FCP: A Flexible Transport Framework for Accommodating Diversity

Dongsu Han (KAIST)

Robert Grandl[†], Aditya Akella[†], Srinivasan Seshan^{*}

† University of Wisconsin-Madison*Carnegie Mellon University

Resource Allocation

Fairness and efficiency

Problems in Supporting Diversity in Congestion Control

Cannot ensure coexistence.

Evolution of TCP

- 1. End-point flexibility: Purely end-point based
- 2. Coexistence: Invariant for fairness

(TCP friendliness)

End-point based vs. Router-Assisted

High Flexibility, Diversity

Can we achieve the best of both worlds?

Router-Assisted [XCP, RCP]

Feedback on

network's state

High Efficiency

Our Approach

1. Decouple coexistence issues (fairness and efficiency) from end-point control

2. Introduce generic abstractions for resource allocation.

4

Decoupling for Flexibility

budget to its flows.

Flow i's budget $w_{i,}$ subject to $W \ge \Sigma w_{i}$

Flow i's price: P_i (\$/Byte)

Flow i's rate:

$$R_i = \text{budget/price} = w_i / P_i \text{ (Byte/sec)}$$

Decoupling for Flexibility

Flow i's budget $w_{i,j}$ subject to $W \ge \Sigma w_i$

1. Flexibility at the end-points in how its budget is used.

 Feedback: "congestion price" reflecting the "cost" of sending data across the link [Kelly]

 Feedback: "congestion price" reflecting the "cost" of sending data across the link [Kelly]

This implements proportional fairness [Kelly].

Router updates the price, upon packet reception.

Price (\$/byte) = f(Average recent load)

Router updates the price, upon packet reception.

Instantaneous Incoming budget (\$)

= Price (\$/byte) x Bytes Received (bytes)

Router stores recent history of price, price(t)

Feed-forward: Preloading

Feed-forward: Preloading

Evaluation

End-point Flexibility: Topology

Budget allocation is up to end-points

Budget allocation is up to end-points

End-point Diversity: Background flows

Diversity in Network Pricing

- FCP can also support diverse behaviors in network price generation.
- Examples (in the paper)
 - Deadline support [D³ SIGCOMM 11]
 - Aggregate resource allocation in a multi-tenant data-center
 - Stable bandwidth allocation for streaming
 - Multicast congestion control

Deadline Support [D³ SIGCOMM 11]

Differential Pricing for Deadline Support

Differential Pricing for Deadline Support

Conclusion

- FCP accommodates diverse behaviors in resource allocation while utilizing explicit feedback.
- FCP maximizes end-point's flexibility by simplifying the mechanism of coexistence.
- FCP's explicit feed-back and feed-forward provides a generic interface for efficient resource allocation.