## Syntax

## SYMMETRIC ENCRYPTION

A symmetric encryption scheme $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms:


- $\mathcal{K}$ is randomized
- $\mathcal{E}$ can be randomized or stateful
- $\mathcal{D}$ is deterministic


## Example: OTP



Formally: For all $K$ and $M$ we have

$$
\operatorname{Pr}\left[\mathcal{D}_{K}\left(\mathcal{E}_{K}(M)\right)=M\right]=1,
$$

where the probability is over the coins of $\mathcal{E}$
$\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where:

| $\operatorname{Alg} \mathcal{K}$ |
| :--- | :--- | :--- |
| $K \leftarrow\{0,1\}^{k}$ |
| return $K$ |$\quad$| $\operatorname{Alg} \mathcal{E}_{K}(M)$ |
| :--- |
| $C \leftarrow K \oplus M$ |
| return $C$ |$\quad$| $\operatorname{Alg} \mathcal{D}_{K}(C)$ |
| :--- |
| return $M$ |

Correct decryption:

$$
\begin{aligned}
\mathcal{D}_{K}\left(\mathcal{E}_{K}(M)\right) & =\mathcal{D}_{K}(K \oplus M) \\
& =K \oplus(K \oplus M) \\
& =M
\end{aligned}
$$

## Block cipher modes of operation

## Block cipher modes of operation

Block cipher provides parties sharing $K$ with

which enables them to encrypt a 1-block message.
How do we encrypt a long message using a primitive that only applies to n-bit blocks?

## Evaluating Security

Sender encrypts some messages $M_{1}, \ldots, M_{q}$, namely

$$
C_{1} \stackrel{\varsigma}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right), \ldots, C_{q} \stackrel{\varepsilon}{\leftarrow} \mathcal{E}_{K}\left(M_{q}\right)
$$

and transmits $C_{1}, \ldots, C_{q}$ to receiver.
Adversary

- Knows $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$
- Knows $C_{1}, \ldots, C_{q}$
- Is not given K!

Possible adversary goals:

- Recover K
- Recover $M_{1}$

But we will need to look beyond these

Correct decryption relies on E being a block cipher, so that $E_{K}$ is invertible


Adversary has ciphertext $C=C[1] \cdots C[m]$

| Adversary task | Assessment | Why? |
| :---: | :---: | :---: |
| Compute K | seems hard | E is secure |
| Compute $M[1]$ | seems hard | E is secure |

Weakness: $M_{1}=M_{2} \Rightarrow C_{1}=C_{2}$
Why is the above true? Because $E_{K}$ is deterministic:


Why does this matter?

## Security of ECB

Suppose we know that there are only two possible messages, $Y=1^{n}$ and $N=0^{n}$, for example representing

- FIRE or DON'T FIRE a missile
- BUY or SELL a stock
- Vote YES or NO

Then ECB algorithm will be $\mathcal{E}_{K}(M)=E_{K}(M)$.


## Security of ECB

Votes $M_{1}, M_{2} \in\{Y, N\}$ are ECB encrypted and adversary sees ciphertexts $C_{1}=E_{K}\left(M_{1}\right)$ and $C_{2}=E_{K}\left(M_{2}\right)$


Adversary may have cast the first vote and thus knows $M_{1}$; say $M_{1}=Y$. Then adversary can figure out $M_{2}$ :

- If $C_{2}=C_{1}$ then $M_{2}$ must be $Y$
- Else $M_{2}$ must be $N$


## Randomized encryption

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be ANY encryption scheme.
Suppose $M_{1}, M_{2} \in\{Y, N\}$ and

- Sender sends ciphertexts $C_{1} \leftarrow \mathcal{E}_{K}\left(M_{1}\right)$ and $C_{2} \leftarrow \mathcal{E}_{K}\left(M_{2}\right)$
- Adversary $A$ knows that $M_{1}=Y$

Adversary says: If $C_{2}=C_{1}$ then $M_{2}$ must be Y else it must be $N$.

Does this attack work?

Yes, if $\mathcal{E}$ is deterministic.

## Randomized encryption

## Randomized encryption

There are many possible ciphertexts corresponding to each message.
If so, how can we decrypt?
We will see examples soon.


A fundamental departure from classical and conventional notions of encryption.
Clasically, encryption (e.g., substitution cipher) is a code, associating to each message a unique ciphertext.
Now, we are saying no such code is secure, and we look to encryption mechanisms which associate to each message a number of different possible ciphertexts.

An alternative to randomization is to allow the encryption algorithm to maintain state. This might be a counter

- encrypt depending on counter value
- then update counter

We will see schemes that use this paradigm to get around the security weaknesses of deterministic encryption without using randomness.

Randomized

CBC\$, CTR\$
CBCC, CTRC

## CBC\$: Cipher Block Chaining with random IV mode

$\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where:
$\operatorname{Alg} \mathcal{E}_{K}(M)$
$C[0] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, m$ do

$$
C[i] \leftarrow E_{K}(M[i] \oplus C[i-1])
$$

return C

```
Alg (\mathcal{DK}
```

for $i=1, \ldots, m$ do
$M[i] \leftarrow E_{K}^{-1}(C[i]) \oplus C[i-1]$
return M


Correct decryption relies on $E$ being a block cipher so that $E_{K}$ is invertible

## CTRC mode

Sender maintains a counter ctr that is initially 0 and is updated by $\mathcal{E}$ $\langle j\rangle=$ the $n$-bit binary representation of integerj $\left(0 \leq j<2^{n}\right)$


- Decryptor does not maintain a counter


## Security of CBC\$ against key recovery

If adversary has a plaintext $M$ and corresponding ciphertext $C \stackrel{\&}{\leftarrow} \mathcal{E}_{K}(M)$ then it has input-output examples $(M[1] \oplus C[0], C[1]),(M[2] \oplus C[1], C[2])$ of $E_{K}$.


So chosen-message key recovery attacks on $E$ can be mounted to recover $K$.
Conclusion: Security of $C B C \$$ against key recovery is no better than that of the underlying block cipher.

## Voting with CBC\$

Suppose we encrypt $M_{1}, M_{2} \in\{Y, N\}$ with $C B C \$$.


Adversary $A$ sees $C_{1}=C_{1}[0] C_{1}[1]$ and $C_{2}=C_{2}[0] C_{2}[1]$.
Suppose $A$ knows that $M_{1}=Y$.
Can $A$ determine whether $M_{2}=Y$ or $M_{2}=N$ ?
NO!

## Voting with CBC\$

## Assessing security

If $M_{1}=Y$ we have

$A$ knows $C_{1}[0] C_{1}[1]$ and $C_{2}[0] C_{2}[1]$. Now

- If $C_{1}[0]=C_{2}[0]$ then $A$ can deduce that
- If $C_{2}[1]=C_{1}[1]$ then $M_{2}=Y$
- If $C_{2}[1] \neq C_{1}[1]$ then $M_{2}=N$
- But the probability that $C_{1}[0]=C_{2}[0]$ is very small.


## Types of encryption schemes

## Security requirements

Special purpose: Used in a specific setting, to encrypt data of some known format or distribution. Comes with a

$$
\text { WARNING! only use under conditions } X \text {. }
$$

General purpose: Used to encrypt in many different settings, where the data format and distribution are not known in advance.

We want general purpose schemes because

- They can be standardized and broadly used.
- Once a scheme is out there, it gets used for everything anyway.
- General purpose schemes are easier to use and less subject to mis-use: it is hard for application designers to know whether condition X is met.


## E-mail encryption

## Security requirements

E-mail data could be

- English text
- A pdf or executable file
- Votes

Want security in all these cases.

A priori information: What the adversary already knows about the data from the context. For example, it is drawn from $\{Y, N\}$

Data distribution or format: The data may be English or not; may have randomness or not; ...
Security should not rely on assumptions about these things.

Suppose sender computes

$$
C_{1} \stackrel{\lessgtr}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right) ; \cdots ; C_{q} \stackrel{\varepsilon}{\leftarrow} \mathcal{E}_{K}\left(M_{q}\right)
$$

Adversary $A$ has $C_{1}, \ldots, C_{q}$

$$
\begin{array}{c|c}
\text { What if } A & \\
\hline \hline \text { Retrieves } K & \text { Bad! } \\
\text { Retrieves } M_{1} & \text { Bad! }
\end{array}
$$

But also ...

We want to hide all partial information about the data stream.
Examples of partial information:

- Does $M_{1}=M_{2}$ ?
- What is first bit of $M_{1}$ ?
- What is XOR of first bits of $M_{1}, M_{2}$ ?

Something we won't hide: the length of the message

We want a single "master" property MP of an encryption scheme such that

- MP can be easily specified
- We can evaluate whether a scheme meets it
- MP implies ALL the security conditions we want: it guarantees that a ciphertext reveals NO partial information about the plaintext.

Thus a scheme having MP means not only that if adversary has $C_{1} \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right)$ and $C_{2} \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{E}_{K}\left(M_{2}\right)$ then

- It can't get $M_{1}$
- It can't get 1st bit of $M_{1}$
- It can't get XOR 1st bits of $M_{1}, M_{2}$
but in fact implies "all" such information about $M_{1}, M_{2}$ is protected.


## Seeking MP

## Plan

So what is the master property MP?
It is a notion we call indistinguishability (IND). We will define

- IND-CPA: Indistinguishability under chosen-plaintext attack
- IND-CCA: Indistinguishability under chosen-ciphertext attack
- Define IND-CPA
- Examples of non-IND-CPA schemes
- See why IND-CPA is a "master" property, namely why it implies that ciphertexts leak no partial information about plaintexts
- Examples of IND-CPA schemes
- IND-CCA


## Intuition for definition of IND

Consider encrypting one of two possible message streams, either

$$
M_{0}^{1}, \ldots, M_{0}^{q}
$$

or

$$
M_{1}^{1}, \ldots, M_{1}^{q}
$$

Adversary, given ciphertexts and both data streams, has to figure out which of the two streams was encrypted.

## ind-cpa-adversaries

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme
An ind-cpa adversary $A$ has an oracle LR

- It can make a query $M_{0}, M_{1}$ consisting of any two equal-length messages
- It can do this many times
- Each time it gets back a ciphertext
- It eventually outputs a bit



## ind-cpa-adversaries

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme

$$
\begin{array}{c|c}
\text { A's output } d & \begin{array}{l}
\text { Intended meaning: } \\
\text { I think I am in the }
\end{array} \\
\hline \hline 1 & \text { Right world } \\
\hline 0 & \text { Left world } \\
\hline
\end{array}
$$

The harder it is for $A$ to guess world it is in, the more "secure" $\mathcal{S E}$ is as an encryption scheme.

## The games

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme

```
Game Lefts\mathcal{E}
procedure Initialize
K}\stackrel{&}{\leftarrow
procedure LR( }\mp@subsup{M}{0}{},\mp@subsup{M}{1}{}
Return C }\stackrel{&}{\leftarrow}\mp@subsup{\mathcal{E}}{K}{}(\mp@subsup{M}{0}{}
```

```
Game Right S\mathcal{S}
procedure Initialize
K}\stackrel{&}{\leftarrow
procedure LR(M
Return }C\stackrel{¢}{\leftarrow}\mp@subsup{\mathcal{E}}{K}{}(\mp@subsup{M}{1}{}
```

Associated to $\mathcal{S E}, A$ are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

that $A$ outputs 1 in each world. The (ind-cpa) advantage of $A$ is

$$
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

## Example

## Example

Let $\mathcal{E}_{K}(M)=E_{K}(M)$ and let $A$ be the following ind-cpa adversary

## adversary $A$

$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0


## Example

Let $\mathcal{E}_{K}(M)=E_{K}(M)$
adversary $A$
$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0


What happens

- $C_{1}=\mathcal{E}_{K}\left(0^{n}\right)=E_{K}\left(0^{n}\right)$
- $C_{2}=\mathcal{E}_{K}\left(0^{n}\right)=E_{K}\left(0^{n}\right)$
- so $C_{1}=C_{2}$ and $A$ returns 1

SO

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=1
$$

## Example

## The measure of success

Let $\mathcal{E}_{K}(M)=E_{K}(M)$

## adversary $A$

$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A) & =\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right] \\
& =1-0 \\
& =1
\end{aligned}
$$

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme and $A$ be an ind-cpa adversary. Then

$$
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

is a number between -1 and 1 .
A "large" (close to 1 ) advantage means

- $A$ is doing well
- $\mathcal{S E}$ is not secure

A "small" (close to 0 or $\leq 0$ ) advantage means

- $A$ is doing poorly
- $\mathcal{S E}$ resists the attack $A$ is mounting


## IND-CPA security

Adversary advantage depends on its

- strategy
- resources: Running time $t$ and number $q$ of oracle queries

Security: $\mathcal{S E}$ is IND-CPA (i.e. secure)
if $\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A)$ is "small" for ALL $A$ that use "practical" amounts of resources.

Example: 80 -bit security could mean that for all $n=1, \ldots, 80$ we have

$$
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A) \leq 2^{-n}
$$

for any $A$ with time and number of oracle queries at most $2^{80-n}$.
Insecurity: $\mathcal{S E}$ is not IND-CPA (i.e. insecure) if there exists $A$ using "few" resources that achieves "high" advantage.

## ECB is not IND-CPA-secure

## ECB is not IND-CPA-secure

Let $\mathcal{E}_{K}(M)=E_{K}(M[1]) \cdots E_{K}(M[m])$


Can we design $A$ so that

$$
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{\mathcal{A}} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?
Exploitable weakness of $\mathcal{S E}: M_{1}=M_{2}$ implies $\mathcal{E}_{K}\left(M_{1}\right)=\mathcal{E}_{K}\left(M_{2}\right)$.

## ECB is not IND-CPA-secure: Right world analysis

$\mathcal{E}$ is defined by $\mathcal{E}_{K}(M)=E_{K}(M[1]) \cdots E_{K}(M[m])$.
adversary $A$
$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0

| Game Right $_{\mathcal{S E}}$ |
| :--- |
| procedure Initialize |
| $K \longleftarrow \mathcal{K}$ |
| procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$ |
| Return $\mathcal{E}_{K}\left(M_{1}\right)$ | Right world

## procedure Initialize

$K \stackrel{\mathfrak{S}}{\leftarrow}$

Return $\mathcal{E}_{K}\left(M_{1}\right)$


Then

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=1
$$

because $C_{1}=E_{K}\left(0^{n}\right)=E_{K}\left(0^{n}\right)=C_{2}$.
$\mathcal{E}$ is defined by $\mathcal{E}_{K}(M)=E_{K}(M[1]) \cdots E_{K}(M[m])$.
adversary $A$
$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0

```
Game Left S\mathcal{E}
procedure Initialize
K}\stackrel{&}{<}\mathcal{K
procedure LR(M0,M1)
Return }\mp@subsup{\mathcal{E}}{K}{}(\mp@subsup{M}{0}{}
```

Then
because $C_{1}=E_{K}\left(0^{n}\right) \neq E_{K}\left(1^{n}\right)=C_{2}$.

Let $\mathcal{E}_{K}(M)=E_{K}(M[1]) \cdots E_{K}(M[m])$.

adversary $A$
$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0

## ECB is not IND-CPA-secure: Left world analysis

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=0
$$

## ECB is not IND-CPA secure

## Why is IND-CPA the "master" property?

## adversary $A$

$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right)$
if $C_{1}=C_{2}$ then return 1 else return 0

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A}=1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A}=1\right]}^{0} \\
& =1
\end{aligned}
$$

And A is very efficient, making only two queries.
Thus ECB is not IND-CPA secure.
We claim that if encryption scheme $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA secure then the ciphertext hides ALL partial information about the plaintext.

For example, from $C_{1} \stackrel{\Im}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right)$ and $C_{2} \stackrel{\Im}{\leftarrow} \mathcal{E}_{K}\left(M_{2}\right)$ the adversary cannot

- get $M_{1}$
- get 1st bit of $M_{1}$
- get XOR of the 1 st bits of $M_{1}, M_{2}$
- etc.

Why is this true?

## XOR-insecurity implies IND-CPA-insecurity

Let $\operatorname{lsb}(M)$ denote the last bit of $M$
Suppose we are given an adversary $B$ such that

$$
\begin{aligned}
& \mathcal{E}_{K}\left(M_{1}\right) \xrightarrow{\mathrm{s}} C_{1} \rightarrow \\
& \mathcal{E}_{K}\left(M_{2}\right) \xrightarrow{\mathrm{s}} C_{2} \rightarrow
\end{aligned} \quad B \quad \rightarrow \operatorname{lsb}\left(M_{1}\right) \oplus \operatorname{lsb}\left(M_{2}\right)
$$

for all $M_{1}, M_{2}$. Then we claim we can design an ind-cpa adversary $A$ such that

$$
\mathbf{A d v}_{\mathcal{S E}}^{\text {ind-cpa }}(A)=1,
$$

meaning $\mathcal{S E}$ is not IND-CPA secure.
Thus:

$$
\begin{aligned}
\text { XOR-insecurity } & \Rightarrow \text { IND-CPA-insecurity } \\
\text { IND-CPA-security } & \Rightarrow \text { XOR-security }
\end{aligned}
$$

## XOR-insecurity implies IND-CPA-insecurity



## adversary $A$

- Makes two LR queries
- The left messages are $M_{0}^{1}=0^{n}$ and $M_{0}^{2}=0^{n}$.

Why? Because $\operatorname{Isb}\left(0^{n}\right) \oplus \operatorname{Isb}\left(0^{n}\right)=0$

- The right messages are $M_{1}^{1}=0^{n}$ and $M_{1}^{2}=1^{n}$.

Why? Because $\operatorname{Isb}\left(0^{n}\right) \oplus \operatorname{lsb}\left(1^{n}\right)=1$

- Gets back 2 ciphertexts $C_{1}, C_{2}$
- Runs $B\left(C_{1}, C_{2}\right)$ to compute $\operatorname{Isb}\left(M_{b}^{1}\right) \oplus \operatorname{lsb}\left(M_{b}^{2}\right)$ which equals $b$, indiciating whether Left or Right world


## adversary $A$

$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(0^{n}, 1^{n}\right)$
$d \stackrel{\varsigma}{\leftarrow} B\left(C_{1}, C_{2}\right)$; return $d$

## XOR-insecurity implies IND-CPA-insecurity

## XOR-insecurity implies IND-CPA-insecurity



What happens:

- $C_{1} \stackrel{\&}{\leftarrow} \mathcal{E}_{K}\left(0^{n}\right)$ and $C_{2} \stackrel{s}{\leftarrow} \mathcal{E}_{K}\left(0^{n}\right)$
- The first bits of the encrypted messages XOR to 0
- so $B$ returns 0
so

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=0
$$

adversary $A$
$C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(0^{n}, 1^{n}\right)$ $d \stackrel{\S}{\leftarrow}\left(C_{1}, C_{2}\right)$; return $d$

Right world


What happens:

- $C_{1} \stackrel{\S}{\leftarrow} \mathcal{E}_{K}\left(0^{n}\right)$ and $C_{2} \stackrel{\S}{\leftarrow} \mathcal{E}_{K}\left(1^{n}\right)$
- The first bits of the encrypted messages XOR to 1
- so $B$ returns 1
so

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=1
$$

## Alternative formulation of advantage

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme and A an adversary.

| Game Guess ${ }_{\text {SE }}$ | $\begin{aligned} & \text { procedure } \operatorname{LR}\left(M_{0}, M_{1}\right) \\ & \text { return } C \stackrel{\varsigma}{\leftarrow} \mathcal{E}_{K}\left(M_{b}\right) \end{aligned}$ |
| :---: | :---: |
| procedure Initialize $\mathcal{K} \stackrel{\leftarrow}{\leftarrow} ; b \leftarrow^{\hookleftarrow}\{0,1\}$ | $\begin{aligned} & \text { procedure Finalize }\left(b^{\prime}\right) \\ & \text { return }\left(b=b^{\prime}\right) \end{aligned}$ |

Proposition: $\boldsymbol{A d v}_{\mathcal{S} \mathcal{E}}^{\text {ind-cpa }}(A)=2 \cdot \operatorname{Pr}\left[\operatorname{Guess}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow\right.$ true $]-1$.
Proof: Observe

$$
\begin{aligned}
& \operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right] \\
& \operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]=\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
\end{aligned}
$$

## Proof (continued)

$$
\begin{aligned}
\operatorname{Pr} & {\left[\text { Guess }_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow \text { true }\right] } \\
& =\operatorname{Pr}\left[b=b^{\prime}\right] \\
& =\operatorname{Pr}\left[b=b^{\prime} \mid b=1\right] \cdot \operatorname{Pr}[b=1]+\operatorname{Pr}\left[b=b^{\prime} \mid b=0\right] \cdot \operatorname{Pr}[b=0] \\
& =\operatorname{Pr}\left[b=b^{\prime} \mid b=1\right] \cdot \frac{1}{2}+\operatorname{Pr}\left[b=b^{\prime} \mid b=0\right] \cdot \frac{1}{2} \\
& =\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \cdot \frac{1}{2}+\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right] \cdot \frac{1}{2} \\
& =\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \cdot \frac{1}{2}+\left(1-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right) \cdot \frac{1}{2} \\
& =\frac{1}{2}+\frac{1}{2} \cdot\left(\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right) \\
& =\frac{1}{2}+\frac{1}{2} \cdot\left(\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]\right) \\
& =\frac{1}{2}+\frac{1}{2} \cdot \operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) .
\end{aligned}
$$

## Security of CTRC

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. Sender maintains a counter ctr, initially 0 . The scheme is $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where
$\operatorname{Alg} \mathcal{E}_{K}(M)$
$C[0] \leftarrow \mathrm{ctr}$
for $i=1, \ldots, m$ do
$P[i] \leftarrow E_{K}(\langle c t r+i\rangle)$
$C[i] \leftarrow P[i] \oplus M[i]$
$c t r \leftarrow c t r+m$
return $C$


Question: Is $\mathcal{S E}$ IND-CPA secure?
We cannot expect so if $E$ is "bad". So, let's ask:
Question: Assuming $E$ is good (a PRF) is $\mathcal{S E}$ IND-CPA secure?

## IND-CPA security of CTRC

$\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ CTRC mode relative to block cipher $E$.
Question: If $E$ is a PRF then is $\mathcal{S E}$ ind-cpa SECURE?
Answer: YES

And we can prove that the above answer is correct.
The above

- means CTRC has no "structural" weaknesses.
- Is not a triviality because it was not true for ECB

Fact: If $E$ is secure (PRF) then CTRC mode is a secure (IND-CPA) encryption scheme.

This means CTRC is a good, general purpose encryption scheme.
Ciphertexts leak NO partial information about messages.
Provides security regardless of message distribution. Votes can be securely encrypted.

We do not need to look for attacks on the scheme. We are guaranteed there are no attacks as long as $E$ is secure.

## Intuition for IND-CPA security of CTRC

## CTRC with a random function

Consider the CTRC scheme with $E_{K}$ replaced by a random function $\mathbf{F n}$.

| $\operatorname{Alg} \mathcal{E}_{\mathbf{F n}}(M)$ | $\operatorname{Alg} \mathcal{D}_{\mathbf{F n}}(C)$ |
| :--- | :--- |
| $C[0] \leftarrow \operatorname{ctr}$ | $\operatorname{ctr} \leftarrow C[0]$ |
| for $i=1, \ldots, m$ do | for $i=1, \ldots, m$ do |
| $\quad P[i] \leftarrow \mathbf{F n}(\langle\langle t r+i\rangle)$ | $P[i] \leftarrow \mathbf{F n}(\langle c t r+i\rangle)$ |
| $C[i] \leftarrow P[i] \oplus M[i]$ | $M[i] \leftarrow P[i] \oplus C[i]$ |
| $\operatorname{ctr} \leftarrow \operatorname{ctr}+\mathrm{m}$ | return $M$ |
| return $C$ |  |

Analyzing this is a thought experiment, but we can ask whether it is IND-CPA secure.

If so, the assumption that $E$ is a PRF says the real CTRC is IND-CPA secure.

So CTRC with a random function is IND-CPA secure.

```
\(\operatorname{Alg} \mathcal{E}_{\mathbf{F n}}(M)\)
\(C[0] \leftarrow \operatorname{ctr}\)
for \(i=1, \ldots, m\) do
\(P[i] \leftarrow \mathbf{F n}(\langle\operatorname{ctr}+i\rangle)\)
\(C[i] \leftarrow P[i] \oplus M[i]\)
\(\operatorname{ctr} \leftarrow \operatorname{ctr}+m\)
return \(C\)
Alg \(\mathcal{E}_{\mathbf{F n}}(M)\)
\(C[0] \leftarrow \mathrm{ctr}\)
or \(i=1, \ldots, m\) do
    \(P[i] \leftarrow \mathbf{F n}(\langle c t r+i\rangle)\)
\(c t r \longleftarrow c t r+m\)
return \(C\)
```

```
\(\mathrm{ctr} \leftarrow C[0]\)
for \(i=1, \ldots, m\) do
    \(P[i] \leftarrow \mathbf{F n}(\langle\operatorname{ctr}+i\rangle)\)
    \(M[i] \leftarrow P[i] \oplus C[i]\)
return M
```

Since $\mathbf{F n}$ is random, the sequence $P[1] \cdots P[m]$ is random and the above is just one-time pad encryption, which is certainly IND-CPA secure.

## IND-CPA security of CTRC

Theorem: Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions and let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the corresponding CTRC mode symmetric encryption scheme. Let $A$ be an ind-cpa adversary making at most $q \mathbf{L R}$ queries totalling at most $\sigma$ blocks. Then there is a prf-adversary $B$ such that

$$
\mathbf{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \leq 2 \cdot \mathbf{A d v}_{E}^{\mathrm{prf}}(B)
$$

Furthermore $B$ makes at most $\sigma$ oracle queries and runs in time at most $t+\Theta(q+n \sigma)$.

Implication:

$$
\begin{aligned}
E \text { a PRF } & \Rightarrow \operatorname{Adv}_{E}^{\text {prf }}(B) \text { small } \\
& \Rightarrow \operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A) \text { small } \\
& \Rightarrow \mathcal{S E} \text { IND-CPA secure }
\end{aligned}
$$

## Proof by reduction

A's world

$B$ runs $A$, itself replying to $A$ 's oracle queries

$\|M\|_{n}=$ number of $n$-bit blocks in $M$.
That is, $M=M[1] \ldots M[m]$ where $m=\|M\|_{n}$.
$\langle j\rangle$ denotes the $n$-bit binary encoding of integer $j \in\left\{0, \ldots, 2^{n}-1\right\}$.

Game $G_{0}$ procedure Initialize
$K \stackrel{\S}{\leftarrow}\{0,1\}^{k} ; b \leftarrow^{\varsigma}\{0,1\}$
$c t r \leftarrow 0$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \leftarrow c t r ; m \leftarrow\left\|M_{b}\right\|_{n}$
for $i=1, \ldots, m$ do
$P[\langle c t r+i\rangle] \leftarrow E_{K}(\langle c t r+i\rangle)$
$C[i] \leftarrow P[\langle c t r+i\rangle] \oplus M_{b}[i]$
$c t r \leftarrow c t r+m$
return $C$
procedure Finalize( $b^{\prime}$ )
return ( $b=b^{\prime}$ )

Game $G_{1}$

## procedure Initialize

$b \stackrel{s}{\leftarrow}\{0,1\} ; c \operatorname{tr} \leftarrow 0$
procedure $\mathbf{L R}\left(M_{0}, M_{1}\right)$
$C[0] \leftarrow c t r ; m \leftarrow\left\|M_{b}\right\|_{n}$
for $i=1, \ldots, m$ do
$P[\langle c t r+i\rangle] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
$C[i] \leftarrow P[\langle c t r+i\rangle] \oplus M_{b}[i]$
$c t r \leftarrow c t r+m$
return $C$
procedure Finalize( $b^{\prime}$ )
return ( $b=b^{\prime}$ )

## Analysis

Claim 1: There is a prf-adversary $B$ such that

$$
\operatorname{Pr}\left[G_{0}^{A} \Rightarrow \text { true }\right]-\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \text { true }\right] \leq \mathbf{A d v}_{E}^{\operatorname{prf}}(B)
$$

adversary $B$
$b \leftarrow\{0,1\} ; c t r \leftarrow 0 ;$
subroutine $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$b^{\prime} \stackrel{\&}{ } A^{\text {LR }}$
$C[0] \leftarrow c t r ; m \leftarrow\left\|M_{b}\right\|_{n}$
for $i=1, \ldots, m$ do
If $\left(b=b^{\prime}\right)$ then return 1

$$
C[i] \leftarrow P[\langle c t r+i\rangle] \oplus M_{b}[i]
$$

Else return 0

$$
P[\langle c t r+i\rangle] \leftarrow \mathbf{F n}(\langle c t r+i\rangle)
$$

$c t r \leftarrow c t r+m$
return $C$
If $\mathbf{F n}=E_{K}$ then $B$ is providing $A$ the environment of game $G_{0}$ so

$$
\operatorname{Pr}\left[\text { Real } E_{E}^{B} \Rightarrow 1\right]=\operatorname{Pr}\left[G_{0}^{A} \Rightarrow \text { true }\right]
$$

If $\mathbf{F n}$ is random then $B$ is providing $A$ the environment of game $G_{1}$ so

$$
\operatorname{Pr}\left[\operatorname{Rand}_{E}^{B} \Rightarrow 1\right]=\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \text { true }\right]
$$

## Analysis

Claim 1: There is a prf-adversary $B$ such that

$$
\operatorname{Pr}\left[G_{0}^{A} \Rightarrow \text { true }\right]-\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \operatorname{true}\right] \leq \operatorname{Adv}_{E}^{\operatorname{prf}}(B)
$$

adversary $B$

$$
\begin{aligned}
& b \stackrel{\varsigma}{\leftarrow}\{0,1\} ; c \operatorname{ctr} \leftarrow 0 ; \\
& b^{\prime} \leftarrow A^{\mathrm{LR}} \\
& \text { If }\left(b=b^{\prime}\right) \text { then return } 1 \\
& \text { Else return } 0
\end{aligned}
$$

subroutine $\operatorname{LR}\left(M_{0}, M_{1}\right)$

$$
C[0] \leftarrow c t r ; m \leftarrow\left\|M_{b}\right\|_{n}
$$ for $i=1, \ldots, m$ do

$$
\begin{aligned}
& P[\langle c t r+i\rangle] \leftarrow \mathbf{F n}(\langle c t r+i\rangle) \\
& C[i] \leftarrow P[\langle c \operatorname{tr}+i\rangle] \oplus M_{b}[i]
\end{aligned}
$$

$c t r \leftarrow c t r+m$ return C

Thus

$$
\begin{aligned}
\operatorname{Adv}_{E}^{\mathrm{prf}}(B) & =\operatorname{Pr}\left[\operatorname{Real}_{E}^{B} 1 \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{E}^{B} \Rightarrow 1\right] \\
& =\operatorname{Pr}\left[G_{0}^{A} \Rightarrow \text { true }\right]-\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \text { true }\right]
\end{aligned}
$$

which proves Claim 1.

## Analysis



So,

$$
\begin{aligned}
\boldsymbol{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) & =2 \cdot \operatorname{Pr}\left[G_{0}^{A} \Rightarrow \operatorname{true}\right]-1 \\
& \leq 2 \cdot\left(\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \operatorname{true}\right]+\mathbf{A d v}_{E}^{\mathrm{prf}}(B)\right)-1 \\
& =2 \cdot \boldsymbol{A d v}_{E}^{\mathrm{prf}}(B)+2 \operatorname{Pr}\left[G_{1}^{A} \Rightarrow \text { true }\right]-1
\end{aligned}
$$

Claim 2: $\operatorname{Pr}\left[G_{1}^{A} \Rightarrow\right.$ true $]=\frac{1}{2}$

$$
\text { So, } \mathbf{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \leq 2 \cdot \boldsymbol{A d v}_{E}^{\mathrm{prf}}(B)
$$

## IND-CPA security of CTRC

Theorem: Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions and let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the corresponding CTRC mode symmetric encryption scheme. Let $A$ be an ind-cpa adversary making at most $q$ LR queries totalling at most $\sigma$ blocks. Then there is a prf-adversary $B$ such that

$$
\mathbf{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \leq 2 \cdot \mathbf{A d v}_{E}^{\mathrm{prf}}(B) .
$$

Furthermore $B$ makes at most $\sigma$ oracle queries and runs in time at most $t+\Theta(q+n \sigma)$.

## Proof of Claim 2 in CTRC analysis

Game $G_{1}$

## procedure Initialize

$b \stackrel{\$}{\leftarrow}\{0,1\} ; c t r \leftarrow 0$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \leftarrow c t r ; m \leftarrow\left\|M_{b}\right\|_{n}$
for $i=1, \ldots, m$ do

$$
P[\langle c t r+i\rangle] \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

$$
C[i] \leftarrow P[\langle c t r+i\rangle] \oplus M_{b}[i]
$$

$c t r \leftarrow c t r+m$
return C
procedure Finalize $\left(b^{\prime}\right)$
return $\left(b=b^{\prime}\right)$

Game $G_{2}$
procedure Initialize
$b \leftarrow\{0,1\} ; c t r \leftarrow 0$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \leftarrow c t r ; m \leftarrow\left\|M_{0}\right\|_{n}$
for $i=1, \ldots, m$ do
$C[i] \stackrel{\varsigma}{\varsigma}\{0,1\}^{n}$
return C
procedure Finalize $\left(b^{\prime}\right)$
return ( $b=b^{\prime}$ )

Claim 2: $\operatorname{Pr}\left[G_{1}^{A} \Rightarrow\right.$ true $]=\frac{1}{2}$.
Proof: $\mathbf{L R}$ in $G_{2}$ does not use bit $b$ so

$$
\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \operatorname{true}\right]=\operatorname{Pr}\left[G_{2}^{A} \Rightarrow \text { true }\right]=\frac{1}{2} .
$$

## Birthday attack on CBC\$

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the CBC $\$$ mode.

Suppose we are encrypting 1 block messages $M, M^{\prime}$ :


Observation: If $C[0]=C^{\prime}[0]$ then

$$
C[1]=C^{\prime}[1] \text { iff } M=M^{\prime}
$$

## Birthday attack on CBC\$

## Birthday attack on CBC\$


adversary $A$

```
for \(i=1, \ldots, q\) do
            \(C_{i}[0] C_{i}[1] \stackrel{\S}{\stackrel{ }{2} \mathbf{L R}(\langle i\rangle,\langle 0\rangle)}\)
    \(S \leftarrow\left\{(j, \ell): C_{j}[0]=C_{\ell}[0]\right.\) and \(\left.1 \leq j<\ell \leq q\right\}\)
    If \(S \neq \emptyset\), then
        \((j, \ell) \stackrel{\varsigma}{\longleftarrow}\)
        If \(C_{j}[1]=C_{\ell}[1]\) then return 1
    return 0
```


## Birthday attack on CBC\$: Right world analysis

## adversary $A$

for $i=1, \ldots, q$ do
$C_{i}[0] C_{i}[1] \stackrel{\varsigma}{\leftarrow} \mathbf{L R}(\langle i\rangle,\langle 0\rangle)$
$S \leftarrow\left\{(j, \ell): C_{j}[0]=C_{\ell}[0]\right.$ and

$$
1 \leq j<\ell \leq q\}
$$

If $S \neq \emptyset$, then $(j, \ell) \stackrel{\&}{\leftarrow}$
If $C_{j}[1]=C_{\ell}[1]$ then return 1
return 0 Right world


If $C_{j}[0]=C_{\ell}[0]$ then

$$
C_{j}[1]=E_{K}\left(\langle 0\rangle \oplus C_{j}[0]\right)=E_{K}\left(\langle 0\rangle \oplus C_{\ell}[0]\right)=C_{\ell}[1]
$$

SO

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=\operatorname{Pr}[S \neq \emptyset]=C\left(2^{n}, q\right)
$$

## Birthday attack on CBC\$: Left world analysis

## adversary $A$

$$
\begin{aligned}
& \text { for } i=1, \ldots, q \text { do } \\
& \quad C_{i}[0] C_{i}[1] \stackrel{\operatorname{LR}(\langle i\rangle,\langle 0\rangle)}{S \leftarrow\left\{(j, \ell): C_{j}[0]=C_{\ell}[0]\right. \text { and }} \begin{array}{l}
1 \leq j<\ell \leq q\} \\
\text { If } S \neq \emptyset \text {, then } \\
\quad(j, \ell) \hookleftarrow S \\
\text { If } C_{j}[1]=C_{\ell}[1] \text { then } \\
\quad \text { return } 1 \\
\text { return } 0
\end{array}
\end{aligned}
$$

## Left world



If $C_{j}[0]=C_{\ell}[0]$ then

$$
C_{j}[1]=E_{K}\left(\langle j\rangle \oplus C_{j}[0]\right) \neq E_{K}\left(\langle\ell\rangle \oplus C_{\ell}[0]\right)=C_{\ell}[1]
$$

SO

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{A}}^{A} \Rightarrow 1\right]=0
$$

## Birthday attack on CBC\$

## Birthday attack on CBC\$

## adversary $A$

for $i=1, \ldots, q$ do
$C_{i}[0] C_{i}[1] \stackrel{\varsigma}{\leftarrow} \mathbf{L R}(\langle i\rangle,\langle 0\rangle)$
$S \leftarrow\left\{(j, \ell): C_{j}[0]=C_{\ell}[0]\right.$ and
$1 \leq j<\ell \leq q\}$
If $S \neq \emptyset$, then
$(j, \ell) \stackrel{\&}{\leftarrow} S$
If $C_{j}[1]=C_{\ell}[1]$ then
return 1
return 0

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A) & =\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S} \mathcal{A}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right] \\
& =C\left(2^{n}, q\right)-0 \\
& \geq 0.3 \cdot \frac{q(q-1)}{2^{n}}
\end{aligned}
$$

## Security of CBC\$

So far: A q-query adversary can break CBC\$ with advantage $\approx \frac{q^{2}}{2^{n+1}}$
Question: Is there any better attack?
Answer: NO!
We can prove that the best $q$-query attack short of breaking the block cipher has advantage at most

$$
\frac{\sigma^{2}}{2^{n}}
$$

where $\sigma$ is the total number of blocks encrypted.
Example: If $q$ 1-block messages are encrypted then $\sigma=q$ so the adversary advantage is not more than $q^{2} / 2^{n}$.

## Security of CBC\$

Fact: If $E$ is secure (PRF) then $\mathrm{CBC} \$$ mode can be used to securely encrypt up to $2^{n / 2}$ blocks, where $n$ is the block length of the block cipher.
This is not much for DES $\left(n=64,2^{n / 2}=2^{32}\right)$ but a lot for AES ( $n=128,2^{n / 2}=2^{64}$ )
This means CBC\$ is a good, general purpose encryption scheme.
Ciphertexts leak NO partial information about messages.
Provides security regardless of message distribution. Votes can be securely encrypted.

We do not need to look for attacks on the scheme. We are guaranteed there are no attacks as long as $E$ is secure.

## Security of CBC\$

## Games for CBC\$ Security Proof

Theorem: Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher and $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ the corresponding CBC\$ symmetric encryption scheme. Let $A$ be an ind-cpa adversary against $\mathcal{S E}$ that has running time $t$ and makes at most $q$ LR queries, these totalling at most $\sigma$ blocks. Then there is a prf-adversary $B$ against $E$ such that

$$
\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \leq 2 \cdot \mathbf{A d v}_{E}^{\mathrm{prf}}(B)+\frac{\sigma^{2}}{2^{n}}
$$

Furthermore, $B$ makes at most $\sigma$ oracle queries and has running time $t+\Theta(\sigma \cdot n)$.

Game $G_{0}$

```
procedure Initialize
\(K \stackrel{\varsigma}{\leftarrow}\{0,1\}^{k} ; b \stackrel{\varsigma}{\leftarrow}\{0,1\} ; S \leftarrow \emptyset\)
procedure \(\operatorname{LR}\left(M_{0}, M_{1}\right)\)
\(m \leftarrow\left\|M_{b}\right\|_{n} ; C[0] \stackrel{s}{\leftarrow}\{0,1\}^{n}\)
for \(i=1, \ldots, n\) do
    \(P \leftarrow C[i-1] \oplus M_{b}[i]\)
    if \(P \notin S\) then \(\mathrm{T}[P] \leftarrow E_{K}(P)\)
    \(C[i] \leftarrow T[P]\)
    \(S \leftarrow S \cup\{P\}\)
return \(C\)
procedure Finalize( \(b^{\prime}\) )
return ( \(b=b^{\prime}\) )
```

```
Game \(G_{1}\)
procedure Initialize
\(b \leftarrow\{0,1\} ; S \leftarrow \emptyset\)
procedure \(\operatorname{LR}\left(M_{0}, M_{1}\right)\)
\(m \leftarrow\left\|M_{b}\right\|_{n} ; C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}\)
for \(i=1, \ldots, n\) do
    \(P \leftarrow C[i-1] \oplus M_{b}[i]\)
    if \(P \notin S\) then \(\mathrm{T}[P] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{n}\)
    \(C[i] \leftarrow \mathrm{T}[P]\)
    \(S \leftarrow S \cup\{P\}\)
return \(C\)
procedure Finalize \(\left(b^{\prime}\right)\)
return ( \(b=b^{\prime}\) )
```


## Security of CBC\$

Then

$$
\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A)=2 \cdot \operatorname{Pr}\left[G_{0}^{A} \Rightarrow \operatorname{true}\right]-1
$$

But
$\operatorname{Pr}\left[G_{0}^{A} \Rightarrow\right.$ true $]=\operatorname{Pr}\left[G_{1}^{A} \Rightarrow\right.$ true $]+\left(\operatorname{Pr}\left[G_{0}^{A} \Rightarrow\right.\right.$ true $]-\operatorname{Pr}\left[G_{1}^{A} \Rightarrow\right.$ true $\left.]\right)$
Claim 1: We can design prf-adversary $B$ so that

$$
\operatorname{Pr}\left[G_{0}^{A} \Rightarrow \operatorname{true}\right]-\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \operatorname{true}\right] \leq \operatorname{Adv}_{E}^{\operatorname{prf}}(B)
$$

Claim 2: $\operatorname{Pr}\left[G_{1}^{A} \Rightarrow\right.$ true $] \leq \frac{1}{2}+\sigma^{2} \cdot 2^{-n-1}$
So

$$
\begin{aligned}
\boldsymbol{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) & \leq 2 \cdot\left(\frac{1}{2}+\frac{\sigma^{2}}{2^{n+1}}\right)-1+2 \cdot \boldsymbol{A d v}_{E}^{\mathrm{prf}}(B) \\
& =\frac{\sigma^{2}}{2^{n}}+2 \cdot \mathbf{A d v}_{E}^{\mathrm{prf}}(B)
\end{aligned}
$$

## Analysis

Introducing "bad"

Game G1
procedure Initialize
$b \stackrel{\varsigma}{\leftarrow}\{0,1\} ; S \leftarrow \emptyset$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$m \leftarrow\left\|M_{b}\right\|_{n} ; C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, n$ do
$P \leftarrow C[i-1] \oplus M_{b}[i]$
If $P \notin S$ then $\mathrm{T}[P] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
$C[i] \leftarrow \mathrm{T}[P]$
$S \leftarrow S \cup\{P\}$
return $C$
procedure Finalize( $b^{\prime}$ )
return $\left(b=b^{\prime}\right)$

Game G2, G3
procedure Initialize
$b \leftarrow\{0,1\} ; S \leftarrow \emptyset$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$m \leftarrow\left\|M_{b}\right\|_{n} ; C[0] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, n$ do
$P \leftarrow C[i-1] \oplus M_{b}[i]$
$C[i] \stackrel{\leftrightarrows}{\leftarrow}\{0,1\}^{n}$
If $P \in S$ then

$$
\text { bad } \leftarrow \text { true } ; C[i] \leftarrow \mathrm{T}[P]
$$

$$
\mathrm{T}[P] \leftarrow C[i]
$$

$$
S \leftarrow S \cup\{P\}
$$

return $C$
procedure Finalize $\left(b^{\prime}\right)$
return ( $b=b^{\prime}$ )

$$
\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \text { true }\right]=\operatorname{Pr}\left[G_{2}^{A} \Rightarrow \text { true }\right]
$$

## So far.

Claim 2: $\operatorname{Pr}\left[G_{1}^{A} \Rightarrow\right.$ true $] \leq \frac{1}{2}+\frac{\sigma^{2}}{2^{n+1}}$

$$
\begin{aligned}
\operatorname{Pr}\left[G_{1}^{A} \Rightarrow \text { true }\right] & =\operatorname{Pr}\left[G_{2}^{A} \Rightarrow \text { true }\right] \\
& =\operatorname{Pr}\left[G_{3}^{A} \Rightarrow \operatorname{true}\right]+\left(\operatorname{Pr}\left[G_{2}^{A} \Rightarrow \operatorname{true}\right]-\operatorname{Pr}\left[G_{3}^{A} \Rightarrow \text { true }\right]\right)
\end{aligned}
$$

Will show:

- $\operatorname{Pr}\left[G_{3}^{A} \Rightarrow\right.$ true $]=\frac{1}{2}$
- $\operatorname{Pr}\left[G_{2}^{A} \Rightarrow\right.$ true $]-\operatorname{Pr}\left[G_{3}^{A} \Rightarrow\right.$ true $] \leq \frac{\sigma^{2}}{2^{n+1}}$

$$
\text { procedure } \operatorname{LR}\left(M_{0}, M_{1}\right)
$$

Game $G_{3}$
procedure Initialize
$b \leftarrow^{s}\{0,1\} ; S \leftarrow \emptyset$
procedure Finalize $\left(b^{\prime}\right)$
return $\left(b=b^{\prime}\right)$

Ciphertext $C$ in $G_{3}$ is always random, independently of $b$, so

$$
\operatorname{Pr}\left[G_{3}^{A} \Rightarrow \text { true }\right]=\frac{1}{2} .
$$

## Fundamental Lemma of game playing

## Using the fundamental lemma

Games $G, H$ are identical-until-bad if their code differs only in statements following the setting of bad to true.

Lemma: If $G, H$ are identical-until-bad, then for any adversary A and any $y$

$$
\left|\operatorname{Pr}\left[G^{A} \Rightarrow y\right]-\operatorname{Pr}\left[H^{A} \Rightarrow y\right]\right| \leq \operatorname{Pr}\left[H^{A} \text { sets bad }\right]
$$

Game $G_{2}, G_{3}$ procedure Initialize $b \stackrel{\varsigma}{\leftarrow}\{0,1\} ; S \leftarrow \emptyset$
procedure Finalize( $b^{\prime}$ )
return $\left(b=b^{\prime}\right)$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$G_{2}$ and $G_{3}$ are identical-until-bad, so Fundamental Lemma implies

$$
\operatorname{Pr}\left[G_{2}^{A} \Rightarrow \text { true }\right]-\operatorname{Pr}\left[G_{3}^{A} \Rightarrow \text { true }\right] \leq \operatorname{Pr}\left[G_{3}^{A} \text { sets bad }\right] .
$$

$$
\begin{aligned}
& m \leftarrow\left\|M_{b}\right\|_{n} ; C[0] \leftarrow\{0,1\}^{n} \\
& \text { for } i=1, \ldots, n \text { do } \\
& \quad P \leftarrow C[i-1] \oplus M_{b}[i] \\
& C[i] \leftarrow\{0,1\}^{n} \\
& \text { If } P \in S \text { then } \\
& \quad \text { bad } \leftarrow \text { true } ; C[i] \leftarrow \mathrm{T}[P] \\
& \mathrm{T}[P] \leftarrow C[i] \\
& S \leftarrow S \cup\{P\} \\
& \text { return } C
\end{aligned}
$$

## Bounding the probability of bad in $G_{4}$

The $\ell$-th time the if-statement is executed, it has probability

$$
\frac{\ell-1}{2^{n}}
$$

of setting bad. Thus

$$
\begin{aligned}
\operatorname{Pr}\left[G_{4}^{A} \text { sets bad }\right] & \leq \sum_{\ell=1}^{\sigma} \frac{\ell-1}{2^{n}} \\
& =\frac{\sigma(\sigma-1)}{2^{n+1}} \\
& \leq \frac{\sigma^{2}}{2^{n+1}}
\end{aligned}
$$

## How many LR queries?

## Find-then-guess

The IND-CPA definition allows the adversary multiple queries to its LR oracle. This models the adversary distinguishing between whether the messages encrypted were one stream

$$
M_{0}^{1}, \ldots, M_{0}^{q}
$$

or another stream

$$
M_{1}^{1}, \ldots, M_{1}^{q}
$$

It turns out that allowing only one LR query captures the same security requirement up to a factor $q$ in the advantage, as long as the adversary has a (plain) encryption oracle as well.

This can simplify analyses and the proof will illustrate the hybrid technique.

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme.

Game FTGLeft ${ }_{\mathcal{E}}$ procedure Initialize $K \stackrel{Ð}{\leftarrow} \mathcal{K}$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
return $C \stackrel{£}{\leftarrow} \mathcal{E}_{K}\left(M_{0}\right)$
procedure $\operatorname{Enc}(M)$
return $C \stackrel{\mathfrak{E}}{ } \mathcal{E}_{K}(M)$

Game FTGRight $_{\mathcal{S E}}$ procedure Initialize $K \stackrel{\varsigma}{\leftarrow} \mathcal{K}$ procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$ return $C \stackrel{\smile}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right)$
procedure $\operatorname{Enc}(M)$
return $C \stackrel{\mathscr{S}}{\leftarrow} \mathcal{E}_{K}(M)$

Adversary $B$ is allowed only one query to its LR oracle.

$$
\operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\mathrm{ftg}}(B)=\operatorname{Pr}\left[\operatorname{FTGRight}_{\mathcal{S} \mathcal{E}}^{B} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{FTGLeft}_{\mathcal{S} \mathcal{E}}^{B} \Rightarrow 1\right]
$$

## Hybrid Technique: illustration

Suppose A makes queries

$$
\left(M_{0}^{1}, M_{1}^{1}\right),\left(M_{0}^{2}, M_{1}^{2}\right),\left(M_{0}^{3}, M_{1}^{3}\right),\left(M_{0}^{4}, M_{1}^{4}\right)
$$

Then we will define games $G_{0}, G_{1}, G_{2}, G_{3}, G_{4}$ so that

| $i$ | Messages encrypted in $G_{i}^{A}$ |
| :---: | :---: |
| 0 | $M_{1}^{1}, M_{1}^{2}, M_{1}^{3}, M_{1}^{4}$ |
| 1 | $M_{0}^{1}, M_{1}^{2}, M_{1}^{3}, M_{1}^{4}$ |
| 2 | $M_{0}^{1}, M_{0}^{2}, M_{1}^{3}, M_{1}^{4}$ |
| 3 | $M_{0}^{1}, M_{0}^{2}, M_{0}^{3}, M_{1}^{4}$ |
| 4 | $M_{0}^{1}, M_{0}^{2}, M_{0}^{3}, M_{0}^{4}$ |

## Hybrid Technique

Game $G_{i}(0 \leq i \leq q)$

## procedure Initialize

$K \stackrel{£}{\leftarrow} ; \ell \leftarrow 0$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$\ell \leftarrow \ell+1$
If $\ell>i$ then $C \stackrel{\&}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right)$ else
$C \stackrel{\S}{\leftarrow} \mathcal{E}_{K}\left(M_{0}\right)$
Return $C$
Suppose $A$ makes LR queries $\left(M_{0}^{1}, M_{1}^{1}\right), \ldots,\left(M_{0}^{q}, M_{1}^{q}\right)$. Then in $G_{i}^{A}$ the messages encrypted are

$$
M_{0}^{1}, \ldots, M_{0}^{i}, M_{1}^{i+1}, \ldots, M_{1}^{q}
$$

Let

$$
P_{i}=\operatorname{Pr}\left[G_{i}^{A} \Rightarrow 1\right] .
$$

## Properties of the hybrid games

In $G_{0}^{A}$ the messages encrypted are $M_{1}^{1}, \ldots, M_{1}^{q}$, so

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=P_{0}
$$

In $G_{q}^{A}$ the messages encrypted are $M_{0}^{1}, \ldots, M_{0}^{q}$, so

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=P_{q}
$$

So,

$$
\begin{aligned}
\boldsymbol{A d v}_{\mathcal{S E}}^{\text {ind-cpa }}(A) & =P_{0}-P_{q} \\
& =\left(P_{0}-P_{1}\right)+\left(P_{1}-P_{2}\right)+\ldots+\left(P_{q-1}-P_{q}\right)
\end{aligned}
$$

If $P_{0}-P_{q}$ is large, so is at least one term in the sum. We design $B$ to have advantage that term.

## Design of $B$

## adversary $B$

$\ell \leftarrow 0$
$\underset{\sim}{\stackrel{s}{s}}\{1, \ldots, q\}$
$b^{\prime} \leftarrow A^{\operatorname{ELR}(\cdot, \cdot)}$
Return $b^{\prime}$

## subroutine ELR

$\ell \leftarrow \ell+1$
If $\ell>g$ then $c \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right)$
If $\ell=g$ then $c \stackrel{s}{\leftarrow} \mathbf{L R}\left(M_{0}, M_{1}\right)$
If $\ell<g$ then $c \stackrel{\S}{\leftarrow} \mathcal{E}_{K}\left(M_{0}\right)$

Suppose $A$ 's queries are $\left(M_{0}^{1}, M_{1}^{1}\right), \ldots,\left(M_{0}^{q}, M_{1}^{q}\right)$ and suppose $B$ picks $g=i$. Then the messages encrypted are

$$
M_{0}^{1}, \ldots, M_{0}^{i-1}, M_{b}^{i}, M_{1}^{i+1}, \ldots, M_{1}^{q}
$$

so

$$
\begin{aligned}
\operatorname{Pr}\left[\text { FTGRight }_{\mathcal{S} \mathcal{E}}^{B} \Rightarrow 1 \mid g=i\right] & =P_{i-1} \\
\operatorname{Pr}\left[\text { FTGLeft }_{\mathcal{S E}} \Rightarrow 1 \mid g=i\right] & =P_{i}
\end{aligned}
$$

## Analysis of $B$

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ftg}}(B)= & \operatorname{Pr}\left[\operatorname{FTGRight}_{\mathcal{S E}}^{B} \Rightarrow 1\right]-\operatorname{Pr}\left[\text { FTGLeft }_{\mathcal{S} \mathcal{E}}^{B} \Rightarrow 1\right] \\
= & \sum_{i=1}^{q} \operatorname{Pr}\left[\text { FTGRight }_{\mathcal{S} \mathcal{E}}^{B} \Rightarrow \mid g=i\right] \cdot \operatorname{Pr}[g=i] \\
& -\sum_{i=1}^{q} \operatorname{Pr}\left[\operatorname{FTGLeft}_{\mathcal{S} \mathcal{E}}^{B} \Rightarrow 1 \mid g=i\right] \cdot \operatorname{Pr}[g=i] \\
= & \sum_{i=1}^{q} P_{i-1} \cdot \frac{1}{q}-\sum_{i=1}^{q} P_{i} \cdot \frac{1}{q}=\frac{1}{q} \sum_{i=1}^{q}\left(P_{i-1}-P_{i}\right) \\
= & \frac{1}{q}\left(P_{0}-P_{q}\right)=\frac{1}{q} \mathbf{A d v}_{\mathcal{S} \mathcal{L}}^{\text {ind-cpa }}(A)
\end{aligned}
$$

as desired.

## Identification

## Attack Setting

ATM card contains a key $K \stackrel{\S}{\leftarrow}$ known also to Bank, where $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a symmetric encryption scheme.


Adversary
ATM


Adversary transmits Alice's identity, but how can it answer the challenge (meaning decrypt $C$ ) without knowing Alice's key?

## Active Attack



Tries to get $K$ or learn how to decrypt by creating ciphertexts and getting the card to decrypt them.

This is called a chosen ciphertext attack.

## Chosen-ciphertext attacks

New capability: Adversary has access to a decryption oracle


## What is the adversary's goal?

In our example it was to get the key $K$, but based on the principles we have discussed before we would like to ask for more: no partial information on un-decrypted messages is leaked by the ciphertexts.

## ind-cca adversaries

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme. An ind-cca adversary $A$

- Has access to a LR oracle
- Has access to a decryption oracle Dec
- Outputs a bit



## The games

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme and let $A$ be an adversary. Consider

```
Game Lefts\mathcal{SE}
procedure Initialize
K}\stackrel{&}{<
procedure LR(M0,M1)
Return C }\stackrel{&}{\leftarrow}\mp@subsup{\mathcal{E}}{K}{}(\mp@subsup{M}{0}{}
procedure Dec(C)
return M\leftarrow\mathcal{D}
```

```
Game Right }\mp@subsup{\mathcal{SE}}{}{
```

Game Right }\mp@subsup{\mathcal{SE}}{}{
procedure Initialize
procedure Initialize
K}\stackrel{\&}{\leftarrow
K}\stackrel{\&}{\leftarrow
procedure LR(M0,M1)
procedure LR(M0,M1)
Return C }\stackrel{¢}{\hookleftarrow}\mathcal{E}
Return C }\stackrel{¢}{\hookleftarrow}\mathcal{E}
procedure Dec(C)
procedure Dec(C)
return }M\leftarrow\mp@subsup{\mathcal{D}}{K}{}(C

```
return }M\leftarrow\mp@subsup{\mathcal{D}}{K}{}(C
```

Associated to $\mathcal{S E}, A$ are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

that $A$ outputs 1 in each world. The (ind-cca) advantage of $A$ is

$$
\operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\text {ind }-c c a}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]
$$

## IND-CCA

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme and $A$ an ind-cca adversary.


Right world


| A's output $d$ | $\begin{array}{l}\text { Intended meaning: } \\ \text { I think I am in the }\end{array}$ |
| :---: | :---: |
| 1 | Right world |
| 0 | Left world |

The harder it is for $A$ to guess world it is in, the more "secure" $\mathcal{S E}$ is as an encryption scheme.

## A problem

| Game Left $\mathcal{S E}$ |
| :--- |
| procedure Initialize |
| $K \stackrel{\S}{\leftarrow}$ |
| procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$ |
| Return $C \stackrel{\mathcal{E}_{K}\left(M_{0}\right)}{\text { procedure } \operatorname{Dec}(C)}$ |
| return $M \leftarrow \mathcal{D}_{K}(C)$ |


| Game Right $_{\mathcal{S E}}$ |
| :--- |
| procedure Initialize |
| $K \longleftarrow \mathcal{K}$ |
| procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$ |
| Return $C \longleftarrow \mathcal{E}_{K}\left(M_{1}\right)$ |
| procedure $\operatorname{Dec}(C)$ |
| return $M \leftarrow \mathcal{D}_{K}(C)$ |

We can ALWAYS design $A$ with advantage 1 , meaning ALL schemes are insecure.
adversary $A$
$C \stackrel{\varsigma}{\leftarrow}\left(0^{n}, 1^{n}\right) ; M \leftarrow \mathbf{D e c}(C)$
if $M=0^{n}$ then return 0 else return 1
Then

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=0 \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=1
$$

## Avoiding the problem

## IND-CCA attack on CBC\$

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher.
Alg $\mathcal{E}_{K}(M)$
$C[0] \stackrel{\&}{\leftarrow}\{0,1\}^{n} ;$ for $i=1, \ldots, m$ do $C[i] \leftarrow E_{K}(M[i] \oplus C[i-1])$ return $C$

Left world


Can we design $A$ so that

$$
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cca }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

## IND-CCA attack on CBC\$

What we would like to do:

## adversary $A$

$C \stackrel{\varsigma}{ } \mathbf{L R}^{\left(0^{n}, 1^{n}\right) ; M \leftarrow \mathbf{D e c}(C)}$
if $M=0^{n}$ then return 0 else return 1
but querying $C$ is not allowed. Instead we will

$$
C \rightarrow \text { ModifyC } \rightarrow C^{\prime} \rightarrow \text { Dec } \rightarrow M^{\prime} \rightarrow \text { ModifyM } \rightarrow M
$$

so that $M=\mathcal{D}_{K}(C)$ but $C^{\prime} \neq C$. Then

## adversary $A$

$C \stackrel{\leftarrow}{\leftarrow}\left(0^{n}, 1^{n}\right)$
$C^{\prime} \leftarrow \operatorname{ModifyC}(C) ; M^{\prime} \leftarrow \operatorname{Dec}\left(C^{\prime}\right) ; M \leftarrow \operatorname{ModifyM}\left(M^{\prime}\right)$
if $M=0^{n}$ then return 0 else return 1

## The Modify process

Let $\Delta \neq 0^{n}$ be some block.


## IND-CCA attack on CBC\$: Right world analysis

adversary $A$
$C[0] C[1] \stackrel{\mathfrak{s}}{\leftarrow} \mathbf{L R}\left(0^{n}, 1^{n}\right) ; \Delta \leftarrow 1^{n}$
$C^{\prime}[0] \leftarrow C[0] \oplus \Delta ; M^{\prime} \leftarrow \operatorname{Dec}\left(C^{\prime}[0] C[1]\right) ; M \leftarrow M^{\prime} \oplus \Delta$
if $M=0^{n}$ then return 0 else return 1
Game Right ${ }_{\mathcal{S E}}$
procedure Initialize
$K \stackrel{\S}{\leftarrow}$
procedure $\mathbf{L R}\left(M_{0}, M_{1}\right)$
Return $C \stackrel{\smile}{\leftarrow} \mathcal{E}_{K}\left(M_{0}\right)$
procedure $\operatorname{Dec}(C)$

return $M \leftarrow \mathcal{D}_{K}(C)$

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=1
$$

because $C[0] C[1] \stackrel{\varsigma}{\leftarrow} \mathcal{E}_{K}\left(1^{n}\right)$ so $M=1^{n} \neq 0^{n}$.

## IND-CCA attack on CBC

adversary $A$
$C[0] C[1] \stackrel{\varsigma}{\leftarrow} \mathbf{L R}\left(0^{n}, 1^{n}\right) ; \Delta \leftarrow 1^{n}$
$C^{\prime}[0] \leftarrow C[0] \oplus \Delta ; M^{\prime} \leftarrow \operatorname{Dec}\left(C^{\prime}[0] C[1]\right) ; M \leftarrow M^{\prime} \oplus \Delta$
if $M=0^{n}$ then return 0 else return 1

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\text {ind }-c \mathrm{a}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]}^{0} \\
& =1
\end{aligned}
$$

And $A$ is very efficient, making only two queries.
Thus CBC\$ is not IND-CCA secure.

## IND-CCA attack on CBC\$: Left world analysis

## adversary $A$

$C[0] C[1] \stackrel{\varsigma}{\leftarrow} \operatorname{LR}\left(0^{n}, 1^{n}\right) ; \Delta \leftarrow 1^{n}$
$C^{\prime}[0] \leftarrow C[0] \oplus \Delta ; M^{\prime} \leftarrow \operatorname{Dec}\left(C^{\prime}[0] C[1]\right) ; M \leftarrow M^{\prime} \oplus \Delta$
if $M=0^{n}$ then return 0 else return 1
Game Leftse procedure Initialize $K \stackrel{\varsigma}{\leftarrow} \mathcal{K}$
procedure $\mathbf{L R}\left(M_{0}, M_{1}\right)$
Return $C \stackrel{\smile}{\leftarrow} \mathcal{E}_{K}\left(M_{0}\right)$
procedure $\operatorname{Dec}(C)$
return $M \leftarrow \mathcal{D}_{K}(C)$


Then

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=0
$$

because $C[0] C[1] \stackrel{\S}{\leftarrow} \mathcal{E}_{K}\left(1^{n}\right)$ so $M=0^{n}$.

## Protecting against CCAs

Can you think of a way to design a scheme that is IND-CCA secure?
We will see such a scheme later, after we have some more tools.

