Design and Implementation of a Framework for
Software-Defined Middlebox Networking

Aaron Gember, Robert Grandl, Junaid Khalid, Aditya Akella
University of Wisconsin-Madison, Madison, WI, USA

{agember,rgrandl,junaid,akella}@cs.wisc.edu

Categories and Subject Descriptors

C.2.3 [Network Operations|: Network management

Keywords
Middlebox; Software-defined networking

1. MOTIVATION

Middleboxes (MBs) are used widely to ensure security
(e.g., intrusion detection systems), improve performance (e.g.,
WAN optimizers), and provide other novel network func-
tionality [4, 6]. Recently, researchers have proposed several
new architectures for MB deployment, including Stratos [2],
CoMb [4], and APLOMB [6]. These frameworks all advo-
cate dynamic deployment of software-based MBs with the
goal of increasing flexibility, improving efficiency, and re-
ducing management overhead.

However, approaches for controlling the behavior of MBs
(i.e., how MBs examine and modify network traffic) remain
limited. Today, configuration policies and parameters are
manipulated using narrow, MB-specific configuration inter-
faces, while internal algorithms and state are completely
inaccessible and unmodifiable. This apparent lack of fine-
grained control over MBs and their state precludes correct
and performant implementation of control scenarios that in-
volve re-allocating live flows across MBs: e.g., server mi-
gration, scale up/down of MBs to meet cost-performance
trade-offs, recovery from network or MB failures, etc.

Several key requirements must be satisfied to effectively
support the above scenarios. To illustrate these require-
ments, we consider a scenario where MB instances are added
and removed based on current network load [2] (Figure 1).
When scaling up, some in-progress flows may need to be
moved to a new MB instance to reduce the load on the orig-
inal instance. To preserve the correctness and fidelity of
MB operations, the new instance must receive the internal
MB state associated with the moved flows, while the old
instance still has the internal state associated with the re-
maining flows. For some MBs (e.g., an intrusion prevention

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGCOMM’13, August 12-16, 2013, Hong Kong, China.

ACM 978-1-4503-2056-6/13/08.

467

Scale Up Scale Down

Add w/ Add w/{| pemove emove

config config “

wips J \RE IPS EX

O, @Move Clone(® ) U)Merge Merge® V’I)V’I)

Update Update -~ L J

Routing | IPS / \RE_J Routing |_|ps | \RE_J
Figure 1: Horizontal scaling of MBs

system (IPS) this means we need the ability to move internal
MB state at fine granularity. For other MBs (e.g., a redun-
dancy elimination (RE) system) we instead need the ability
to clone shared internal MB state. Regardless of the type of
MB being scaled, we want the new MB instance to behave
the same as the original, requiring the ability to clone and
dynamically modify MB configurations. When scaling down,
we need to consolidate several MB instances into fewer in-
stances, requiring the ability to merge internal MB state
from multiple MBs. Finally, we need the ability to coor-
dinate MB state changes with network routing changes; this
ensures flows aren’t directed to MB instances until they have
the necessary state.

Existing techniques—e.g., virtual machine snapshots, joint
control of MB configuration and network routing [5], and
application-level libraries [3]—can address some of these re-
quirements, but these approaches have limited applicability
and tend to reduce performance or cause correctness issues.

2. OBJECTIVE & CHALLENGES

Inspired by software-defined networking (SDN), we ad-
vocate for the development of a software-defined middlebox
networking (SDMBN) framework to address the above re-
quirements. An ideal SDMBN framework offers useful ab-
stractions for fine-grained, software-driven control of MB in-
ternals without wresting too much control away from the
MBs themselves. Such a carefully balanced framework can
simplify management of complex MB deployments and en-
gender a variety of rich dynamic MB control scenarios.

Designing an SDMBN framework requires addressing two
key roadblocks. First, compared to switch forwarding state,
MB state is highly diverse. A single MB may receive dozens
of configuration inputs and its internal logic may establish
and manipulate hundreds of pieces of in-depth state whose
structure and semantics varies significantly across MB types
and vendors. Second, internal MB logic is complex. Each
MB features intricate and unique packet processing logic
that is closely tied to internal state; unlike network switches,
there is not a clean separation between control and data
planes.



|Control App (scale up)|

route(k, r)
(€ MB Controller ) SDN Controller

get(K)gdel(kgput(s) event[p] \@
% 5 %B -

Figure 2: OpenMB architecture and example

move (k)

state[s]

event[p]

3. FRAMEWORK DESIGN

We design and implement OpenMB, an exemplar SDMBN
framework that overcomes the above challenges. OpenMB
represents one point in the SDMBN design space, carefully
trading-off some opportunities for vendor optimizations in
exchange for increased control application flexibility. Its de-
sign is based on: (%) our observation that different MBs have
commonalities in the role (configuring, supporting, or re-
porting) and partitioning (per-flow or shared) of pieces of
MB state; and (i7) a careful division of responsibility for
state changes—MBs are responsible for creating and modi-
fying supporting and reporting state, as they do today, and
control applications are responsible for manipulating where
specific pieces of supporting and reporting state reside, as
well as creating and updating all configuration state.

OpenMB'’s architecture consists of an MB controller, con-
trol applications, and slightly modified MBs as shown in
Figure 2. Our MB-facing (“southbound”) API defines how
MB state is represented and how it can be access and ma-
nipulated at fine-granularity. In particular, state is repre-
sented as key-value pairs, with the key being either a string
constant (for configuration state) or a flow identifier simi-
lar to the OpenFlow 10-tuple (for supporting and reporting
state). State is installed in and retrieved from MBs using
simple get, put, and delete calls. The southbound API also
includes an event abstraction that allows MBs to notify the
controller when they internally create or manipulate state.
This model (unlike Split/Merge [3]) allows MBs to continue
processing traffic while state is being moved or cloned and
still guarantees the state is consistent and correct.

Our application-facing (“northbound”) API encapsulates
the intricacies of state operations on individual MBs by ex-
posing a set of high-level operations (move, clone, merge,
etc.) to control applications. The MB controller brokers
these operations, issuing the appropriate southbound API
calls directly to MBs, buffering and forwarding events, and
dealing with operation failures. Exposing a separate API to
control applications simplifies application design and limits
the potential for applications to make state changes that will
lead to correctness or performance issues.

Figure 2 shows the API calls invoked in the case of MB
scale up. The scale up control application first issues the
northbound API call move (k) to transfer a subset of state,
identified by the key k, from MB A to MB B. The MB con-
troller subsequently issues a series of southbound API calls
to the appropriate MBs: it issues get (k) to MB A, receives
state s, and issues put (s) to MB B. If a packet p is received
by MB A during these operations and the processing of this
packet involves a change to the state s, then MB A raises
a re-process event for p; the controller passes event[p] to
MB B, which makes the necessary changes to s. When move
returns successfully, the application triggers an update of
network forwarding state by issuing the call route(k,r) to
the SDN controller to change the forwarding for flows iden-

468

HTTP Packet  «
Event Received

mop

.T

Other Packet
Event Raised  x

Original MB  New MB

Figure 3: Actions/events during scale up scenario

tified by the key k to the route r. Finally, the MB controller
issues a del (k) to MB A to flush the transfered state s which
MB A no longer needs.

4. IMPLEMENTATION & DEMO

We have implemented a prototype of OpenMB consisting
of an MB controller that implements our northbound API,
four MBs—an intrusion prevention system (Bro), a traffic
monitor (Prads), a redundancy elimination system (Smart-
RE [1]), and a network address translator (iptables)—mod-
ified to support our southbound API, and control applica-
tions for MB scaling and server migration scenarios. Our
MB controller is implemented as a module (= 1700 LOC)
running atop the Floodlight OpenFlow controller. The MB
controller is event driven to maximize scalability and effi-
ciency. JSON messages are exchanged by the controller and
MBs to invoke operations, send/receive state, and raise/for-
ward events. The four modified MBs rely on a common
code base (/1100 LOC) for MB-controller communications;
additional MB-specific modifications are made to retrieve,
insert, and remove state and to generate and process events.

Our demonstration uses this prototype to illustrate how
OpenMB helps achieve dynamic fine-grained control in MB
scaling and server migration scenarios. We show in real-time
the sequence of actions performed by a control application,
the MB controller, and MBs themselves. For example, Fig-
ure 3 shows the packet processing, API calls, and event rais-
ing/processing that occurs over a 3-second window when a
Prads MB is scaled up and HTTP flows are moved to a new
(top) Prads instance; the solid lines indicate the start and
end of the get call issued to the original Prads instance, and
the dashed lines indicate the start of the first and end of the
last put call issued to the new Prads instance.

5. REFERENCES

[1] A. Anand, V. Sekar, and A. Akella. SmartRE: An
Architecture for Coordinated Network-wide
Redundancy Elimination. In SIGCOMM, 2009.

A. Gember, A. Krishnamurthy, S. St. John, R. Grand],
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.
Stratos: A Network-Aware Orchestration Layer for
Middleboxes in the Cloud. Technical Report
arXiv:1305.0209, 2013.

S. Rajagopalan, D. Williams, H. Jamjoom, and

A. Warfield. Split/Merge: System Support for Elastic
Execution in Virtual Middleboxes. In NSDI, 2013.

V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi.
Design and Implementation of a Consolidated
Middlebox Architecture. In NSDI, 2012.

V. Sekar, R. Krishnaswamy, A. Gupta, and M. K.
Reiter. Network-Wide Deployment of Intrusion
Detection and Prevention Systems. In CoNEXT, 2010.
J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar. Making Middleboxes
Someone Else’s Problem: Network Processing as a
Cloud Service. In SIGCOMM, 2012.

2]





