
Harmony: Coordinating Network, Compute, and Storage in
Software-Defined Clouds

Robert Grandl, Yizheng Chen, Junaid Khalid, Suli Yang
Ashok Anand, Theophilus Benson and Aditya Akella

September 15, 2013

1 Introduction

The progress of a big data job is often a function of
storage, networking and processing. Hence, for efficient
job execution, it is important to collectively optimize all
three components. Prior proposals [1], in contrast, have
focused on mainly on one or two of the three compo-
nents. This narrow focus constraints the extent to which
these proposals can support efficient operation of big
data applications.

We argue for treating all three components as equal
entities and facilitating tighter coordination among
them. We argue that this helps substantially improve
the performance of big data applications. This becomes
apparent when we consider how coordination helps to
deal with unexpected situations, e.g., straggler or “slow”
tasks, or failed machines: in such cases, e.g., the cloud
controller can invoke multiple replica tasks at well-
informed locations (based on input about data locations
and network conditions), while at the same time the
network assigns higher bandwidth to the corresponding
flows for faster execution. Equally importantly, coordi-
nation also improves overall resource utilization. For ex-
ample, if it is known that a job may not meet its dead-
line [2], we can revoke its network resources (stop run-
ning flows), storage resources (clear memory for the
data), and processing resources (empty out slots) collec-
tively.

Copyright c© 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1. http://dx.doi.org/10.1145/2523616.2525961

2 Architecture

Given the shortcomings of earlier approaches, we envi-
sion an architecture that enables interaction and coordi-
nation among three main components – Cloud controller
(CC), Storage controller (SC) and Network controller
(NC) – providing a platform for efficient execution of
big-data applications. The architecture should have the
following properties:
• Participation: The architecture should allow each of

the components to participate in making decisions for
any map/reduce operation in any stage.

• Authoritative Decision: The architecture should del-
egate the final decision for any map/reduce operation
to the component which has the best knowledge of the
domain to which the operation belongs.

• Dynamic control: The architecture should enable
components to dynamically change the configuration
for any big-data application. For example, it should
be possible to revoke certain tasks, and their flows.

3 Challenges

What makes coordination and collective optimization
challenging, and delegating key actions to the network
sub-optimal, is that there is a high degree of dependency
between the three components. For instance, the perfor-
mance of storage (e.g., retrieval of data for a map task) is
dependent on the underlying network conditions, which
in turn is dependent on the transfers between different
map and reduce tasks. The availability of processing
slots determines where tasks can be placed, and in turn
plays a crucial role in defining network utilization.

Achieving coordination requires disentangling and
streamlining these dependencies. In other words, we
must identify which of the three components – process-
ing, storage or network – must make the authoritative
decision for a certain action, what information it needs,
and how it obtains the information.



References
[1] M. Chowdhury and I. Stoica. Coflow: a networking abstraction for cluster

applications. In HotNets, 2012.

[2] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than
late: meeting deadlines in datacenter networks. In SIGCOMM, 2011.


