
Proprietary + Confidential

Fast key-value stores:

An idea whose time has come and
gone

Atul Adya, Robert Grandl, Daniel Myers (Google)
Henry Qin (Stanford)

Since we’re in Italy...
“I come to bury key/value stores,
not to praise them.”

Take-home message
● Remote, in-memory key/value stores are a

performance dead-end
● We need to look at end-to-end application

performance
● Better performance requires better abstractions

Prelude: What is a key/value store?
● Remote, In-Memory,

Key/Value store (RINK)
● Domain-independent API
● Think Memcache or Redis,

not Bigtable or HBase
RINK ServerRINK ServerRINK ServerRINK Server

Application

PUT/GET

Datacenter

Key/value stores are a thing
● Academia: FLOEM (OSDI ‘18), NetCache,

KV-Direct (SOSP ‘17), Mega-KV (VLDB ‘15),
MemcachedGPU (SoCC ‘15), MemC3 (NSDI ‘13),
FaRM, MICA (NSDI ‘14), ...

● Industry: Redis / Memcacheg on all Clouds
○ 44M / 18.7M hits on Google
○ 17.8M for HotOS ;)

How are they used?

Stateless Servers Cross-app coordination

RINK

Application

Database RINK

App 1 App 2

Client Client 1 Client 2

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Goals of this talk: #1
Goal: Convince you that key/value stores have
outlived their usefulness

● Key/value stores make applications slow
● Industry: please stop using them
● Academia: please stop improving them

Goals of this talk: #2
Goal: Convince you that we can do better
● Idea 1: Better performance by better abstractions

○ Stateful servers or domain-specific in-memory stores
● Idea 2: Build infrastructure to enable Idea 1

Disagree? Find a better solution; we’ll use it.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

How can key/value stores be slow?
● NetCache (2017): 2+ billion queries/sec/switch
● KV-Direct (2017): 1.22 billion queries/sec/server
● Mega-KV (2015): 110M queries/sec

All are objectively fast and did interesting work

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

End-to-end view of performance
● No developer wants a fast key/value store per se
● Developers want to build fast applications
● RINK abstraction pushes costs to applications

○ (Un)marshalling
○ Overreads
○ Network latency

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Example: address book service
● Simplified real application (“ProtoCache” in paper)
● Maintains an address book per user
● Imagine implementing using a RINK store

Name: Jane Smith
Phone: 718-555-1212
Address: 651 N34th St...

Name: Bob Jones
Phone: 212-555-1212
Address: 747 6th St...

User 1 User 2

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

(Un)marshalling
● (Mostly) can’t compute

on strings
○ jsnstr.find(“fname: bob”)?

● Need a string ←→ data structure step
● Our experiments: 40% of CPU

RINK

Application

User1: “[{fname: ‘bob’…”

User1:

Our experiments: Over 40% of CPU spent
on (un)marshalling

Client

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

But wait!
● Is (un)marshalling really fundamental?

○ Can’t I just memcpy(&rink, &myobj)?

● Yes (it is); no (you can’t)
○ Object graphs / pointers
○ Cross-language interoperability
○ Software upgrades, schema evolution

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Overreads
● Key/value API forces whole

record read
● ProtoCache: 4% of value

needed (mean)
● Another system: 7/70 fields,

37% of bytes (mean)
RINK

Application

User1: “[{fname: ‘bob’…”

User1:

Client

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

But wait!
● Isn’t this a strawman data model? No.
● Non-workable alternatives:

○ Multiple key/value pairs
○ Lists / sets / sparse columns
○ ...

● In general: danger in tying application too
closely to “storage” system

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Network Latency
● Even with fast networks,

large value transfer takes time
● 10MB address book?

○ 80 ms at 1 Gbps
○ 8 ms at 10 Gbps

RINK

Application

User1: “[{fname: ‘bob’…”

User1:

Client

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Remember these?

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

But wait!
● Isn’t 10MB an absurdly huge value?
● No.
● Research systems often focus on small values

○ Production workloads can have large values
○ Large values exacerbate (un)marshalling, overread,

and network latency costs

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Industrial vs Research Workloads

Industrial Research

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Amdahl’s Law

Our Proposal

● Better abstractions
● New infrastructure

Change the abstraction
● Costs exist regardless of RINK performance
● To reduce / eliminate, change the abstraction
● Store domain-specific application objects, not

strings or simple data structures

Original Architectures

RINK

Application

Database RINK

App 1 App 2

Client Client 1 Client 2

Revised Architecture: Best Case

Application

Database

Objects

● Embed sharded cache
directly into application

● One cache access per
application operation

● Eliminates
(un)marshalling,
overreads, network latency

● Relatively common

Client

Revised Architecture: Coordination

Custom Store

App 1 App 2
Domain-specific RPCs; e.g.
ReadContact(userid, email)

Objects

● Replace RINK
with new server

● Can reduce
(un)marshalling,
overreads,
network latency

Client 1 Client 2

Revised Architecture: Fanout

● For non-partitionable
workloads, request fanout

● Hybrid of first two models
● Application serves as

custom store

Custom store

Application

Database

Client

Objects

Wouldn’t it be nice...
...to have efficient partial reads, RMW?
class Objects<V> {
 // Retrieve object from store.
 V* Get(string key);

 // Return object to store.
 bool Commit(string key, V* value);
};

void HandleAddressLookupRpc(String userId, String contactEmail, Writer out)
{
 AddressBook contacts = objects.Get(userId);
 out.write(contacts.lookupByEmail(contactEmail));
 contact.recordAccess(); // Bump hit count.
 objects.Commit(userId, contacts);
}

Why can’t we write code this way?
● Systems are constantly perturbed
● Replication for load, availability
● Fine; let’s make it possible

New Abstraction: LINK Store
● Linked, In-Memory

Key/Value Store
● Stores application

objects
● Data migration on

reconfiguration

class Link<V> {
 interface Marshaller {
 string marshal(V v);
 V unmarshal(string s);
 }
 V* Get(string key);
 bool Commit(string k, V* v);
};

Deployment Experience at Google
● Built a LINK prototype with load balancing (Slicer,

OSDI 2016) and state migration
● ProtoCache rewritten using a subset of prototype

○ Reduced 99.9% latency by 40% (~750 ms to ~450 ms)
● Events processing system being built

○ No numbers yet, but developers like the abstraction

Summary
● RINK costs are under-appreciated
● Reduce costs by changing architectures

○ Stateful services or domain-specific stores
● LINK to make new architectures easy

Not a LINK fan? Find a better solution; we’ll use it.

Call to the Community
● Please think about end-to-end performance
● Many technical problems to solve, including:

○ Replication for load and availability
○ Freshness
○ Partitioning code between servers and store

● Please help!

