumed by same downstream stage as v (e.g.,
two map stages in Figure 2a). (3) For fault tolerance (FT),
we strive to place dependent capsules on different machines
to minimize failure recovery time. We pick machines where
there are no capsules from any of v’s k upstream stages in
the job, sorted in descending order of k. Thus, for the largest
value of k, we have all machines that do not store data from
any of v’s ancestors; for k = 1 we have nodes that store data
from the immediate parent of v.

We pick machines from the sub-lists to maximally meet

our objectives in 3 steps: (1) Pick the least loaded machines
that are data local and offer as high fault tolerance as possible
(machines present in all three sub-lists). Note that as we go
down the fault tolerance list in search of a total of Mv ma-
chines, we trade-off fault tolerance. (2) If despite reaching the
minimum possible fault tolerance, i.e., reaching the bottom of
the fault tolerance sub-list – the number of machines picked
falls below Mv, we completely trade-off fault tolerance and
pick the least loaded machines that are data local. (3) If still
the number of machines picked falls below Mv, we simply
pick the least-loaded machines and trade-off data locality too.

Finally, given
−→
Mv, DS-M invokes h4 and instantiates a fixed

number (G) of capsules per machine leading to total capsules
per-stage (N) to be G×Mv. While a large G would aid us in
better handling of skew and computation as the capsules can
be processed in parallel, it comes at the cost of significant
scheduling and storage overheads. We empirically study the
sensitivity to G (in §9.4); based on this, our prototype uses
G = 24.
New locations for existing capsules: Data generation pat-
terns can vary across different stages, and jobs, due to het-
erogeneous compute logics and data skew. Thus a job j may
run out of its Q j on machine m, leaving no room to grow
already-materialized capsules of job j on m. DS-M reacts
to such dynamics by determining, ∀ j: machines where job
j is using ≥ 75% Q j (h5), closing capsules that are signifi-
cantly larger or have a higher growth rate than others on such
machines (h6), and invokes heuristic h3 to compute the ma-
chines to spread these capsules. This focuses on capsules that
contribute most load to machines at risk of being overloaded
and thus bounds the number of capsules that will spread out.

5 Data Visibility
We now describe how WHIZ offers programmable data mon-
itoring via the DS (§5.1), and how it initiates data-driven
computations using execution predicates (§5.2).

5.1 Data Monitoring
Given that intermediate data properties form the basis of
data-driven computation, native support for data monitoring
is extremely crucial. The DS through its data organization
simplifies monitoring as it consolidates a capsule at one or
a few locations rather than it being spread across the cluster
(§4.1). WHIZ achieves scalable monitoring via per-job masters
DS-JMs which track light-weight properties related to their
capsules.

WHIZ supports built-in and custom monitors that gather
properties per capsule. They are periodically sent to the rel-
evant DS-JM. Built-in monitors constantly collect coarse-
grained properties such as current capsule size, total or num-
ber of unique (k,v) pairs, location(s) and rate of growth; apart
from being used for data-driven computation, these are used
in runtime data organization (§4.2).

Custom monitors are UDFs (user defined functions) that

ES

DS
ES

data_spills

data_ready data_ready_all

data_generated1

v1

v2

data_spills notification non-ready
CAPSULES

ready
CAPSULES

2

3

4
t0

t0

tn tm

tn tm time

Figure 5: Data-driven computation facilitated by notifications. (1)
Intermediate data (v1) batches sent from ES to DS. (2) DS detects
that 2 capsules are ready and sends data_ready notification from
DS to ES leading to downstream computation (v2). (3) ES sends
data_generated notification to DS when entire output of v1 pushed
to DS. (4) DS sends data_ready_all notification to ES indicating that
all data_ready notifications have been sent.

are used to get fine-grained data properties per the job specifi-
cation. We restrict UDFs to those that can execute in linear
time and O(1) state, such as (a) number of entries s.t. values
are <,=, or > than a threshold; (b) min, max, avg. of keys;
and (c) whether data is sorted or not.

Getting visibility into intermediate data through monitors
enables data-driven computation as we describe next.

5.2 Indicating Data Readiness
The DS is responsible for initiating data-driven computation.
The DS achieves this via two key abstractions: notifications
and execution predicates. The decoupled DS and ES interact
via notifications which enable, and track progress of, data-
driven computation. Execution predicates enable the DS-JM
to decide when capsules can be deemed ready for correspond-
ing computation to be run on them.
Notifications: WHIZ introduces 3 types of notifications: (1) A
data_ready notification is sent by the DS-JM to the ES when-
ever a capsule becomes ready (as per the execution predicate)
to trigger corresponding computation. (2) A data_generated
notification is sent by the ES to the DS-JM when a stage
finishes generating all its intermediate output. This notifica-
tion is required because the DS-JM is unaware of the num-
ber of tasks that the ES launches corresponding to a stage,
and thus cannot determine when a stage is completed. (3)
A data_ready_all notification is sent by the DS-JM to the
ES when a stage has received all its input data (occurs when
data_ready notifications regarding all ready input capsules
are sent). This notification is required because the ES is un-
aware of the total number of capsules that the DS deems
ready.

The use of these notifications is exemplified in Figure 5.
Here: 1 when a stage v1 generates a batch of intermediate
data, a data_spill containing the data is sent to the data store,
which accumulates it into capsules (t0 through tm). 2 When-
ever the DS-JM determines that a collection of v1’s capsules
(2 capsules in Figure 5 at tn) are ready for further processing,
it sends a data_ready notification per capsule to the ES; the
ES launches tasks of a consumer stage v2 to process such

capsules. This notification carries per-capsule information
such as: a list of machine(s) on which each capsule is spread,
and a list of statistics collected by the data monitors. 3 Fi-
nally, a data_generated notification – from the ES, generated
upon v1 computation completion – notifies the DS-JM that
v1 finished generating data_spills. 4 Subsequently, DS-JM
notifies the ES via the data_ready_all event, that all capsules
corresponding to v1 have sent their data_ready events (at tm).
This enables the ES to determine when the immediate down-
stream stage v2, that is reading the data generated by v1, has
received all of its input data.
Execution predicates: The interaction between ES and DS
via notifications is initiated by execution predicates whose
logic is based on the properties collected by the monitors.
Each job stage is typically associated with an execution pred-
icate as indicated by the input program, which is transferred
to the DS-JM by the WHIZ client. If not, default analytics-
specific predicates are applied. WHIZ supports diverse execu-
tion predicates such as:
1. Data Generated: This predicate deems capsules ready
when the computation generating them is done; this is the
default predicate for batch and graph analytics in WHIZ; akin
to a barrier in batch systems today and bulk synchronous
execution in graph analytics.
2. Record Count ≥ X: The vanilla version of this predicate
deems a capsule ready when it has ≥ X records from produc-
ers tasks; this is the default predicate for streaming systems
in WHIZ; akin to micro-batching in existing streaming sys-
tems [58], with the crucial difference that the micro-batch is
not wall clock time-based, but is based on the more natural
intermediate data count.

This predicate can be extended to support pipelining via
ephemeral compute, i.e, compute is launched once there is
partial data and just for the processing duration. The ability
to launch compute ephemerally is particularly useful under
heavy resource contention. Ephemeral compute can be used
to speed up jobs across analytics if they contain commuta-
tive+associative operations (§9).

For example, consider the partial execution of a batch (or
graph) analytics job, consisting of the first two logical stages
(likewise, first two iterations) v1→ v2. If the processing logic
in v2 contains commutative+associative operations, it can
start processing its input before all of it is in place. Using this
predicate, a capsule generated by v1 is ready whenever the
number of records in it reaches a threshold X . This enables
the ES to overlap v2’s computation with v1’s data genera-
tion as follows: (1) Upon receiving a data_ready notification
from the DS-JM for capsules which have ≥ X records, the
ES launches ephemeral tasks of v2. (2) Tasks read the current
data, compute the associative+commutative function on the
(k,v) data read, push the result back to data store (in the same
capsules advertised through the received data_ready notifi-
cation) and immediately quit. (3) The DS-JM waits for each
capsule to grow back beyond threshold X for generating sub-

sequent data_ready notifications leading to ephemeral tasks
being launched again. (4) Finally, when a data_generated
notification is received from v1, the DS-JM triggers a final
data_ready notification for all the capsules generated by v1,
and a subsequent data_ready_all notification, to enable v2’s
final output to be written in capsules and fully consumed by a
downstream stage, say v3 (similar to Figure 5).

This predicate can be further extended to across capsules,
i.e., the DS-JM could deem all capsules ready when the num-
ber of entries generated across all capsules cross a threshold.
In streaming, such predicates help improve efficiency and
performance as ephemeral tasks are launched only when the
required input records have streamed into the system and quit
post processing (§9.1.3). On the other hand, systems today
lack support for ephemeral compute and are forced to deploy
long-standing tasks.
3. Special Records: This predicate deems all output capsules
of a stage ready on observing a special record in any one
capsule. Stream processing systems often rely on “low wa-
termark” records to ensure event-time processing [19, 40],
and to support temporal joins [40]. Such predicates can be
used to launch, on demand, temporal operators whenever a
low watermark record is observed at any of a stage’s output
capsules. In contrast, systems today have the operators always
running and this leads to compute idling when there are no
records to process.

6 Execution Service
While the DS initiates data-driven computation by notifying
when data is ready for processing, the ES carries out all other
data-driven execution aspects by incrementally generating the
physical graph. It does so via a per-job master ES-JM that
given ready capsules, and available resources1: (a) determines
the appropriate processing logic to use (§6.1); (b) determines
optimal parallelism and deploys tasks to minimize skew and
shuffle; (c) maps capsules to tasks in a resource-aware fashion
(§6.2).

6.1 Selecting Compute Logic
Upon detecting a ready capsule, the DS-JM sends the
data_ready notification, with capsule properties (including
fine-grained ones) piggybacked, to the ES-JM. The ES-JM
then uses modification predicates associated with this stage
to determine the exact processing logic.

Modification predicates give the ability to decide process-
ing logic at runtime based on the received data properties
and available resources. Importantly, WHIZ also provides jobs
with the flexibility to use different processing logic for dif-
ferent input capsules of the same stage. For e.g., consider a
batch analytics job that involves joining two tables.2 In such

1Similar to existing frameworks, a cluster-wide Resource Manager de-
cides available resources as per cross-job fairness.

2DS via per-job quotas ensures that the input tables use the same # of
capsules and because both tables use the same key, i.e., the join key, while

h7

//
−→
C : subsets of unprocessed capsules.

a. CaMax = 2×|c|, c is largest capsule ∈C;
b. Group all capsules ∈C into subsets in strict order:

i. data local capsules together;
ii. each spread capsule, along

data-local capsules together;
iii. any remaining capsules together;
subject to:
iv. each subset size ≤CaMax;
v. conflicting capsules don’t group together;
vi. troublesome capsules always group together.

h8

//
−→
M: preferred machines to process each subset ∈ −→C .

c. no machine preference for troublesome subsets ∈ −→C
d. for every other subset ∈ −→C pick machine m such that:

i. all capsules in the subset are only
materialized at m;

ii. otherwise m contains the largest
materialization of the subset.

h9

Compute
−→
R : resources to execute each subset ∈ −→C :

e.
−→
A = available resources for j on machines

−→
M ;

f. F = min(
−→
A [m]

total size of capsules allocated to m , for all m ∈ −→M);

g. for each subset i ∈ −→C :
−→
R [i] = F× total size of capsules allocated to

−→
C [i].

Table 2: Heuristics to group capsules and assign them to tasks.

a scenario, the SQL framework running atop sets the modifi-
cation predicates of the join stage to choose the appropriate
join algorithm between, say, sort-merge join3 and hash join4

as follows: (a) if both capsules are already sorted, and the
max value in the first capsule is less than the min value in
the other capsule (no intersection), then skip unnecessarily
launching a task to do the join; (b) if the size of one capsule
is significantly smaller than the other one (and data is not
sorted), then use hash join (as it is typically less expensive
to create a hash table of the smaller capsule, than sorting the
large one); and (c) if data is sorted or (a)–(b) don’t satisfy,
then default to sort-merge join.

Crucially, such predicates enable stream jobs submitted to
WHIZ, to change their processing logic over time, as opposed
to being early bound to processing logic (status-quo today).
For e.g., predicates allow a job involving temporal join to
change its join algorithm over time and choose the appropri-
ate one, from the three choices (a)–(c) above, based on data
properties and available resources.

6.2 Task Parallelism, Placement, and Sizing
Given a set of ready capsules (C) for a stage, the ES-JM needs
to map capsules to tasks, and determine their location (across
machines M) and sizes (resources) so as to minimize cross-

writing to the store, key-range split for both tables is the same.
3This (a) sorts the two input capsules on the join key and (b) merges them

by comparing the records.
4This (a) builds a hash table on the join key using the smaller capsule and

(b) probes for matches using the other capsule.

task skew and shuffle while taking available resources into
account. To do so, we propose an iterative procedure that
applies a set of heuristics (Table 2) repeatedly until tasks for
all ready capsules are allocated, and their locations and sizes
determined.

The iterative procedure consists of 3 steps: (a) generate
optimal subsets of capsules to minimize cross-subset skew
(using h7), (b) decide on which machine should a subset
be processed to minimize shuffle (h8), and (c) determine
resources required to process each subset (h9).

First, we group capsules C into a collection of subsets
−→
C

using h7 . We then try to assign each group to a task. Our
grouping into subsets attempts to ensure that data in a subset
is spread on just one or a few machines (lines (b.i-b.iii)), which
minimizes shuffle, and that the data is spread roughly evenly
across subsets (line (b.iv)) making cross-task performance
uniform. We place a bound CaMax, equaling twice the size of
the largest capsule, on the total size of a subset (see line (a)).
This ensures that multiple (at least 2) capsules are present in
each subset and allows mitigating stragglers by only assigning
the yet-to-be-processed capsules to the speculative task.5

Second, we determine a preferred machine to process each
subset using h8 ; this is a machine where most if not all cap-
sules in the subset are materialized (line (d)). Choosing a
machine in this manner minimizes shuffle.

Finally, given available resources across the preferred ma-
chines (from the cluster-wide resource manager [52]) we need
to allocate tasks to process subsets. But some machines may
not have resource availability. For the rest of this iteration, we
ignore such machines and the subsets of capsules that prefer
such machines.

Given machines with resources
−→
A , we assign a task for

each subset of capsules which can be processed, and allocate
task resources altruistically using h9 . That is, we first com-
pute the minimum resource available to process unit data (F ;
line (f)). Then, for each task, the resource allocated (line (g))
is F times the total data in the subset of capsules allocated to
the task (|−→C [i]|).

Allocating task resources proportional to input size ensures
that tasks have similar finish times. Allocating resources corre-
sponding to the minimum available helps further: if a job gets
more resources than what is available for the most constrained
subset, then it does not help the job’s completion time (which
is determined by the most constrained subset’s processing).
Altruistically “giving back” such resources speeds up other
jobs/stages.

The above 3 steps repeat whenever new capsules are ready,
or existing ones can’t be scheduled. Similar to delay schedul-
ing [56], we attempt several tries to execute a group which
couldn’t be scheduled on its preferred machine due to resource
unavailability, before marking capsules conflicting. These are

5Speculative tasks today [12–14,38,59] reprocess the entire input leading
to duplicate work and resource wastage.

0
0.2
0.4
0.6
0.8

1

0 500 1000 1500 2000Fr
ac

tio
n

of
 J

ob
s

Job Completion Time [Seconds]

Whiz
Hadoop
Spark

(a)

0
0.2
0.4
0.6
0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Fr
ac

tio
n

of
 J

ob
s

Factor of Improvement

Hadoop
Spark

(b)

0
100
200
300
400

0 1500 3000 4500

R
un

ni
ng

 T
as

ks

Time [Seconds]

Whiz
Hadoop

0
0.2
0.4
0.6
0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Fr
ac

tio
n

of
 J

ob
s

Factor of Improvement

Hadoop
Spark

0
100
200
300
400

0 1500 3000 4500

R
un

ni
ng

 T
as

ks

Time [Seconds]

Whiz
Hadoop

(c)

Figure 6: [Batch Analytics] (a) CDF of JCT; (b) CDF of factors of improvement of individual jobs using WHIZ w.r.t. baselines; (c) Snapshot
of running tasks during one of the experiments. Gains are lower w.r.t. Spark due to our Hadoop-based implementation, and thus using a
non-optimized in-memory store.

re-grouped in the next iteration (line (b.v)). Finally, capsules
that cannot be executed under any grouping are marked trou-
blesome (line (b.vi)) and processed on any machine (line
(d.ii)).

7 Fault Tolerance
Task Failure. When a task fails due to a machine failure, only
the failed tasks need to be re-executed if the input capsules are
not lost. But, this will result in duplicate data in all capsules
for the stage leading to data inconsistencies. To address this,
we use checksums at the consumer task-side WHIZ library to
suppress duplicate data.

However, if the failed machine also contains the input cap-
sules of the failed task, then the ES-JM triggers the execution
of the upstream stage(s) to regenerate the input capsules of the
failed task. Recall that WHIZ’s fault tolerance-aware capsule
storage (§4) helps control the number of upstream (ancestor)
stages that need to be re-executed in case of data loss.
DS-M/DS-JM/ES-JM. WHIZ maintains replicas of DS-
M/DS-JM daemons using Apache Zookeeper [28], and fails
over to a standby. Given that WHIZ generates the physical
graph of a job at runtime in a data-driven manner, upon ES-
JM failure, we simply need to restart it so that it can resume
handling notifications from the DS. During this time already
launched tasks continue to run.

8 Implementation
We prototyped WHIZ by modifying Tez [5] and leveraging
YARN [52]. The DS, implemented from scratch, has three
kinds of daemons (managed via YARN): cluster-wide master
DS-M, per-job masters DS-JM and workers DS-W. DS-M
does data organization across DS-Ws. DS-JMs collect statis-
tics and notify ES-JM when execution predicates are met.
DS-Ws run on cluster machines and do node-level manage-
ment: (a) store data received from ES/other DS-Ws in local
in-memory file system (tmpfs [48]) and transfer data to other
DS-Ws per DS-M directives; (b) report statistics to DS-M/DS-
JMs via heartbeats; and (c) provide ACK to tasks for data
written.

The ES was implemented by modifying Tez. It consists of
per-job masters ES-JM which are responsible for generating

the physical graph at runtime. ES tasks are modified Tez tasks
that have an interface to the local DS-W as opposed to local
disk or cluster-wide storage. The WHIZ client is a standalone
process per-job.

All communication (asynchronous) between DS, ES and
client is through RPCs in YARN using Protobuf [8]. We also
use RPCs between the YARN Resource Manager (RM) and
ES-JM to propagate resource allocations (§6).

9 Evaluation
We evaluated WHIZ on a 50-machine cluster deployed on
CloudLab [6] using publicly available benchmarks – batch
TPC-DS jobs, PageRank for graph analytics, and synthetic
streaming jobs. Unless otherwise specified, we set WHIZ to
use default execution predicates, equal storage quota (Q j =
2.5GB) and 24 capsules per machine.

9.1 Experiment Setup
Workloads: We consider a mix of jobs, all from TPC-DS
(batch), or all from PageRank (graph). For streaming, we
use a variety of different queries described in detail later.
In each experiment, jobs are randomly chosen and follow a
Poisson arrival distribution with average inter-arrival time of
20s. Each job lasts up to 10s of minutes, and takes as input tens
of GBs of data. We run each experiment thrice and present
the median.
Cluster, baseline, metrics: Machines have 8 cores, 64GB
memory, 256GB storage, and a 10Gbps NIC. We com-
pare WHIZ as follows: (1) Batch: vs. Tez [5] running atop
YARN [52], for which we use the shorthand “Hadoop” or
“CC”; and vs. SparkSQL [15]; (2) Graph: vs. Giraph (i.e.,
open source Pregel [42]); and vs. GraphX [24]; (3) Stream-
ing: vs. SparkStreaming [58].

For a fair comparison, we ensure Hadoop/Giraph use
tmpfs. We study the relative improvement in the average
job completion time (JCT), or JCTCC/JCTWHIZ. We measure
efficiency using makespan.

9.1.1 Batch Analytics

Performance and efficiency: Figure 6a shows the JCT dis-
tributions of WHIZ, Hadoop, and Spark for the TPC-DS work-

0

12

24

36

0 1500 3000 4500To
ta

l i
nt

er
m

ed
ia

te

da
ta

 p
er

 m
ac

hi
ne

 [G
B]

Time [Seconds]

Whiz
Hadoop

Figure 7: Cross-job average, min and max intermediate data per
machine during one of our batch analytics experiments.

load. Only 0.4 (1.2) highest percentile jobs are worse off by
≤ 1.06× (≤ 1.03×) than Hadoop (Spark). WHIZ speeds up
jobs by 111...444××× (111...222777×××) on average, and 222...000222××× (111...777555×××) at
95th percentile w.r.t. Hadoop (Spark). Also, WHIZ improves
makespan by 111...333222××× (111...222×××).

Figure 6b presents improvement for individual jobs. For
more than 88% jobs, WHIZ outperforms Hadoop and Spark.
Only 111222% jobs slow down to ≤ 0.81× (0.63×) using WHIZ.
Gains are > 1.5× for > 35% jobs.
Sources of improvements: We observe that more rapid pro-
cessing due to data-driven execution, and better data man-
agement contribute most to benefits.

First, we snapshot the number of running tasks across all
the jobs in one of our experiments when running WHIZ and
Hadoop (Figure 6c). WHIZ has 1.45× more tasks scheduled
over time which translates to jobs finishing 1.37× faster. It
has 111...333888××× better cluster efficiency than Hadoop. Similar
observations hold for Spark (omitted).

The main reasons for rapid processing/high efficiency are:
(1) The DS ensures that most tasks are data local (777666% in our
expts). This improves average consumer task completion time
by 1.59×. Resources thus freed can be used by other jobs’
tasks. (2) Based on DS-provided properties, ES’s data-driven
actions provide similar input sizes for tasks in a stage – within
14.4% of the mean.

Second, Figure 7 shows the size of the cross-job total in-
termediate data per machine. We see that Hadoop generates
heavily imbalanced load spread across machines. This creates
many storage hotspots and slows down tasks competing on
those machines. Spark is similar. WHIZ mitigates hotspots
(§4) improving overall performance.

We observe jobs generating less intermediate data are more
prone to performance losses in WHIZ, especially under ample
resource availability as WHIZ strives for capsule-local task ex-
ecution (§6.2). If resources are unavailable, WHIZ will assign
the task to a data-remote node, or get penalized waiting for
data-local placement.

9.1.2 Graph Processing

We run multiple PageRank (40 iterations) jobs on the Twitter
Graph [17, 18]. In each iteration, vertices run the processing
logic and exchange their output as messages with each other.
WHIZ groups messages into capsules based on vertex ID. We

0
Job Completion Time [Seconds]

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 J

ob
s

Giraph

GraphX

Whiz

(a)

Giraph
GraphX

0

0.2
0.4
0.6
0.8

1

Fr
ac

tio
n

of
 J

ob
s

0 0.5 1 1.5 2 2.5 3
Factor of Improvement

(b)

Figure 8: [Graph Analytics] (a) CDF of JCT using WHIZ, GraphX
and Giraph; (b) CDF of factors of improvement of individual jobs
using WHIZ w.r.t. GraphX and Giraph.

0

0.2

0.4

0.6

0.8

1

0 1500 3000 4500
Fr

ac
tio

n
of

 J
ob

s
Job Completion Time [Seconds]

Whiz

SparkStreaming

(a)

0

0.2

0.4

0.6

0.8

1

0.8 1 1.2 1.4 1.6 1.8

Fr
ac

tio
n

of
 J

ob
s

Factor of Improvement

SparkStreaming

(b)

Figure 9: [Stream Analytics] (a) CDF of JCT using WHIZ and
SparkStreaming; (b) CDF of factors of improvement of individual
jobs using WHIZ w.r.t. SparkStreaming.

use an execution predicate that deems a capsule ready when
≥ 1000 messages are present.

Figure 8a shows the JCT distribution of WHIZ, GraphX and
Giraph. WHIZ speeds up jobs by 111...333333××× (111...555777×××) on average
and 111...555777××× (222...222444×××) at the 95th percentile w.r.t. GraphX (Gi-
raph) (Figure 8b). Gains are lower w.r.t. GraphX, due to its
efficient implementation atop Spark. However, <<< 111000% jobs
are slowed down by ≤ 1.13×.

Improvements arise for two reasons. First, WHIZ is able
to deploy appropriate number of ephemeral tasks: execution
predicates immediately indicate data availability, and run-
time parallelism (§6.2) allows messages to high-degree ver-
tices [24] to be processed by more than one task. Also, WHIZ

has 1.53× more tasks (each runs multiple vertex programs)
scheduled over time; rapid processing and runtime adaptation
to data directly leads to jobs finishing faster. Second, because
of ephemeral compute, WHIZ doesn’t hold resources for a task
if not needed, resulting in 111...222555××× better cluster efficiency.

9.1.3 Stream Processing

We run multiple stream jobs, each calculating top 5 common
words for every 100 distinct words from synthetic streams
replaying GBs of text data from HDFS.

Spark Streaming discretizes the records stream into time-
based micro-batches and processes every micro-batch dura-
tion. We configure the micro-batch interval to 1 minute. With
WHIZ, given the semantics of the processing logic, we use an

CCTasks / WhizTasks

C
C

S
ke

w
 /

W
hi

zS
ke

w

0.8

1

1.2

1.4

0.4 0.6 0.8 1 1.2

(a)
C

C
S

ke
w

 /
W

hi
zS

ke
w

CCTasks / WhizTasks
0.4 0.6 0.8 1 1.2

0.8

1

1.2

1.4

(b)

Figure 10: Hadoop w.r.t. WHIZ fraction of tasks allocated vs. the
fraction of skew in a given stage: (a) for a job with 12 stages where
WHIZ improves JCT by 1.6×; (b) for a job with 6 stages, where
WHIZ improves JCT by 1.2×. CCSkew

WhizSkew > 1 means WHIZ has less
skew; CCTasks

WhizTasks < 1 means Hadoop under-parallelizes.

execution predicate to enable computation whenever ≥ 100
distinct records are present.

Figures 9a, 9b show our results. WHIZ speeds up jobs by
111...333333××× on average and 111...555555××× at the 95th %-ile. Also, 15%
of the jobs are slowed down to around 000...888×××.

The gains are due to data-driven computation via execu-
tion predicates; WHIZ does not have to delay execution till
the next micro-batch if data can be processed now. A Spark
Streaming task has to wait as it has no data visibility. In our
experiments, more than 777333% executions happen at less than
40s time intervals with WHIZ.

Additionally, we evaluate the role of modification predi-
cates in streaming in §9.2.

9.1.4 WHIZ Overheads

CPU, memory overhead: We find that DS-W (§8) processes
inflate the memory and CPU usage by a negligible amount
even when managing data close to storage capacity. DS-M
and DS-JM have similar resource profiles.
Latency: We compute the average time to process heartbeats
from various ES/DS daemons, and WHIZ client. For 5000
heartbeats, the time to process each is 2− 5ms. We imple-
mented the WHIZ client and ES-JM logic atop Tez AM. Our
changes inflate AM decision logic by ≤ 14ms per request
with negligible increase in AM memory/CPU.
Network overhead from events/heartbeats is negligible.

9.2 Benefits of Data-driven Computation
The overall benefits above included the effects of execution
predicates and incrementally generating the physical graph.
We now delve deeper to further shed light into late-binding
benefits.
Skew and parallelism: Figure 10 shows fractions of skew
and parallelism as generated by Hadoop w.r.t. WHIZ for two
TPC-DS jobs from one of our runs. WHIZ’s ability to dynam-
ically change parallelism at runtime, driven by the number
of capsules for each vertex, leads to significantly less data
skew than Hadoop. When Hadoop is under-parallelizing, the

% Skew Improvement Factor
10% 1.1
30% 1.47
50% 1.87
70% 2.48
90% 2.67

Table 3: Improvement in cumulative time using modification predi-
cates w.r.t no predicates. Predicate chooses hash join if the ratio of
input capsules’ sizes is ≥ 3.

skew is significantly higher than WHIZ (up to 1.43×). Over-
parallelizing does not help either; Hadoop incurs up to 1.15×
larger skew, due to its rigid data partitioning and tasks allo-
cation schemes. Even when WHIZ incurs more skew (up to
1.26×), corresponding tasks will get allocated more resources
to alleviate this overhead (§6.2).
Modification predicates: To evaluate the benefits enabled by
WHIZ’s ability to late-bind processing logic, we pick a query
from our TPC-DS workload which has a join and run it with
and without modification predicates while varying the skew
between the input tables. Modification predicates allow the
job to pick the join algorithm between sort-merge join and
hash join (see §6.1) for the different tasks. Table 3 shows the
relative improvement in cumulative time (summation over
duration of all tasks of the job) with and without predicates
(sticks to sort-merge join). We see that predicates improve
the cumulative time 111...111×××–222...888××× as the skew in capsule sizes
increases. This is because with modification predicates, WHIZ

chooses to use the hash join when skew between the task
inputs exists as building a hashmap on the smaller input is
typically cheaper than sorting the other input (occurs when
sort-merge join is used instead). Gains increase with skew as
the join performance difference also increases.

We also quantify the benefits of modification predicates
for stream processing. We run a stream query that performs
event-time temporal join over 3 minute intervals (execution
predicate indicates to wait for watermark) with and with-
out the above modification predicates. We change skew-%
randomly (from 10%, 20%,..., 90%) between the two input
sources over the same time interval and observe that using
modification predicates leads to 1.7× average improvement
in cumulative time.

Additionally, we run microbenchmarks to delve further into
WHIZ’s data-driven benefits (results in Appendix C).

9.3 Load Balancing, Locality, Fault Tolerance
To evaluate DS load balancing (LB), data locality (DL) and
fault tolerance (FT), we stressed the data organization under
different cluster load. We used job arrivals and all stages’
capsule sizes from one of our TPC-DS runs.

Figure 11 shows that: (1) WHIZ prioritizes load balanc-
ing and data locality over fault tolerance across cluster loads
(§4.2); (2) when the available resources are scarce (5× higher
load than initial), all three metrics suffer. However, the maxi-

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100
Number of machines

DL
FT

Fr
ac

tio
n

of
 c

ap
su

le
s

pe
r j

ob

(a)

0

0.05

0.1

0.15

10 25 50 75 100
Number of machines

LB Ideal

Fr
ac

tio
n

of
 to

ta
l s

to
ra

ge

lo
ad

 p
er

 m
ac

hi
ne

(b)

Figure 11: (a) Average, min and max fraction of capsules which are
data local (DL) respectively fault tolerant (FT) across all the jobs for
different cluster load; (b) Max, min and ideal storage load balance
(LB) on every machine for different cluster load.

% Machines JCT [Seconds]
Failed Avg Min Max
None 725 215 2100
10% 740 250 2320
25% 820 310 2360
50% 1025 350 2710
75% 1600 410 3300

Table 4: JCT under random machine failures.

mum load imbalance per machine is < 1.5× than the ideal,
while for any job, ≥ 47% of the capsules are data local. Also,
on average 16% of the capsules per job are fault tolerant; (3)
less cluster load (0.6× lower than initial) enables more oppor-
tunities for DS to maximize all of the objectives: ≥ 84% of
the per-job capsules are data local, 71% are fault tolerant, with
at most 1.17× load imbalance per machine than the ideal.
Failures: Using the same workload, we also evaluated the per-
formance impact in the presence of machine failures (Table 4).
We observe that WHIZ does not degrade job performance by
more than 1.13× even when 25% of the machines fail. This
is mainly due to DS’s ability to organize capsules to be fault
tolerant across ancestor stages and avoid data recomputations.
Even when 75% of the machines fail, the maximum JCT does
not degrade by more than 1.57×, mainly due to capsules be-
longing to some ancestor stages still being available, which
leads to fast recomputation for corresponding downstream
vertices.

9.4 Sensitivity Analysis
Impact of Contention: We vary storage load, and hence re-
source contention, by changing the number of machines while
keeping the workload constant; half as many servers lead to
twice as much load. We see that at 1× cluster load, WHIZ im-
proves over Hadoop by 1.39× (1.32×) on average in terms of
JCT (makespan). Even at high contention (up to 4×), WHIZ’s
gains keep increasing 1.83× (1.42×). This is because of data-
driven execution and better data management which mini-
mizes resource wastage, time spent in shuffling, and leads to
few hotspots.

Multiple of # Capsules
Original Load 8 16 20 24 28 32 36 40

1 1.07 1.33 1.46 1.52 1.57 1.63 1.54 1.46
2 1.10 1.16 1.53 1.58 1.56 1.61 1.47 1.31
4 0.85 1.12 1.34 1.39 1.32 1.16 0.95 0.74

Table 5: Factors of improvement w.r.t. Hadoop for different number
of capsules per machine and cluster load.

Impact of G (number of capsules per machine): We now
provide the rationale for picking G = 24. Table 5 shows the
factors of improvements w.r.t. Hadoop for different values of
G and levels of contention.

The main takeaways are as follows: for G = 8 the perfor-
mance gap between WHIZ and Hadoop is low (< 1.1×). This
is expected because small number of capsules results in less
data locality (each capsule is more likely to be spread). Fur-
ther, the gap decreases at high resource contention. In fact,
at 4× the cluster load, Hadoop performs better (0.85×). At
larger values of G the performance gap increases. For exam-
ple, at G = 24, WHIZ gains are the most (between 1.39× and
1.58×). This is because larger G implies (1) more flexibility
for WHIZ to balance the load across machines; (2) more likely
that few capsules are spread out; (3) lesser data skew and
more predictable per task performance. However, a very large
G does not necessarily improve performance, as it can lead to
massive task parallelism. The resulting scheduling overhead
degrades performance, especially at high load.
Altruism: Assigning resources altruistically is beneficial as it
improves median (95th %-ile) JCT by 1.48× (4.8×) for our
TPC-DS runs w.r.t a greedy approach where tasks use all of
their available resources. Only 16% jobs are slowed down by
≤ 0.6×.

10 Related Work
We now discuss the various related efforts to overcome the
various limitations of compute-centricity. WHIZ, with its clean
separation of compute and intermediate data, overcomes the
various limitations of compute-centricity in a unified manner
while prior related efforts propose point-fixes to a subset of
the limitations that plague compute-centric execution engines.
Data opacity: Almost all database and bigdata SQL sys-
tems [10, 12, 54] use statistics computed ahead of time to
optimize execution. Adaptive query optimizers (QOs) [22]
use dynamically collected statistics and re-invoke the QO to
re-plan queries top-down. In contrast, WHIZ alters the query
plans on-the-fly at the execution layer based on run-time data
properties, thereby circumventing additional expensive calls
to the QO. Tukwila [30] reformulates queries by using run-
time visibility in a limited fashion to fix poor statistics mainte-
nance in QOs. WHIZ instead enables much richer visibility and
supports a richer set of actions that enable true data-centric
behavior. RoPE [12] leverages historical statistics from prior
plan executions in order to tune future executions. WHIZ,

instead uses runtime properties.
CIEL [45] is an execution engine that provides support for

data-dependent iterative or recursive algorithms by dynami-
cally deciding the execution graph as tasks execute. However,
low-level execution aspects such as per-stage parallelism are
decided beforehand. Optimus [33] extends frameworks such
as CIEL [45] and Dryad [29] to enable runtime logic rewrit-
ing and parallelism selection by using streaming-based algo-
rithms to collect aggregated statistics on intermediate data.
RIOS [39] is an optimizer for Spark that solely focuses on
optimizing joins by deciding the join order and stage-level
join implementation using the approximate statistics collected
at runtime. While Optimus and RIOS attempt to provide data
visibility, neither of them does a clean separation of com-
pute and data; this limits data-local processing and imposes
I/O interference as intermediate data organization is deter-
mined by the compute structure. Moreover, both still resort to
compute-driven scheduling and do not use data visibility to de-
cide if/when tasks should be scheduled. Further, RIOS adopts
static per-stage parallelism, and cannot make fine-grained
logic changes (e.g., task-level) as table-level statistics are ag-
gregated by a separate Spark job and then sent to the Spark
driver which is responsible for making runtime changes. Over-
all, WHIZ is a general approach to data-driven computation
that subsumes all prior efforts, and enables new data-driven
execution benefits; its clean separation of data enables data-
locality and I/O isolation management.
Skew and parallelism: Some parallel databases [25, 34, 55]
and big data systems [38] dynamically adapt to data skew
for single large joins. In contrast, WHIZ holistically solves
data skew for all joins across multiple jobs. [25, 38] deal with
skew in MapReduce by dynamically splitting data for slow
tasks into smaller partitions and processing them in parallel.
But, they can cause additional data movement from already
slow machines leading to poor performance. Hurricane [16]
mitigates skew via an adaptive task partitioning scheme by
cloning slow tasks at runtime and performing data organiza-
tion such that all tasks, be it the primary task or its clones,
can access data that requires processing. However, Hurricane
can lead to additional processing overheads as it does not
take data locality into account while organizing data (data
corresponding to the same key can be spread across mul-
tiple machines) and also involves an additional merge step
that combines the partial outputs of the clones using the end-
user provided merging logic. Moreover, Hurricane does not
have fine-grained visibility into intermediate data and thus
cannot do fine-grained task logic changes and still adopts
compute-driven scheduling. Henge [32] supports multi-tenant
streaming by deciding parallelism based on SLOs. However,
it still adopts compute-driven scheduling.
Decoupling: Naiad [44] and StreamScope [53] also decou-
ple intermediate data. They tag intermediate data with vector
clocks which are used to trigger compute in the correct or-
der. Both support ordering driven computation, orthogonal to

data-driven computation in WHIZ. Also, StreamScope is not
applicable to batch/graph analytics. Crail [49] decouples inter-
mediate data from compute so that various execution engines
can easily leverage modern storage hardware (including tiered
storage) to perform intermediate data management. However,
the compute structure still decides the number of partitions
across which data is organized. Additionally, it adopts a simi-
lar data storage abstraction as well as data placement policy to
Hurricane and thus incurs additional overheads as it does not
take data locality into account. Moreover, Crail recommends
replicating data in case fault tolerance is required which can
further lead to additional overheads. Instead, WHIZ provides
fault tolerance by intelligent placement of intermediate data
so as to minimize recovery time. Also, similar to Hurricane,
it does not have fine-grained data visibility to drive all aspects
of execution.
Storage inefficiencies: For batch analytics, [31,46] addresses
storage inefficiencies by pushing intermediate data to the
appropriate external data services (like Amazon S3 [1], Re-
dis [9]) while remaining cost efficient and running on server-
less platforms. Similarly, [35] is an elastic data store used
to store intermediate data of serverless applications. How-
ever, since this data is still opaque, and compute and storage
are managed in isolation, these systems cannot support data-
driven computation or achieve data locality and load balancing
simultaneously.

11 Summary
The compute-centric nature of existing data analytics frame-
works hurts flexibility, performance, efficiency, and job iso-
lation. With WHIZ, analytics undergo data-driven execution
aided by a clean separation of compute from intermediate
data. WHIZ enables monitoring of data properties and using
these properties to decide all aspects of execution - what to
launch, where to launch, and how many tasks to launch, while
ensuring isolation. Our evaluation using batch, stream and
graph workloads shows that WHIZ significantly outperforms
state-of-the-art.

Acknowledgments
We would like to thank our shepherd, Chris Rossbach, the
anonymous reviewers of NSDI’21 and the members of WISR
Lab for their insightful comments and suggestions. This re-
search was supported by NSF Grants CNS-1565277, CNS-
1719336, CNS-1763810, CNS-1838733 and by gifts from
Google and VMware.

References
[1] Amazon S3. https://aws.amazon.com/s3/.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] Apache Hive. http://hive.apache.org.

[4] Apache Samza. http://samza.apache.org.

https://aws.amazon.com/s3/
http://hadoop.apache.org
http://hive.apache.org
http://samza.apache.org

[5] Apache Tez. http://tez.apache.org.

[6] Cloudlab. https://cloudlab.us.

[7] Presto | Distributed SQL Query Engine for Big Data.
prestodb.io.

[8] Protocol Buffers. https://bit.ly/1mISy49.

[9] Redis. https://redis.io/.

[10] Spark SQL. https://spark.apache.org/sql.

[11] Storm: Distributed and fault-tolerant realtime computa-
tion. http://storm-project.net.

[12] S. Agarwal, S. Kandula, N. Burno, M.-C. Wu, I. Stoica,
and J. Zhou. Re-optimizing data parallel computing. In
NSDI, 2012.

[13] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Effective Straggler Mitigation: Attack of the Clones.
In NSDI, 2013.

[14] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-
ica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers
in mapreduce clusters using Mantri. In OSDI, 2010.

[15] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark SQL: Relational data processing
in Spark. In SIGMOD, 2015.

[16] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and
W. Zwaenepoel. Rock you like a hurricane: Taming
skew in large scale analytics. In EuroSys, 2018.

[17] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In WWW,
2011.

[18] P. Boldi and S. Vigna. The webgraph framework i:
Compression techniques. In WWW, 2004.

[19] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache flink: Stream and
batch processing in a single engine. IEEE Computer
Society TCDE Bulletin, 36(4), 2015.

[20] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer clusters
with Orchestra. In SIGCOMM, 2011.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[22] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Found. Trends databases, 1(1):1–140, Jan.
2007.

[23] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource Fairness:
Fair allocation of multiple resource types. In NSDI,
2011.

[24] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, 2014.

[25] K. A. Hua and C. Lee. Handling data skew in multi-
processor database computers using partition tuning. In
VLDB, 1991.

[26] B. Huang, N. W. Jarrett, S. Babu, S. Mukherjee, and
J. Yang. Cumulon: Matrix-based data analytics in the
cloud with spot instances. PVLDB, 9(3):156–167, 2015.

[27] B. Huang and J. Yang. Cumulon-d: Data analytics in a
dynamic spot market. PVLDB, 10(8):865–876, 2017.

[28] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale sys-
tems. In ATC, 2010.

[29] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, 2007.

[30] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S.
Weld. An adaptive query execution system for data
integration. ACM SIGMOD Record, 1999.

[31] E. Jonas, Q. Pu, S. Venkataraman, I. Stoice, and B. Recht.
Occupy the cloud: Distributed computing for the 99%.
In SOCC, 2017.

[32] F. Kalim, L. Xu, S. Bathey, R. Meherwal, and I. Gupta.
Henge: Intent-driven multi-tenant stream processing. In
SoCC, 2018.

[33] Q. Ke, M. Isard, and Y. Yu. Optimus: A dynamic rewrit-
ing framework for data-parallel execution plans. In
EuroSys, 2013.

[34] M. Kitsuregawa and Y. Ogawa. Bucket spreading par-
allel hash: A new, robust, parallel hash join method for
data skew in the super database computer (sdc). In
VLDB, 1990.

[35] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
and C. Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In OSDI, 2018.

[36] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder.
Impala: A modern, open-source SQL engine for Hadoop.
In CIDR, 2015.

http://tez.apache.org
https://cloudlab.us
prestodb.io
https://bit.ly/1mISy49
https://redis.io/
https://spark.apache.org/sql
http://storm-project.net

[37] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kel-
logg, S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja.
Twitter heron: Stream processing at scale. In SIGMOD,
2015.

[38] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-
tune: Mitigating skew in mapreduce applications. In
SIGMOD, 2012.

[39] Y. Li, M. Li, L. Ding, and M. Interlandi. Rios: Runtime
integrated optimizer for spark. In SoCC, 2018.

[40] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou.
Streamscope: continuous reliable distributed processing
of big data streams. In NSDI, 2016.

[41] K. Mahajan, M. Chowdhury, A. Akella, and S. Chawla.
Dynamic query re-planning using QOOP. In OSDI,
2018.

[42] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system
for large-scale graph processing. In SIGMOD, 2010.

[43] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen,
et al. Mllib: Machine learning in apache spark. JMLR,
17(1):1235–1241, 2016.

[44] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In SOSP, 2013.

[45] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. Ciel: A Universal
Execution Engine for Distributed Data-Flow Computing.
In NSDI, 2011.

[46] Q. Pu, S. Venkataraman, and I. Stoica. Shuffling, fast
and slow: Scalable analytics on serverless infrastructure.
In NSDI, 2019.

[47] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,
and C. Curino. Apache tez: A unifying framework for
modeling and building data processing applications. In
SIGMOD, 2015.

[48] P. Snyder. tmpfs: A virtual memory file system. In
EUUG Conference, 1990.

[49] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic,
A. Schuepbach, and B. Metzler. Unification of tem-
porary storage in the nodekernel architecture. In ATC,
2019.

[50] A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain,
P. Chakka, S. Anthony, H. Liu, and N. Zhang. Hive – a
petabyte scale data warehouse using Hadoop. In ICDE,
2010.

[51] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In SIGMOD, 2014.

[52] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache Hadoop YARN: Yet another
resource negotiator. In SoCC, 2013.

[53] L. Wei, Q. Zhengping, X. Junwei, Y. Sen, Z. Jingren, and
Z. Lidong. Streamscope: Continuous reliable distributed
processing of big data streams. In NSDI, 2016.

[54] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and rich ana-
lytics at scale. In SIGMOD, 2013.

[55] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling
data skew in parallel joins in shared-nothing systems. In
SIGMOD, 2008.

[56] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys, 2010.

[57] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In NSDI, 2012.

[58] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant stream computation
at scale. In SOSP, 2013.

[59] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in het-
erogeneous environments. In OSDI, 2008.

A WHIZ APIs
Table 6 shows the various APIs exposed by WHIZ that are used
by frameworks running atop WHIZ to submit programs. Simi-
lar to APIs today, (1)–(3) APIs are job composition APIs to
create logical directed graphs (WHIZ has similar APIs to load
a graph). Crucially, WHIZ does not require the frameworks
to specify low-level details like parallelism and partitioning
strategy. The addCustomMonitor API is used by the frame-
work to submit UDFs to collect custom statistics (apart from
the built-in monitors that WHIZ supports).

During the data embellishment phase, the framework
annotates the logical graph with execution and modifi-
cation predicates using addExecutionPredicate API and
addModi f icationPredicate API respectively. The frame-
work provides the predicates based on data properties via
a UDF.

We now show how to write execution and modification
predicates for a number of applications used in our testbed
experiments (§9).

Figure 12a shows the execution predicate used to run the
PageRank algorithm. Specifically, the UDF specifies that as
soon as 1000 messages corresponding to a vertex are received,
the data is ready to be processed. Similarly, Figure 12b shows
the execution predicate used to run the streaming job that
returns the top 5 words when we see 100 distinct words. This
predicate indicates that as soon as 100 unique key records
globally have been received, the data is ready to be processed.

Lastly, Figure 12c shows how to specify modification pred-
icates to decide the join algorithm on the fly for a batch SQL
query as well as a streaming query involving a temporal join.
This predicate takes as input the properties collected of the
two capsules (from the two input tables) and chooses the join
algorithm based on the amount of skew. If the amount of skew
is less than the threshold specified by the framework, then
sort-merge join is used; otherwise hash join is chosen.

B Allocating Capsules to Machines ILP
We consider how to place multiple jobs’ capsules to avoid
hotspots, reduce per-capsule spread (for data locality) and
minimize job runtime impact on data loss. We formulate a
binary integer linear program (see Table 7) to this end. The
indicator decision variables, xk

i , denote that all future data
to capsule gk is materialized at machine Mi. The ILP finds
the best xk

i ’s that minimizes a multi-part weighted objective
function, one part each for the three objectives mentioned
above.

The first part (O1) represents the maximum amount of data
stored across all machines across all capsules. Minimizing
this ensures load balance and avoids hotspots. The second
part (O2) represents the sum of data-spread penalty across
all capsules. Here, for each capsule, we define the primary
location as the machine with the largest volume of data for that
capsule. The total volume of data in non-primary locations
is the data-spread penalty, incurred from shuffling the data

prior to processing it. The third part (O3) is the sum of fault-
tolerance penalties across capsules. Say a machine m storing
intermediate for current stage s fails; then we have to re-
execute s to regenerate the data. If the machine also holds
data for ancestor stages of s then multiple stages have to be
re-executed. If we ensure that data from parent and child
stages are stored on different machines, then, upon child data
failure only the child stage has to be executed. We model
this by imposing a penalty whenever a capsule in the current
stage is materialized on the same machine as the parent stage.
Penalties O2, O3 need to be minimized.

Finally, we impose isolation constraint (C1) requiring the
total data for a job to not exceed an administrator set quota
Q j. Quotas help ensure isolation across jobs.

However, solving this ILP at scale can take several tens
of seconds delaying capsule placement. Thus, WHIZ uses a
linear-time rule-based heuristic to place capsules (as described
in §4).

C WHIZ Microbenchmarks
Apart from the experiments on the 50-machine cluster (§9),
we also ran several microbenchmarks to delve deeper into
WHIZ’s data-driven benefits. The microbenchmarks were run
on a 5 machine cluster and the workloads consists of the
following jobs: J1 (v1→ v2) and J2 (v1→ v2→ v3). These
patterns typically occur in TPC- DS queries.
Skew and parallelism: Figure 13a shows the execution of
one of the J2 queries from our workload when running WHIZ

and CC. WHIZ improves JCT by 2.67× over CC. CC decides
stage parallelism tied to the number of data partitions. That
means stage v1 generates 2 intermediate partitions as config-
ured by the user and 2 tasks of v2 will process them. However,
execution of v1 leads to data skew among the 2 partitions
(1GB and 4GB).On the other hand, WHIZ ends up generating
capsules that are approximately equal in size and decides at
runtime a max. input size per task of 1GB (twice the largest
capsule). This leads to running 5 tasks of v2 with equal input
size and 2.1× faster completion time of v2 than CC.

Over-parallelizing execution does not help. With CC, v2
generates 12 partitions processed by 12 v3 tasks. Under re-
source crunch, tasks get scheduled in multiple waves (at 570s
in Figure 13a) and completion time for v3 suffers (85s). In
contrast, WHIZ assigns at runtime only 5 tasks of v3 which
can run in a single wave; v3 finishes 1.23× faster.
Straggler mitigation: We run an instance of J1 with 1 task
of v1 and 1 task of v2 with an input size of 1GB. A slowdown
happens at the v2 task, which was assigned 2 capsules by
WHIZ.

In CC (Figure 13b), once a straggler is detected (v2 task
at 203s), it is allowed to continue, and a speculative task v′2
is launched that duplicates v2’s work. The work completes
when v2 or v′2 finishes (at 326s). In WHIZ, upon straggler
detection, the straggler (v2) is notified to finish processing
the current capsule; a task v′2 is launched and assigned data

API Description
1 createJob(name:Str, type:Type) Creates a new job which can be of type BATCH, STREAM or GRAPH.
2 createStage(j:Job, name:Str, impl:StageImpl, prop:StageProperties) Adds a logical stage of to a Job with a default processing logic. StageProperties specifies

properties of the logic (e.g., if it is commutative+associative).
3 addDependency(j: Job, s1: Stage, s2: Stage) Adds a starts before relationship between stages s1 and s2.
4 addCustomMonitor(j:Job, s:Stage, impl:DataMonitorImpl) Adds a custom data monitor to compute statistics over data generated by stage s. Data-

MonitorImpl is a UDF.
5 addExecutionPredicate(j:Job, s:Stage, predicates:ExecutionPred) Decides when downstream stages can consume current stage’s data based on the predicates

specified by ExecutionPred. ExecutionPred is used by DS to decide when data is ready for
processing.

6 addModificationPredicate(j:Job, s:Stage, predicates:ModifyPred) Decides processing logic for the input capsules that are ready based on the predicates
specified by ModifyPred. ModifyPred is used by the ES to decide which processing logic
to use based on the data properties from the DS.

Table 6: WHIZ APIs - Used by the frameworks running atop WHIZ to translate the high-level job submitted by end users to WHIZ-compatible
data-driven logical graphs.

1 def ExecutionPredicate():
2 for key in keys:
3 if (DS.monitor.num_entries(key) >= 1000):
4 return true
5 return false

1 def ExecutionPredicate():
2 if (DS.monitor.global_unique_entries >= 100):
3 return true
4 return false

1 def ModificationPredicates(capA, capB):

2 // THRESHOLD is set by the framework

3 sizeRatio = max(capA.size, capB.size)/ min(capA.size, capB.size)
4 if (sizeRatio >= THRESHOLD):

5 return HashJoinImpl //Refers to hash join
6 return SortMergeJoinImpl //Refers to sort-merge join

Figure 12: Examples of predicates. (a) Execution predicate for the PageRank algorithm - deem capsule ready when it has 1000 messages, (b)
Execution predicate for the streaming application - deem capsules ready when we see 100 unique entries and (c) Modification predicate for
changing join algorithm on the fly.

Objectives (to be minimized):

O1 maxi

(
∑
k
(bk

i + xk
i ek)

)

O2 ∑
k

Pk−

∑
i∈Ik
−

xk
i

bk
î(k)+ ∑

i∈Ik
+

xk
i

(
bk

i + ek
)

O3 ∑
k

(
(1− f k) ∑

i∈I◦
xk

i

)
Constraints:

C1 ∑
k:J(gk)= j

(
bk

i + xk
i ek
)
≤ Q j, ∀ j, i

Variables:
xk

i Binary indicator denoting capsule gk is placed on ma-
chine i

Parameters:
bk

i Existing number of bytes of capsule gk in machine i
ek Expected number of remaining bytes for capsule, gk

Pk ek +∑
i

bk
i

J(gk) The job ID for job gk

î(k) argmaxi bk
i

Ik
−, I

k
+ {i : bk

i ≤ bk
î(k)
− ek}, {i : bk

i > bk
î(k)
− ek}

f k Binary parameter indicating that capsules for same
stage as gk share locations with capsules for preceding
stages

I◦ Set of machines where capsules of preceding stages
are stored

Q j Administrative storage quota for job, j.

Table 7: Binary ILP formulation for capsule placement.

from v2’s unprocessed capsule. v2 finishes processing the first
capsule at 202s; v′2 processes the other capsule and finishes
1.7× faster than v′2 in CC.
Modification Predicates: We consider a job which processes
words and, for words with < 100 occurrences, sorts them by
frequency. The program structure is v1→ v2→ v3, where v1

0
2
4
6
8

0 200 400 600 800

R
un

ni
ng

 T
as

ks

Time [Seconds]

Hadoop - v1 Hadoop - v2 Hadoop - v3
Whiz - v1 Whiz - v2 Whiz - v3

(a)

0 50 100 150 200 250 300 350
Time [Seconds]

Whiz

Hadoop

Straggler
Task

Whiz Slowdown
Notification

Whiz Speculative
Task

Terminate
Straggler Task

Hadoop
Speculative

Taskv1

v1

v2

v2

v2’

v2’

(b)
Figure 13: (a) Controlling task parallelism significantly improves
WHIZ’s performance over CC. (b) Straggler mitigation with WHIZ

and CC.

processes input words, v2 computes word occurrences, and v3
sorts the ones with < 100 occurrences. In CC, v1 generates
17GB of data organized in 17 partitions; v2 generates 8GB
organized in 8 partitions. Given this, 17 v2 tasks and 8 v3
tasks execute, leading to a CC JCT of 220s. Here, the entire
data generated by v2 has to be analyzed by v3. In contrast,
WHIZ uses modification predicates for v3 as follows - (a) if
all the # entries of all keys in the capsule is > 100, then we
unnecessarily don’t launch a task; (b) otherwise we launch the
task to do the sort. We observe that WHIZ ignores processing
two capsules at runtime, and 6 tasks of v3 (instead of 8) are
executed; JCT is 165s (1.4× better).

	Introduction
	Compute-Centric vs. Data-Driven
	Today: Compute-Centric Engines
	Whiz: A Data-Driven Framework
	Overcoming Compute-centricity Issues

	Whiz Overview
	Data Store
	Capsule: A Unit of Data in Whiz
	Fast Capsule Allocation

	Data Visibility
	Data Monitoring
	Indicating Data Readiness

	Execution Service
	Selecting Compute Logic
	Task Parallelism, Placement, and Sizing

	Fault Tolerance
	Implementation
	Evaluation
	Experiment Setup
	Batch Analytics
	Graph Processing
	Stream Processing
	Whiz Overheads

	Benefits of Data-driven Computation
	Load Balancing, Locality, Fault Tolerance
	Sensitivity Analysis

	Related Work
	Summary
	Whiz APIs
	Allocating Capsules to Machines ILP
	Whiz Microbenchmarks

