
SCREW-TRANSFORM MANIFOLDS FOR CAMERA SELF CALIBRATION

by

Russell Alan Manning

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2003

c© Copyright by Russell Alan Manning 2003
All Rights Reserved

DISCARD THIS PAGE

i

TABLE OF CONTENTS

Page

NOTATION . v

ABSTRACT . viii

1 Overview . 1

1.1 Camera calibration . 1
1.2 Applications of camera calibration . 3
1.3 Calibration by manifold intersection . 4
1.4 Contributions of the dissertation . 6
1.5 Structure of the dissertation . 7

2 History and Context . 9

2.1 Image-based rendering: sampling versus simulation 9
2.2 Self calibration and scene reconstruction . 18

3 Introduction to Camera Calibration and Multiview Geometry 27

3.1 Platonic labels and coordinate systems . 28
3.2 Pinhole cameras . 30

3.2.1 Basic mathematical definition . 30
3.2.2 Physical interpretation and history . 34
3.2.3 Physical derivation of the pinhole camera matrix 35
3.2.4 Meaning of internal calibration . 38

3.3 Concepts from projective geometry . 39
3.4 Epipolar geometry . 46
3.5 Scene reconstruction . 52

3.5.1 Hierarchy of scene reconstructions . 53
3.5.2 Hierarchy of camera reconstructions . 55
3.5.3 Triangulation . 57
3.5.4 Projective reconstruction using a fundamental matrix 58
3.5.5 The absolute quadric and metric reconstruction 59

ii

Page

3.6 Finding point correspondences in practice . 62
3.7 Finding fundamental matrices in practice . 63

4 Screw-Transform Manifolds . 66

4.1 The screw transformation between two views . 66
4.2 Upgrading weak calibration . 69

4.2.1 Parameterizing rising-turntable scenarios 69
4.2.2 Parameterizing relative calibration . 70

4.3 Screw-transform manifolds and self calibration 73
4.3.1 Kruppa-constraint manifold . 73
4.3.2 Self calibration using Kruppa-constraint manifolds 74
4.3.3 Stratified self calibration and the modulus constraint 75
4.3.4 Modulus-constraint manifolds . 79

4.4 Non-general camera motions . 80
4.4.1 Classifying pairwise camera motions . 81
4.4.2 Turntable motion . 82
4.4.3 Transfocal motion . 84
4.4.4 Tests for classifying pairwise camera motions 86

5 Manifold Intersection Algorithms . 92

5.1 Surface fitting . 94
5.2 Voting-based algorithm . 97
5.3 Monte-Carlo Markov-Chain approach . 101

6 Experimental Evaluation of Self Calibration from Screw-Transform Manifolds . . 107

6.1 Experimental results for the surface-fitting algorithm 107
6.1.1 The synthetic data sets and their nomenclature 108
6.1.2 Answer to question 1: Algorithm correctness 113
6.1.3 Answer to question 2: Algorithm speed 113
6.1.4 Answer to question 3: Advantage of extra views 115
6.1.5 Answer to question 4: Number of mutual intersection points 116
6.1.6 Answer to question 5: Performance with real cameras 117
6.1.7 Implementation details . 124

6.2 Experimental results for the MCMC-based algorithm 127
6.2.1 The synthetic data sets and their nomenclature 128
6.2.2 Answer to question 1: Algorithm correctness 130
6.2.3 Answer to question 2: Algorithm speed 131

iii

Appendix
Page

6.2.4 Answer to question 3: Advantage of extra views 132
6.2.5 Answer to question 4: Choosing MCMC parameters 132
6.2.6 Answer to question 5: Comparison with surface-fitting algorithm 134

6.3 Self calibration from three views . 135

7 Calibration and Image-Based Rendering for Dynamic Scenes 138

7.1 Overview . 138
7.2 Using screw-transform manifolds with dynamic scenes 140
7.3 Linear algorithm for affine self calibration from scene motion 141

7.3.1 Introduction . 141
7.3.2 Notation and preliminary concepts . 144
7.3.3 Motion-based affine calibration . 146
7.3.4 Generalizing to multiple objects . 147
7.3.5 Experiments with synthetic data . 148
7.3.6 Experiments with real data . 153
7.3.7 Conclusion . 157

7.4 View interpolation for dynamic scenes with apparent linear motion 157
7.4.1 Introduction . 157
7.4.2 Static view morphing . 159
7.4.3 Dynamic view morphing . 160
7.4.4 Finding relative camera calibration . 167
7.4.5 Applications . 167
7.4.6 Experimental results . 167
7.4.7 Conclusion . 169

7.5 View interpolation of turntable motion . 170
7.5.1 Turntable sequences . 170
7.5.2 Conclusion . 178

8 Summary . 179

8.1 Accomplishments . 179
8.2 Conclusions . 181

BIBLIOGRAPHY . 182

APPENDICES

Appendix A: Mathematical Details . 195
Appendix B: Implementation Details . 207

iv

Appendix
Page

INDEX . 214

DISCARD THIS PAGE

v

NOTATION

M A 3 × 3 matrix. Capital Latin letter in math bold font.

Ψ A matrix with dimensions other than 3 × 3. Capital Greek letter in math bold font.

v A vector. Lower-case Latin letter in math bold font.

k, γ A real number. Lower-case Latin or Greek letter in math italic font.

A Reference to camera “A.” Capital Latin letter in math italic font. Cameras are la-
beled with letters rather than numbers.

ΠA The 3 × 4 camera matrix for camera A.

M(ij) The entry in row i, column j of matrix M

∼= Equality up to a scale. Two quantities are equal up to a nonzero scale factor.

:= Assignment operator. The symbol on the left is being assigned the value on the
right.

def
= Definition. The symbol on the left is being defined equal to the value on the right.

def∼= Definition up to a scale. The symbol on the left is being defined equal to the value
on the right up to a nonzero scale factor.

(x, y) An n-tuple or a vector written horizontally without matrix notation.

〈u,v〉 The space spanned by a set of vectors.

RANSAC An algorithm referred to by a short title. Small caps font.

psif Variable from a pseudocode example. Bold teletype font.

nCm The combination “n choose m.”

¬(y) The assertion that statement number y cannot hold.

T , w Platonic label for a concept. Math italic font.

û Platonic direction vector.

vi

{t}w Platonic vector t measured in coordinate system w.

eA Vector e measured in coordinate system A.

p̃ Homogeneous representation of position p.

φ Camera projection function.

verOrigin A variable assigned a descriptive name rather than a single letter, as might be done
in a computer program. Slanted Latin letters.

frob A function assigned a descriptive name rather than a single letter, as is standard
practice with functions like cos and log. Latin letters, math variation.

cent(i) Part of the n-tuple defining camera i, written as a function. Latin letters, math
variation.

SCREW-TRANSFORM MANIFOLDS FOR CAMERA SELF CALIBRATION

Russell Alan Manning

Under the supervision of Professor Charles R. Dyer

At the University of Wisconsin-Madison

This dissertation concerns the mathematical theory of screw-transform manifolds and their use in

camera self calibration. A camera’s calibration is the function that maps 3D scene points to 2D

image points, e.g., in photographs taken by the camera. Between every two photographs taken

from different positions there exists a pairwise constraint called the “fundamental matrix,” which

can be computed directly from the images. When the two photographs are captured by the same

camera, the fundamental matrix induces a surface in calibration space called a “screw-transform

manifold.” This manifold represents every possible internal calibration for the camera. By acquir-

ing several different pairwise fundamental matrices, several different screw-transform manifolds

can be computed; however, the internal calibration of the original camera must be a member of

each manifold and hence, by finding the intersection point of all the manifolds, the camera’s cali-

bration can be determined. The process of determining calibration directly from images taken by

a camera is called “self calibration.”

The contributions of this dissertation include the theory of screw-transform manifolds and three

original algorithms for determining the mutual intersection points of a collection of manifolds.

While many papers have been written on self calibration, almost all previous methods posed their

solutions as the global minima of an error function. However, performing global optimization

is problematic; it is easy to locate a local minimum without finding the global minimum, and

in some cases the attraction basin of the global minimum is so small that the algorithm must

essentially “guess” the solution in order to find it. One of the new approaches created as part

of this dissertation, called STM-SURFIT, avoids global optimization altogether and can effectively

locate all global minima in a single pass, running in under 1 second on a modern home computer.

vii

The general approach used to avoid the problems of optimization may have wider applicability

than simply camera calibration.

A tutorial on multiview geometry that assumes only knowledge of linear algebra is included to

provide the necessary mathematical background. The related history and previous work on self

calibration and image-based rendering is also presented. As part of the theory of screw-transform

manifolds, a theorem is introduced that partitions monocular view pairs into six categories based

on the underlying screw motion of the camera and provides a simple test for determining category.

In addition, some methods for self calibration and image-based rendering from dynamic scenes are

presented. The image-based rendering techniques do not require camera calibration but are limited

in applicability; this adds to the growing body of evidence that camera calibration is a necessity

for most useful image-based rendering techniques.

Charles R. Dyer

viii

ABSTRACT

This dissertation concerns the mathematical theory of screw-transform manifolds and their use in

camera self calibration. A camera’s calibration is the function that maps 3D scene points to 2D

image points, e.g., in photographs taken by the camera. Between every two photographs taken

from different positions there exists a pairwise constraint called the “fundamental matrix,” which

can be computed directly from the images. When the two photographs are captured by the same

camera, the fundamental matrix induces a surface in calibration space called a “screw-transform

manifold.” This manifold represents every possible internal calibration for the camera. By acquir-

ing several different pairwise fundamental matrices, several different screw-transform manifolds

can be computed; however, the internal calibration of the original camera must be a member of

each manifold and hence, by finding the intersection point of all the manifolds, the camera’s cali-

bration can be determined. The process of determining calibration directly from images taken by

a camera is called “self calibration.”

The contributions of this dissertation include the theory of screw-transform manifolds and three

original algorithms for determining the mutual intersection points of a collection of manifolds.

While many papers have been written on self calibration, almost all previous methods posed their

solutions as the global minima of an error function. However, performing global optimization

is problematic; it is easy to locate a local minimum without finding the global minimum, and

in some cases the attraction basin of the global minimum is so small that the algorithm must

essentially “guess” the solution in order to find it. One of the new approaches created as part

of this dissertation, called STM-SURFIT, avoids global optimization altogether and can effectively

locate all global minima in a single pass, running in under 1 second on a modern home computer.

ix

The general approach used to avoid the problems of optimization may have wider applicability

than simply camera calibration.

A tutorial on multiview geometry that assumes only knowledge of linear algebra is included to

provide the necessary mathematical background. The related history and previous work on self

calibration and image-based rendering is also presented. As part of the theory of screw-transform

manifolds, a theorem is introduced that partitions monocular view pairs into six categories based

on the underlying screw motion of the camera and provides a simple test for determining category.

In addition, some methods for self calibration and image-based rendering from dynamic scenes are

presented. The image-based rendering techniques do not require camera calibration but are limited

in applicability; this adds to the growing body of evidence that camera calibration is a necessity

for most useful image-based rendering techniques.

1

Chapter 1

Overview

Perspective is nothing else than the seeing of an object through a sheet of glass, on the
surface of which may be marked all the things that are behind the glass.

— Leonardo da Vinci [102]

1.1 Camera calibration

Consider Fig. 1.1, which depicts two devices aimed at a Stonehenge-like menhir. Each device

has a rectangular window and an eyepiece consisting of a small, open loop. Wires have been

strung across each window to form a grid. As one looks through the eyepiece, gazing out the

window at the menhir, positions on the menhir can be assigned 2D coordinates on the grid. This

process is depicted in the figure by dashed lines drawn between the lower left corner of the menhir

and the center of each eyepiece. Devices such as these first appeared in the Renaissance and are

mathematically analogous to a simple type of modern camera called a “pinhole camera.” They are

also an important component in modeling more complicated cameras. The term “pinhole camera”

will be used in this dissertation as a generic label for both these devices and real pinhole cameras.

When a pinhole camera is in a particular position and orientation, it defines a mapping, called

the camera’s “calibration,” from 3D positions in the world to 2D positions on its local grid.1 The

fact that camera calibration has been studied continuously since the early 1850’s, only a decade

after the first Daguerreotypes and Calotypes were publicly exhibited, is an indicator of its useful-

ness and of the difficulty in determining it. The main subject of this dissertation is a particular

1In a real pinhole camera there is no “wire grid”; this is merely a physical analogy for measurements made on
photographs.

2

Figure 1.1 Example of pinhole cameras.

approach to determining camera calibration that I developed as a graduate student. My approach

is classified as “self calibration” because calibration is determined directly from 2D measurements

acquired using the “wire grid” (i.e., measurements in photographs); no 3D information from the

world around the camera is used. This makes it possible to automatically calibrate a real camera

using only the information contained in the photographs it takes. As an example, self-calibration

techniques could be applied to a video stream captured with a hand-held camera to determine the

orientation and position of the camera during every frame of the sequence. No information other

than the video stream is necessary.

My approach differs significantly from earlier self-calibration algorithms and has several im-

portant advantages. Previous algorithms used geometric constraints called “epipolar geometry”

to define a nonlinear objective function with a global minimum corresponding to the camera’s

calibration. This general approach is problematic because the global optimization of complicated

objective functions can be very difficult; in particular, a global extremum might have an attraction

basin so small that an optimization algorithm must essentially “guess” the correct answer. My

approach does not define an objective function. Instead, the epipolar geometry constraints are used

to define a collection of surfaces in camera-calibration space with each surface representing a set

3

of legal camera calibrations. The mutual-intersection points of the collection of surfaces represent

all possible legal calibrations for the camera. Thus the standard global optimization problem is

exchanged for a more direct manifold-intersection problem, which I demonstrate can be solved

efficiently and robustly. Along with presenting my algorithm and the accompanying mathemat-

ics of screw-transform manifolds, this dissertation emphasizes applications of camera calibration

to image-based rendering and modeling and discusses larger issues concerning the true meaning

of image-based rendering, the limitations of global optimization, and the upside of computation-

intensive algorithms. See the summaries in Section 1.4 and Section 8 for a comprehensive list of

contributions.

1.2 Applications of camera calibration

Once camera calibration is known, the primary application is determining 3D positions in the

world through a process called “triangulation.” The menhir example in Fig. 1.1 illustrates how

triangulation works: First, the lower left corner of the menhir is sited through each device to

determine 2D grid coordinates for the corner. Next, the calibration function of each device is used

to sketch in 3D the dashed lines portrayed in the figure. By intersecting the two dashed lines

in 3D, we determine the 3D location of the corner of the menhir. Scene reconstruction through

triangulation appeared early in the history of “photogrammetry,” the science of using photographs

for measurement. It was used to measure buildings and construction sites, to survey battlefields

and aim artillery, to measure the heights of mountains, and, in 1885 in its first archaeological

application, to document the ruins of Persepolis. Scene reconstruction through triangulation is

used in modern computer graphics in many ways, for example to acquire models of real objects

(e.g., [119]), to perform motion capture, and to place synthetic objects into real scenes, as is done

in movie special effects (e.g., [182]).

Under the Marr paradigm [113] in computer vision, acquiring full or partial 3D models of the

objects being viewed was once considered a key step in object recognition and scene understand-

ing. Three-dimensional models may still prove useful for scene understanding when they can be

acquired, but there is significant evidence from psychology [164] that human beings understand

4

what they are looking at without first estimating 3D structure. A further application of camera

calibration in machine vision is the determination of “ego motion,” meaning the camera’s position

and orientation in the world over time. This can be useful by itself in robotics, and is necessary

for triangulation and plenoptic modeling (described below). Note that many of the areas that fall

under the rubric of computer graphics are also actively investigated by machine vision researchers;

we will distinguish between the two fields by saying computer vision is concerned with image

understanding while computer graphics is concerned with image creation.

An important computer graphics concept that requires camera calibration is “plenoptic model-

ing,” [1, 116] which refers to modeling the light that passes through a point in space from every

direction. Once modeled, this information can be used to generate new images of the world with-

out constructing 3D models. Several examples of plenoptic modeling from real photographs have

been published (e.g., [96, 63, 114, 162]); camera calibration makes this possible by allowing rays

of light that pass through the camera’s grid to be tracked in 3D.

A major application in photogrammetry and computer graphics is techniques for combining

photographs to make larger, synthetic photographs called “mosaics.” The goal of mosaicing is to

make synthetic photographs that are correct in the sense that they might have been obtained with a

single wide-angle camera. Mosaicing has been used to create detailed maps from aerial views (e.g.,

terrestrial maps and maps of the surface of the moon) and to create panoramic views from a single

viewing position (e.g., the surface of Mars as seen from the Viking probes). Since mosaicing is a

limited form of plenoptic modeling, camera calibration can assist in creating high-quality mosaics.

Mosaicing, plenoptic modeling, and scene reconstruction are all techniques used for “image-based

rendering,” a subject that is discussed in detail in Chapter 2 because of its importance to this

dissertation.

1.3 Calibration by manifold intersection

As mentioned earlier, my camera-calibration method is a self-calibration method, meaning

calibration is determined entirely from the information present in photographs captured by the

camera. When two photographs of the same object are taken from different locations, there exists

5

an “epipolar constraint” between the views, represented with a 3×3 “fundamental matrix”; detailed

explanations of these terms are found in Chapter 3. Every time a fundamental matrix can be

calculated from a pair of views, it places constraints on calibration. When no constraints are placed

on a camera’s calibration, the calibration can be located anywhere in “calibration space.” However,

by imposing constraints we are able to limit calibration to being a position on some manifold in

calibration space. With enough constraints, meaning enough manifolds, we can determine camera

calibration by finding the mutual-intersection point of all the manifolds.

In order to make this approach to calibration work in practice, efficient and robust methods

for intersecting collections of manifolds had to be developed (see Chapter 5). These methods are

computationally intensive but avoid the pitfalls of global optimization; in particular, the method

called “surface fitting” will not become trapped in local minima. All alternative, general-camera

self-calibration algorithms involve the global optimization of an objective function and will fail if

the attraction basin of the global minimum is small enough. Of course, there are no shortcuts to op-

timizing complicated objective functions since global extrema can potentially be hidden anywhere;

thus full solutions must inherently involve many computations.

Note that the term “computationally intensive” is relative to existing hardware. In the 18th

Century, the square root of a number could be computed by hand using a few iterations of Newton’s

Method; thus, square root finding was a reasonable computation to perform. In the early 20th

Century, analog computers were commonly used to perform computations that would not have

been feasible by hand; for example, analog “torpedo data computers” [55] were developed in the

1930’s for aiming torpedoes from submarines,2 and banks of analog calculators operated by people

were used to perform calculations for the Manhattan Project [48]. Shortly after digital computers

were invented, the Metropolis algorithm [117] was published; this algorithm used randomness

as part of its computation. Such an inefficient algorithm would not have been possible before

digital computers, for it would have been simply too computationally intensive. Yet Monte Carlo

methods have been used very successfully for many applications over the years. In 1959, Hough

2A torpedo is fired from one moving vehicle at another; the vehicles are moving different directions at different
speeds. Furthermore, the torpedo is fired straight ahead or behind from the submarine and follows a curved trajectory
to its target, guided by a gyroscope. The computations involved in aiming the device are significant.

6

[82] published a “voting method” for automatically locating the straight-line paths of subatomic

particles moving through bubble chambers. Hough’s method, now one of the standard computer

vision techniques, would have pushed to the limit the abilities of computers when it was created.

The larger point to be made is that, as computer hardware becomes more powerful, algorithms

that may have been infeasible at one time become feasible, and thus it is important to design

algorithms not just for today’s computers but for tomorrow’s. Directly intersecting manifolds to

find camera calibration is a case in point: this approach would probably not have been feasible on

typical hardware in the 1980’s, due to both its memory and computational requirements, but can

run in under 1 second on a modern home computer. A related claim can also be made: Just as

the algorithm designer should keep in mind the potential of new hardware and not be limited by

what was feasible in the past, new hardware can be designed in combination with new algorithms.

Biological vision systems are extremely reliant on specialized “hardware” (e.g., about 50% of the

human brain is devoted to vision) and it seems likely that to achieve comparable performance

with machine vision, radically new algorithms will have to be designed in combination with new

hardware to make the algorithms feasible.

A final point to be made from the work in this dissertation is that global optimization is not

a panacea and simply expressing the solution to a problem in terms of the global minima of an

objective function does not mean the problem is solved. Unfortunately, a large number of machine

vision papers are based on this approach. Global optimization can represent an ideal solution in

cases where the global objective is provably easy to determine (e.g., as with a convex function),

but few researchers attempt to prove, either empirically or analytically, that the objective functions

they have created are actually feasible to solve. As is demonstrated in this dissertation, good al-

ternatives to global optimization do exist for some problems without needing to weaken or modify

the problem.

1.4 Contributions of the dissertation

This dissertation contains the following contributions to the theory and practice of camera self

calibration, image-based rendering, and non-linear optimization:

7

• the mathematical theory of screw-transform manifolds;

• STM-SURFIT, an algorithm for the self calibration of a general pinhole camera (this algo-

rithm, derived from the theory of screw-transform manifolds, does not use global optimiza-

tion, finds all potential calibrations in a single pass, and runs quickly enough to be used in

conjunction with RANSAC for great robustness to noise);

• a theorem partitioning all pairwise rigid displacements into 6 natural categories with a simple

test for each category;

• three novel algorithms for manifold intersection;

• extensive experimental evidence showing the performance of STM-SURFIT and related algo-

rithms (these experiments demonstrate, among other things, that high-quality scene recon-

structions are possible from self calibration provided the input data is of high quality);

• an empirical demonstration that self calibration from 3 views probably has only 1 or 2 solu-

tions (the lowest proven bound is 21 solutions);

• several algorithms for image-based rendering of dynamic scenes (these are among the earli-

est published methods on this topic);

• a linear algorithm for affine camera self calibration from dynamic scenes containing apparent

linear motion;

• and a demonstration that the direct intersection of manifolds can form a practical and advan-

tageous alternative to nonlinear optimization under the right conditions.

1.5 Structure of the dissertation

Following this overview chapter, there are two chapters that can be read without prior knowl-

edge. Chapter 2 presents a brief history of image-based rendering and camera self calibration. The

purpose is not just to present facts about past research, but to express my opinions about the course

8

of development and ultimate significance of these fields. Chapter 3 provides a complete tutorial

on multiview geometry from the ground up. The target audience is graduate students in machine

vision and computer graphics who have never had exposure to multiview geometry. Only linear

algebra is assumed; projective geometry in particular is avoided. Both Chapters 2 and 3 may be

read independently of the dissertation and either may prove helpful to students interested in this

area.

The heart of the dissertation is Chapters 4, 5, and 6. Chapter 4 presents the mathematics of

screw-transform manifolds and Chapter 5 presents three general-purpose algorithms for finding

the mutual intersection points of a collection of manifolds. Combining the ideas in Chapters 4 and

5 leads to a complete algorithm for self calibration; Chapter 6 demonstrates the performance of

this algorithm on both simulated and real data sets.

Chapter 7 looks at calibration issues in relation to dynamic scenes. Two methods are presented

for self-calibrating cameras using the information present in dynamic scenes, and then several al-

gorithms are presented for performing image-based rendering from dynamic scenes with little or

no calibration information. The latter results are seen as evidence, in a negative sense, that cali-

brated cameras are necessary for useful IBR techniques. Chapter 8 provides a detailed, technical

summary of the contributions of the dissertation.

Two appendices are also provided. The first provides all the technical derivations for the math-

ematics of screw-transform manifolds, which were removed from Chapter 4 in order to make the

chapter more accessible and readable. The second appendix provides some key implementation

details for the manifold intersection algorithms of Chapter 5.

9

Chapter 2

History and Context

2.1 Image-based rendering: sampling versus simulation

According to conventional wisdom, a new paradigm for creating computer graphics called

“image-based rendering” (IBR) appeared in the early 1990’s, starting with the landmark paper of

Chen and Williams [26]. In this chapter, the meaning and history of image-based rendering is

presented and it is argued that, with the perspective of history, IBR existed before the 1990’s and

should be seen as part of a larger trend in engineering extending beyond the bounds of computer

graphics.

In general, IBR concerns methods for converting pre-existing, highly-detailed or otherwise

realistic images such as photographs into new, realistic images; the pre-existing images are called

reference views and the new images are called virtual views or synthetic views. In the problem

that Chen and Williams considered specifically, the reference views were not photographs but

were instead highly-detailed computer graphic images generated with a computationally-intensive

rendering algorithm. Their goal was to generate “interpolation sequences” between the pre-existing

views in a computationally-efficient manner (e.g., efficient enough to run in real-time, as opposed

to the algorithm that generated the reference views). An interpolation sequence is a series of images

forming a smooth transition between two views, and the task of creating interpolation sequences

is known as view interpolation; we will return to this subject later.

Image-based rendering had existed before Chen and Williams in various forms, but had never

been given a formal designation or been seen has a paradigm. The classic example of using realis-

tic, pre-existing images to create realistic computer graphics is “texture mapping,” which originated

10

in the 1970’s [24]. Using texture mapping, a realistic-looking computer graphic image of a wood

floor might be generated by mapping a photograph of the surface of a real wood floor onto a simple

geometric model of the floor (i.e., a plane). Shortly after the invention of texture mapping by Cat-

mull, a technique for “reflection mapping” (also known as “environment mapping”) was published

by Blinn and Newell [16]. In environment mapping, an image of the environment surrounding

an object is used in rendering the object. If, for instance, the object has a mirror surface, then

the surrounding environment would be seen reflected in the surface adding to the sense of realism

[193, 29]. Diffuse surfaces are affected in the same way as mirrored surfaces, only they reflect

the incoming light differently [118]. Environment mapping has been used with great success in

movie special effects for inserting synthetic objects into real scenes [124, 186, 128]. By mapping

the surrounding real environment (e.g., of the movie set) onto the surface of a computer-graphic

model, the computer-generated object can be made to seem like it was in the original scene; that

is, it will better meet the perceptual expectations of viewers of the movie. In the original work

of Blinn and Newell, the environment map was a hand-drawn computer graphic image; however,

later work, for instance on movies, has used photographs of real environments [64].

What distinguished the work of Chen and Williams from earlier methods, enough to give impe-

tus to a new graphics paradigm, was the extent to which the reference views were used. In texture

and environment mapping, 3D models are created and rendered in the traditional manner (e.g., by

specifying vertex coordinates, surface normals, etc.) and the reference views are used to add a

level of detail that would otherwise be hard to model specifically. For example, a photograph of a

wood floor is filled with details: the grain of the wood, variations in color, knots, scratches, dirt,

and other patina effects. By covering a 3D model with texture drawn from the photograph, the

model instantly has all the details present in the photograph without needed to specifically model

dirt or scratches. In contrast, the paper of Chen and Williams dispensed with traditional 3D mod-

els entirely and rendered new views directly from the reference views. Although no models were

used,1 the synthetic views generated by Chen and Williams were physically correct, meaning they

1Arguably, enough information existed to create a projective reconstruction and this projective reconstruction was
used implicitly whether or not it was explicitly computed during execution of the algorithm.

11

had the same shape properties (although not the same lighting properties) they would have had if

generated using 3D models.

Another landmark paper, published a year earlier than the work of Chen and Williams, was the

Beier-Neely morphing algorithm [14]. This algorithm could be used to generate computer graphic

images portraying a smooth transition between two existing reference photographs. Generating an

interpolation sequence from reference photographs of real scenes gave the sequence a high level

of realistic-seeming detail, far more than would have been practical to create by hand following

the traditional computer graphics paradigm. Furthermore, the Beier-Neely algorithm required rel-

atively little computational power, especially in comparison to the apparent realism of its results.

However, there was no guarantee that the interpolation sequences were physically correct with re-

spect to some underlying 3D model of the scene as there was with the Chen and Williams work.

It should be noted that, while Beier and Neely’s algorithm became well known starting with its

publication in 1992, image warping and morphing had been used for several years prior by private

companies producing commercials and movie special effects [101, 194]. The private companies

had used several different algorithms produced by various researchers working independently.

Thus by the early 1990’s, graphics researchers started to realize that highly-detailed computer

graphics could be created in a computationally-efficient manner by using existing, highly-detailed

images (e.g., real photographs or computer graphics images generated using computationally ex-

pensive algorithms like ray tracing [3, 191] or radiosity [62]). Whether the synthetic imagery was

physically correct (as in the paper of Chen and Williams) or simply had realistic-looking detail

(as in morphing and warping), what made image-based rendering a new paradigm, distinct from

traditional computer graphics, was the emphasis on acquiring detail from existing images rather

than generating detail with elaborate models and physical simulation.

Over the years, researchers in several disparate fields have come to the same general conclu-

sion, that sampling from nature is in many cases more efficient, simpler, and perhaps even more

desirable than simulating nature. A prime example is electronic music devices. In the 1950’s and

1960’s, electronic organs with built-in synthetic drum machines started to appear for the home

12

market. These machines could create a cymbal-like sound, for example, by passing random elec-

tronic white noise through a series of filters. Electronic organs themselves tried to emulate a wide

range of musical instruments using electronic tricks. The effect, however, was always synthetic

sounding.2 In the 1980’s, electronic instruments were made that sampled the sounds produced

by real instruments and simply played them back, producing an effect essentially identical to the

original instrument.

Other examples come from the areas of voice synthesis and motion capture. While there has

been research performed on trying to physically simulate the human voice box or to artificially

replicate phonemes (e.g., Dudley’s work from 1939 [36]), the simplest and, it turns out, best

method for speech synthesis is to sample phonemes produced by human speakers and then re-

combine them to produce arbitrary words (e.g., [86, 19]). In trying to make computer graphics

containing realistic movement or facial expression, one could attempt to model muscles and the

physics of motion, but it is far easier to record real movement from people and animals and then

attach this data to computer models. The highly-realistic facial animation in the short movie “The

Jester” [127] was achieved in this manner. Several researchers (e.g., [192, 143]) have worked on

blending or reshaping captured motion data to create new motions in much the same way that voice

synthesizers recombine phonemes to pronounce arbitrary words.

Following in the wake of Chen and Williams, a number of papers were published on image-

based rendering (or sampling for rendering). Because research in IBR at this point branched out

in different directions rather than following a linear path of development, we present below a brief

survey of important results as a series of disjoint “micro-sections.” Each micro-section includes a

title indicating its content for convenient reference; the micro-sections are self sufficient and can

be read in any order. This listing is not exhaustive but rather is intended to give the reader a sense

of the wide variety of work that has been done in IBR and of the importance of this field.

DEVELOPMENT (Mosaicing). Mosaicing (see Szeliski [174, 175]) is the process of stitching to-

gether several reference photographs to make one large photograph. If all the reference views

2In some cases, the synthetic sound was sought after in its own right. Consider the success of the album “Switched-
On Bach” [22] (released in 1968) and the genre of “music from space.”

13

share a common optical center, then the mosaic will be a physically-correct view with that opti-

cal center; McMillan and Bishop [116] used this process to create cylindrical reference views for

their seminal paper on plenoptic modeling. Alternatively, mosaics can be created from sequences

of orthographic views to make a large orthographic view; this is a traditional application of pho-

togrammetry used for making maps. Burt and Adelson [21] used image pyramids to help remove

seams when piecing together images in a mosaic; they were specifically interested in creating

seamless mosaics from space-exploration imagery. Sawhney et al. [148] studied the problem of

correcting for noise in creating very-large-scale spherical mosaics. Szeliski and Shum [176] also

studied the problems associated with large-scale mosaics, using local deformations to correct for

ghosting artifacts. The “video brush” system [129] could create mosaics in real time by incremen-

tally adding only the central 1D slice of each successive view to the growing mosaic. Rousso et

al. [145] used projection onto a cylinder to create lateral mosaics from forward-looking views of a

camera moving forward. Irani et al. [85] used image registration to increase image resolution.

Several authors have utilized scene motion with mosaics: for example, Irani et al. [83] did

work on creating mosaics from video sequences in which the scene movement can be viewed in

the context of one final, large-view mosaic; Davis [28] removed motion to create static mosaics

from dynamic scenes; and Caspi and Irani [23] used motion to register views that had little or no

visible overlap.

DEVELOPMENT (View interpolation and view synthesis). View interpolation is the process of

creating a sequence of images representing a smooth, continuous, transition between two refer-

ence views. Image morphing (e.g., [14]) is an example of view interpolation. Morphing has

been used to create short special effects and stylistic imagery for movies, commercials, and music

videos [101, 61, 56], and the creators of the commercial morphing product “Elastic Reality” were

awarded an Oscar for technical achievement. Thus view interpolation had a profound impact on the

establishment of image-based rendering as an important discipline. More recently, Kanade et al.

[88, 177] have used view interpolation as part of the “virtualized reality” project. Joint view trian-

gulation [97] is a technique for approximately solving the dense correspondence problem required

for view interpolation and has been used to create realistic-looking interpolation sequences.

14

Creating physically-correct view interpolation sequences is an extra challenge and most for-

mal papers on interpolation have had this objective (e.g., [190]). Ullman’s work [181], arguably

the earliest on view interpolation, created physically-correct interpolation sequences from ortho-

graphic views. The seminal paper of Chen and Williams [26], which is commonly seen as the birth

of image-based rendering, fits into this category. Seitz and Dyer [153] demonstrated a technique

for making the Beier-Neely morphing algorithm physically correct. Manning and Dyer extended

the “view morphing” technique to dynamic scenes with apparent linear motion [108] and to inter-

polating environment maps [110].

View synthesis is closely related to view interpolation, with the difference being that interpo-

lation sequences are not necessarily the goal. Avidan and Shashua [6] demonstrated the ability

to synthesize new, physically-correct views from arbitrary viewing positions using uncalibrated

reference views and the trilinear tensor between them. Similar work, but based on fundamental

matrices and thus less stable, was published by Laveau and Faugeras [95]. Irani and Anandan

[84] demonstrated a novel view-synthesis technique that did not require multiview relationships

like fundamental matrices; instead, a reference plane and many views are required, and ideally the

scene should contain discrete objects separated by empty space.

DEVELOPMENT (Plenoptic modeling). Plenoptic modeling describes IBR techniques in which

the rays of light entering a region from different directions are directly stored and later used to

synthesize new views. McMillan and Bishop’s seminal 1995 paper on plenoptic modeling [116]

was one of the initial driving forces for IBR, although the idea of the plenoptic function was for-

malized at least as early as 1991 [1]. The important technique of light field rendering [96] (and

closely-related lumigraph technique [63]) appeared a year after the McMillan and Bishop paper.

Light field rendering is most simply described as a computerized hologram. The technique allows

the user to view a scene from any direction in a random-access manner, just as a person can tilt

a hologram to see different views of a scene. It also provides for smoothly interpolating between

closely-spaced views without the determination of point correspondences or optical flow. Draw-

backs to the technique are the precise requirements on camera calibration and the large amount

of data that must be stored. The great advantage is that scene reconstruction is unnecessary, and

15

thus the difficult correspondence problem need not be solved. Light field rendering also produces

highly-compelling results. Subsequent work has produced a Nyquist-like limit on the number of

reference views required for light field rendering [25] and a demonstration that plenoptic modeling

can be performed in conjunction with self calibration [75].

DEVELOPMENT (Image-based modeling). After the term “image-based rendering” had emerged,

it became evident that many of the best image-based rendering techniques involved scene recon-

struction. Thus the term “image-based rendering and modeling” (IBRM) came to replace the

earlier phrase. Image-based modeling is the building of scene models from photographs (or other

2D acquisition devices like CCD’s). The goal is high-quality models for use in computer graphics.

The term “model” does not just refer to 3D shape, but also to light-reflectance properties and any

other physical attribute one might wish to model for computer graphics. Any engineering tool that

can improve the model acquisition can be used: the cameras can be calibrated, the motion of the

cameras or of the scene objects can be controlled, and point correspondences can be precisely ac-

quired with structured light. Perhaps the best tool for acquiring precise 3D models is a laser range

scanner; e.g., Cybertron scanners are commonly used in IBRM research. Of course, model acqui-

sition should also be simple and use low-cost equipment if possible; this is where self-calibration

can play a role.

The seminal “Facade” system by Debevec et al. [31], published in 1996, demonstrated the

power of using models, even approximate models, for IBR. Scene reconstruction from reference

views was not new, having been one of the first uses of photogrammetry in the mid 19th Century.

However, the Facade system and accompanying demonstration movies convinced many people

that IBRM could be a useful technique. The special effects designer for the highly-successful

movie “The Matrix” [185] decided to use IBRM in the movie after seeing demonstrations produced

with “Facade” [163]; he even hired one of the key researchers from the “Facade” project to help

implement the special effects.

In the Facade system, a small number of calibrated reference views of a scene were captured

and then a human user, with machine assistance, used simple geometric shapes like rectangular

prisms, planes, and pyramids to approximately model what was seen in the reference views. The

16

system was most appropriate for architecture, which tends to be made of simple geometric shapes.

After the scene had been approximately modeled, new “virtual” views of the scene could be ac-

quired from arbitrary positions using arbitrary virtual cameras. To complete the effect, texture

was mapped onto the scene models by using a blend of texture from the nearest reference views;

thus the model texture depended on viewing position, leading to “view-dependent texture.” The

reason this approach works so well is that the human brain is very good at estimating scene shape

from visual cues like shadows which are present in the textures. Thus, despite using only simple

geometric models, the virtual views produced by Facade looked like they were generated from

highly-detailed models because they retained the details from the original reference views.

Image-based modeling is a standard tool in movie special effects. Approximate scene models

are constructed from camera views not to create new virtual views from different angles but to place

synthetic objects into a scene. At one time, expensive survey crews were used to acquire precise but

sparse models of film sets to assist with special effects. In addition to expense, this also required

a lot of preplanning and prevented spur-of-the-moment changes. For the movie “Dinosaur” [187],

which required outdoor shots of mesas located far from the movie studio, survey crews had to be

flown to the site to acquire local geometry. Furthermore, large white markers had to be physically

placed into the scene to tie the surveying information to the visuals, and later these markers had to

be digitally removed from the film. In theory, self calibration could have been used to reconstruct

the scene just from the images of the mesa without the need for surveying the area; this would also

have made last-minute changes easy to accomplish.

DEVELOPMENT (Image-based lighting). Image-based lighting involves acquiring illumination in-

formation from real scenes and then using this information to light synthetic renderings (e.g.,

[29, 198]). Alternatively, it can concern the synthetic lighting of real objects before compositing

in order to match the lighting in the destination scene (e.g., [201, 30]). Image-based lighting is not

necessarily image-based rendering but fits into the larger paradigm of “sampling over simulation.”

DEVELOPMENT (Multiple-center-of-projection images). Rademacher and Bishop [142] produced

stylistic “multiple-center-of-projection” images that could be used in conjunction with compres-

sion of video streams. As a camera was moved around a computer-generated scene, information

17

about camera calibration was stored along with the center strip of each view. The central strips,

when pasted together in sequence, formed unusual and compelling images. Some mosaicing work

could also be described as multiple-center-of-projection work, especially the pipe-projection mo-

saicing of Rousso et al. [145]. It is interesting to note that multiple-center-of-projection images

have been in use for at least a century: they were used by museums to document as flat images

the designs on ancient pottery [18]. This could be achieved, for instance, by placing a vase on

a turntable and recording the vase with a special camera that only captured a thin vertical strip at

each instant. As the vase was rotated on the turntable, the camera’s film was translated horizontally,

producing a final flat image depicting the design on the vase’s curved surfaced.

DEVELOPMENT (Texture synthesis). In texture synthesis, a probability distribution (e.g., of colors

and intensities) is acquired from a small sample of texture and then used to synthesize the texture

over a large area. The key paper in this area is due to Effros and Leung [39] which is based on an

observation by Shannon.

DEVELOPMENT (View augmentation and virtual reality). View augmentation (e.g., [9, 58, 94, 29])

is the placement of a synthetic object into a real view. This is a key method for special effects in

movies, and can also be used to provide information to a person viewing a real scene through

a head-mounted display (e.g., [115, 47, 137]). The key problems are keeping track of camera

calibration (i.e., of the person’s view), especially external calibration, and in some applications

reconstructing the scene being viewed. Kanade et al. [121] developed a stereo system that could

calculate scene depths in real-time and place synthetic objects into the scene with correct occlu-

sions.

DEVELOPMENT (Hallucination and other synthesis techniques). Baker and Kanade [11, 10] cre-

ated a technique they termed “hallucinating faces.” In this technique, probabilistic information

acquired from a large database of faces was used to fill in missing details in novel images of faces.

For example, if a face were partially occluded in a photograph, the database could be used to

complete the missing portion. This technique was also applied to face recognition.

18

Other related IBR techniques exist for synthesizing classes of objects. Blanz and Vetter et

al. [15] acquired 3D range-scan data for the faces of hundreds of subjects and then treated the

data as a vector space spanned by a small number of significant basis vectors. 3D models of new

faces, not already in the database, could be effectively synthesized as linear combinations of the

basis vectors. This approach was demonstrated by creating 3D face models of famous celebrities

using only a single photograph; the vector space was searched to find a good fit to the lighting and

shadows evident in the photograph (an estimation of lighting was required).

Using a similar database technique but with a 2D database, Cootes, Edwards, and Taylor [27,

38] demonstrated a technique for taking a given reference view of a face and synthesizing different

expressions for the face, making the face look older or younger, and blending together different

people’s faces.

DEVELOPMENT (Time dilation). Shechtman et al. [161] demonstrated a technique for using sev-

eral regular video cameras in orthographic configuration to create a slow-motion video sequence

of a dynamic scene. For example, four cameras filming at 25 frames per second could produce a

100 frames-per-second slow-motion sequence.

2.2 Self calibration and scene reconstruction

Mathematicians and engineers have studied camera calibration since shortly after the birth of

photography. Calibration was the key component in “photogrammetry,” the science of measuring

distances using photographs or related 2D phenomena, which are called “photogrammes” generi-

cally. The mathematics of photogrammetry originated with the study of perspective painting in the

Renaissance. Questions regarding perspective lead to the development of projective geometry with

researchers like Girad Desargues and Blaise Pascal in the mid 17th Century. Poncelet formalized

the study of projective geometry in the eary 19th Century. Although projective geometry can be

used for photogrammetry, the two fields should not be confused. Horn [80] points out that real

cameras have more constraints than projective geometry models allow for, and thus the more gen-

eral nature of projective geometry can lead to undesirable and unnecessary ambiguity. Horn also

states that projective geometry is rarely used in photogrammetry, citing Wolf [196] and Slama,

19

et al. [165]. Mathematicians have published work specifically related to camera calibration and

photogrammetry since the 19th century. For example, Hauck [74] in 1883 with “New Perspective

and Photogrammetric Constructions” (“Neue Konstruktionen der Perspektive und Photogramme-

trie”) and Finsterwalder [50] in 1899 with “The Geometric Foundation of Photogrammetry” (“Die

geometrischen Grundlagen der Photogrametrie”). Kruppa, working within the framework of pro-

jective geometry, made important contributions to photogrammetry in the early 20th Century [92];

the “Kruppa Equations” are still commonly used today.

Although specially-constructed equipment was always a part of photogrammetry, photogram-

metrists starting using more automated techniques called “analytic methods” beginning in the

1950’s. Analytic methods made more-intensive computations possible, which in turn opened up

new approaches to photogrammetry as per the discussion at the end of Section 1.3. The era of

analytic methods was succeeded by the digital era, in which digital images replaced photographs

and algorithms were designed to utilize the ever-increasing computational power of digital com-

puters. It was early in the digital era of photogrammetry that Longuet-Higgins [98] published his

seminal paper on camera calibration, “A Computer Algorithm for Reconstructing a Scene from

Two Projections.” This paper introduced a linear algorithm for finding the external calibration of

two cameras with known internal calibration using only information available in the two camera

views. The method involved the determination of a 3 × 3 matrix later known as the “essential

matrix” between two views.

The paper of Longuet-Higgins set in motion a chain of research leading ultimately to cam-

era self calibration, from which this dissertation springs. Most important in the chain were two

landmark papers published by Faugeras in 1992 at the European Conference on Computer Vision.

One paper [44] introduced the “fundamental matrix” between two views, which is a more general

form of the essential matrix that does not require knowledge of internal calibration. This paper

also demonstrated that physically-valid new views of a scene could be created from existing, un-

calibrated perspective reference views without needing to build a model of the scene. Using later

parlance, it could be said that Faugeras performed “projective scene reconstruction” in order to

create new views; the important point is that it was not necessary to calibrate the cameras or to

20

build models resembling the original scene. Note that Ullman [181] had published a similar re-

sult in 1979 for uncalibrated orthographic views, which are simpler than uncalibrated perspective

views.

The second paper [41], coauthored by Luong and Maybank, introduced the possibility of cam-

era “self calibration.” As mentioned earlier, self calibration is the process of calibrating a camera

using only images captured by the camera. Thus, using self calibration, it is possible to move a

camera around a scene while taking pictures and then later determine the camera’s position, ori-

entation, and internal properties directly from the resulting photographs. There are different kinds

of self calibration algorithms, each having different requirements and producing different amounts

of information. The algorithm of Faugeras et al. only produced internal camera properties and

assumed (as do most self calibration papers) that the camera could be modeled as a pinhole cam-

era. This algorithm was built on the “Kruppa constraints,” which were first published in 1913, and

utilized the fundamental matrix.

The fundamental matrix is part of a larger group of multiview relationships that began to appear

in the late 1980’s (e.g., [167, 166, 188]), from which the the “trilinear tensor” [158] (also called

“trifocal tensor” [69]) ultimately emerged; Section 2.4 of Stein [170] relates the origins of trilinear

relationships. A trilinear tensor relates three camera views; there exist relationships for higher

numbers of views, such as the quadrifocal tensor, but these ultimately are equivalent to trilinear

tensors. Both the trilinear tensor and fundamental matrix can be determined from point or line

correspondences between views, or combinations of point and line correspondences. Stein [169]

performed some work on the direct determination (i.e., from optical flow) of trilinear tensors for

closely-spaced views, and Brodsky et al. [20] performed related research on self calibration from

optical flow. In general, except for closely-spaced views, it appears that multiview relationships

require some knowledge of point or line correspondences.

Self calibration became a very active area of research following the paper of Faugeras et al..

There are three reasons for the interest in this topic. First is the long-held belief in the Marr

paradigm, which held that scene reconstruction was an important part of image understanding;

since camera calibration is necessary for scene reconstruction, self calibration could provide the

21

missing step for converting images directly into models. Second is the growing importance of

image-based rendering, which emerged as a separate discipline at almost the same time as self

calibration. Again, self calibration makes model acquisition easier, and model building is important

to IBR (see Section 2.1). The third reason is that self calibration is a very mathematical topic and

as such results in self calibration are usually accompanied by proof of their correctness (for perfect

input data). Thus papers on self calibration tend to produce “eternal” results that will be correct

and part of scientific knowledge forever after. This contrasts with many papers in machine vision

that tend to be heuristic in nature.

The following summary of developments in self calibration is meant to give the reader a sense

of the wide variety of work that has been done on this topic; it is not exhaustive and some of the

items listed are from prior to 1992 or are otherwise unrelated to Faugeras’ work. See Pollefeys

[130] for a more technical overview of developments in self calibration. Most of the terminology

used in this summary is defined in Chapter 3. Some of the methods described below only involve

finding external calibration (the position and orientation of a camera, perhaps relative to another

camera) and as such could simply be considered structure-from-motion algorithms rather than self

calibration algorithms. They have been included for various reasons involving their relationship to

full self calibration algorithms.

DEVELOPMENT (Direct self calibration). Direct self calibration is the determination of metric

internal calibration directly from pairs of fundamental matrices, without any intermediate steps

such as projective scene reconstruction or affine calibration. Relative camera orientations are not

determined. Direct self calibration is my own term, since none exists in the literature, created to

contrast this style of self calibration with stratified self calibration. The original self calibration

method of Faugeras et al. [41] is in this category, as is the method of Manning and Dyer [103].

Hartley and Zisserman [70] express pessimism that direct self calibration can be successful in

practice.

DEVELOPMENT (Stratified self calibration). In contrast to direct self calibration, stratified self

calibration [45, 35] involves a series of calibration steps, each closer to the ultimate goal. First,

projective reconstruction of the scene, including all the cameras, is performed. Then the projective

22

reconstruction is upgraded to affine and finally to metric. The advantage of this approach is that

all views will share the same basis at each step of the algorithm; thus, for instance, the plane at

infinity and the absolute conic will be located in the same position for each camera. A prime

example of stratified self calibration is the modulus-constraint approach of Pollefeys and Van Gool

[132]. Pollefeys [130] asserts improved calibration results for his stratified approach versus the

direct method of Faugeras et al..

DEVELOPMENT (Projective or weak calibration). The first stage of stratified self calibration is

projective reconstruction. Projective reconstruction of two camera views is possible whenever

the fundamental matrix between the views is known, in which case the two views are said to be

“weakly calibrated” relative to each other. Any research into determining fundamental matrices

or epipolar geometry (e.g., [167, 67, 72, 159, 34, 144, 199, 146]) is research into projective self

calibration.

DEVELOPMENT (Affine calibration). Affine reconstruction occurs when the reconstructed plane

at infinity is coplanar with the true plane at infinity. This is the second phase of stratified recon-

struction. The reconstructed cameras in an affine reconstruction are said to be affinely calibrated.

Affine reconstruction is close to metric reconstruction, the most-complete reconstruction possi-

ble using camera views solely, and has a variety of uses [111]. For example, it is necessary for

the linear interpolation of scene motion in view interpolation sequences [108]. There are many

cases where affine calibration can be determined even when metric calibration cannot be, such

as when two views are separated by a translational displacement [120]. Various authors (e.g.,

[33, 138, 12, 173, 141]) have done representative work on affine calibration.

DEVELOPMENT (Orthographic or affine views). Orthographic camera views are not affected by

distance to the scene (i.e., there have no perspective effects). Views captured from a distance using

a telephoto lens are an example. The x- and y-coordinates in such views represent direct mea-

surements of the scene. By assuming square pixels, Tomasi and Kanade [178] produced an ele-

gant “factorization” method for self calibration and scene reconstruction from orthographic views.

Shapiro [157] extended this approach to general affine cameras (with non-square pixels). Some

23

work has shown that affine views can be used directly without the need for calibration; for in-

stance, Ullman [181] showed that new camera views can be created directly from orthographic

views by interpolating point correspondences, and Koenderink and van Doorn [91] showed that

affine scene reconstruction was possible from two affine views.

DEVELOPMENT (Absolute quadric). Triggs [180] introduced and studied the absolute quadric.

The quadric is represented using a 4 × 4 matrix in the same way a conic is represented using a

3 × 3 matrix. The 4 × 4 matrix encodes information about internal camera calibration and the

location of the plane at infinity in such a way that it can be used for self calibration. Triggs’

self-calibration algorithm required nonlinear optimization.

The absolute quadric is discussed further in Section 3.5.5, where a detailed example is pro-

vided. As will be seen, using the absolute quadric for self calibration has two main advantages: it

is mathematically simple and the cameras being calibrated do not need to be internally identical if

other constraints are known about them. The latter property was the basis for a Marr-Prize-winning

paper by Pollefeys, Koch, and Van Gool [131]; the property arises because the absolute quadric

makes it possible to relate certain internal calibration parameters directly to projective camera

matrices.

There are three drawbacks to using the absolute quadric. First is the need for nonlinear opti-

mization, which we have argued against in Manning and Dyer [105]. However, note that if enough

assumptions are made about internal calibration then a linear calibration algorithm can arise [131].

Second is the subtle relationships that the absolute quadric provides between internal calibration

and projective camera matrices (see Section 3.5.5); the constraints thereby arising could be numer-

ically unstable. Third is the introduction of bias towards one selected camera view, for which the

absolute quadric is calculated. Such considerations are part of Horn’s general complaint against us-

ing projective geometry for camera calibration [80]. Nonetheless, the absolute quadric has become

very popular for self calibration.

DEVELOPMENT (Mosaics). Mosaics can theoretically be created from uncalibrated views, but

knowing calibration can help stabilize errors due to noise and can lead to more natural-looking

output. Hartley [68] pointed out that when a single camera with fixed internal parameters is used

24

to create a mosaic with a single optical center, then the camera can be self calibrated if at least 3

reference views are utilized. McMillan [116] also performed a more limited form of self calibration

in conjunction with mosaicing.

DEVELOPMENT (Critical motion sequences). Sturm [172] investigated critical motion sequences,

which are collections of monocular camera views (i.e., all captured by the same camera) for which

self calibration does not yield unique results. Pollefeys [130] expanded upon the list of critical

motion sequences.

DEVELOPMENT (Variable focal length). Most self calibration work assumes a camera with con-

stant internal parameters. This is generally a good assumption over short time sequences (e.g., with

closely-spaced views). The most likely internal parameter to change is the camera’s focal length

(e.g., due to zooming in and out). Pollefeys [131] studied the problem of self calibration with

unknown focal length. Unfortunately, when a camera zooms there is usually a change of principal

point as well as focal length. Fortunately, determining principal point incorrectly does not seem to

affect scene reconstruction very much.

DEVELOPMENT (Radial lens distortion). Almost all self calibration research assumes a pinhole

camera model, which does not account for the lens distortions effects that exist in real camera

views. The most prominent lens distortion effect is “radial distortion” (also called “fish-eye” or

“barrel” or “pincushion” distortion) in which projected light is moved away from the image center

based on its distance from the image center. Stein [168] showed how a 3-view trilinear tensor

could be used to determine radial distortion. Since self calibration requires at least 3 views, this

means both radial distortion and internal calibration could be determined from 3 camera views.

Farid et al. [40] discussed the possibility of determining radial lens distortion directly from the

power spectrum of an image, and Sawhney and Kumar [147] used mosaicing to correct for radial

distortion.

DEVELOPMENT (Dynamic scenes). The use of multiple, independently-moving objects to perform

self calibration has been investigated by Manning and Dyer [106, 111], Fitzgibbon and Zisserman

[53], and Wolf and Shashua [195], among others. Having a single moving object present in a scene

25

(with no static background) provides no more information than a single moving camera viewing a

static scene, but having multiple moving objects introduces new information due to the motion of

the objects relative to each other. Stein et al. [171] used the accumulation of motion information

over time to provide point and curve correspondences between views, which could subsequently

assist in camera calibration.

DEVELOPMENT (Stereo rigs). A pair (or more) of cameras rigidly connected to each other with

unchanging relative orientation is called a stereo rig. Two cameras mounted rigidly on a robot

is an example. Stereo rigs are of particular interest for recovery of dense stereo correspondence

information (e.g., [125, 8]). Typically, a stereo rig will be moved through a scene and self cali-

bration of all the cameras or determination of their relative orientations will be performed from

the subsequent views. Many researchers have demonstrated various approaches to self calibration

with stereo rigs: for example, Deriche et al. [34] investigated weak self calibration from stereo

rigs; Quan [138], Sturm and Quan [173], and Zisserman et al. [200] studied affine self calibra-

tion from stereo rigs; Horaud and Csurka [78] investigated metric self calibration from stereo rigs;

Stein [169] investigated self calibration of external parameters from optical flow using a 3-camera

rig; and Manning and Dyer [111] demonstrated a linear algorithm for the affine self calibration of

a stereo rig in the presence of apparent linear scene motion.

DEVELOPMENT (Nonstandard cameras). While most self calibration work has assumed a pinhole

camera model, there has been some work involving alternative camera geometries. With catadiop-

tric cameras, there are extra parameters (beyond the usual parameters of camera calibration) such

as the curvature of the mirror surface; Geyer and Daniilidis [57] investigated this problem for cer-

tain kinds of catadioptric cameras. Also, several authors [140, 46] have investigated the potential

benefits of using 1D cameras.

DEVELOPMENT (Horn’s critique of using projective geometry for self calibration). Horn [79, 81]

advocated the use of quaternions in solving the relative orientation problem (given two cameras

with known internal calibration, find the relative angle of rotation and direction of displacement

between them). Horn’s approach is iterative and involves direct, physical modeling of the cameras.

26

As stated earlier, projective geometry in some cases over generalizes calibration problems, leading

to spurious solutions. For this reason Horn [80] has questioned its use when unnecessary, even in

cases where it leads to linear algorithms. However, for self calibration of internal parameters the

use of projective geometry seems necessary because all potential solutions must be considered.

27

Chapter 3

Introduction to Camera Calibration and Multiview Geometry

This chapter presents the formal concepts and notation that will be used in the remainder of

the dissertation. It also serves as a stand-alone introduction to multiview geometry. The goal is

to be brief and to use basic rather than advanced mathematics; in particular, linear algebra will

be used whenever possible in favor of projective geometry. Instead of providing a narrative or

tutorial, the subject matter is presented as a series of disjoint vignettes (i.e., an outline) in the style

of mathematical definitions plus examples and comments. This will make it easier for the reader

to refer back to the meaning of individual concepts later in the dissertation, and will also allow the

reader to skip topics with which he is already familiar.

For a complete discussion of concepts related to camera calibration and image-based scene re-

construction, see the excellent recent books by Hartley and Zisserman [70] or Faugeras and Luong

[42], or the older book by Faugeras [43]. Many of the concepts presented here are sufficiently

basic to be covered in general machine vision textbooks (e.g., [37, 54]). In addition, some recent

Ph.D. dissertations relating to calibration and scene reconstruction (e.g., [170, 130, 114]) provide

alternative presentations of the introductory material. Most of the resources listed above build

their presentations around projective geometry or other mathematical concepts, such as tensors,

that most scientists have never been exposed to; as was stated earlier, one major goal of this disser-

tation is to present the material in an alternative manner using basic mathematics and a minimum

of formal projective geometry.

28

3.1 Platonic labels and coordinate systems

Consider the tip of your nose. The tip of your nose, at a particular instant in time, represents a

position in space. The “tip of your nose” is also a Platonic concept; it exists in an abstract sense.

We can think about this concept, and as such we may wish to assign a label to it. For example, we

might denote the concept by the label T , which will be called a Platonic label in this dissertation.

Here, the concept labeled T also represents a position in space so we will use the more specialized

notation t. The label t is a Platonic vector; it serves merely to denote a Platonic concept that

also happens to be a position in space. To give t a more specific meaning, we need “coordinate

systems.”

Fig. 3.1 shows a position t in
� 2 as a Platonic concept, and then demonstrates some specific

coordinate systems for measuring the position. Measuring a position with different coordinate

systems is like expressing an idea in different languages: the idea remains the same but the words

are different. This is another way to think about Platonic labels, as denoting an idea independently

of representation. Note that a coordinate system is also a Platonic concept, and as such we can

assign a Platonic label to it. In this chapter, lower case Latin letters in math font, such as w, will

be used as Platonic labels for coordinate systems; this is expedient to typesetting as it produces

formulas that are easier to read. The notation {t}w will be used to denote the Platonic vector t as

measured in coordinate system w. Note that in most later chapters, capital letters like W and A

will be used for coordinate systems, and that at times (especially in Chapter 4) the simpler notation

tw will be used for the more explicit {t}w.

Platonic labels are a key notational device in this dissertation. Any concept can be assigned a

Platonic label. For example, we will use Platonic labels for concepts such as “screw displacement

scenario,” “image plane,” “pinhole camera,” and “image coordinate system,” as well as various

lines, planes, positions, and directions. Computer scientists might appreciate the following analo-

gies for Platonic labels. The first analogy is with “denotational semantics,” in which a computer

program in a particular language exists only abstractly until precise meaning is assigned to the

29

Figure 3.1 (left) A position t in
� 2 ; (center) a particular coordinate system w in which t can be

measured; (right) an alternative coordinate system v.

language constructs. The program is the Platonic concept and applying denotational semantics is

like assigning a coordinate system to a Platonic vector.

The second analogy, more specific to the use of Platonic labels in this dissertation, is with

instances of “structures” in computer languages like C and Pascal. A coordinate system can be

thought of as a data structure, with the origin and basis vectors of the coordinate system being data

fields within the structure:

struct CoordinateSystem {
Vector origin;
Vector basisX, basisY, basisZ;

};

The Platonic label w for a coordinate system is like a variable representing a particular instance

of the data structure CoordinateSystem. Alternative coordinate systems would be different

variables and would be given different labels but would all have the same underlying structure.

We will use notation such as orig(w) to represent different parts of the Platonic concept denoted

by w ; in this case, orig(w) might mean “the origin of coordinate system w.” Note that the origin

orig(w) itself is a Platonic vector, and thus we might use notation like {orig(w)}i to mean “the

origin of coordinate system w as measured in coordinate system i.” Computer programmers may

have preferred more full-blown functional notation like OriginOf(w) with its easy-to-remember

30

mnemonic, or perhaps member-reference notation like w.origin or even w.OriginOf(). How-

ever, we have chosen a more mathematical-style notation analogous to the standard cos and log

notation for cosine and logarithm. Thus the brevity of labels is for convenience in formulas and in

keeping with mathematical customs.

Platonic labels will usually be uppercase Latin letters in math italics, but in some cases it

will be expedient to use lowercase letters. As was already mentioned, lowercase letters will be

used to denote coordinate systems in this chapter because they can be used well as subscripts.

Furthermore, there will be certain Platonic concepts that are convenient to number; for example,

if several cameras are viewing a scene it will be convenient to number the cameras and to refer

to each camera by a Platonic label which is an index. Following standard mathematical usage,

we will use the letters i, j, and k as indices, and thus these letters may be used as Platonic labels

rather than just as integers. The following confusion can result, of which the reader should be

aware: If p1, . . . ,pn ∈ � 3 are n Platonic vectors and if we wish to express vector pk in coordinate

system i, the notation {pk}i is used. Here k is a number while i is a Platonic label; this notation

is just like the notation {pk}w and does not represent, for instance, the ith coordinate of vector pk.

To reference the x-coordinate of this vector we will use the notation {pk}x
i , and so on for other

coordinates. In general, we will superscript x, y, and z to reference components of vectors; e.g.,

pz
k is the z-coordinate of pk.

3.2 Pinhole cameras

We first present the abstract mathematical definition of a pinhole camera before discussing the

history and physical meaning of these devices and their relationship to cameras with lenses.

3.2.1 Basic mathematical definition

A “pinhole camera” is a real device, but in this dissertation the term will usually refer to a

mathematical abstraction of the device. In particular, it will refer to a function that maps
� 3 into

� 2 . This section develops the abstract definition of a pinhole camera and introduces the important

concepts of world coordinates, image coordinates, and camera coordinates.

31

DEFINITION (Pinhole camera). A pinhole camera is a triplet (K,R, t) where t ∈ � 3 , R is a 3× 3

rotation matrix, and K is a 3 × 3 upper-triangular, non-singular matrix.

COMMENT (Intuitive meaning of the camera triplet). The vector t represents the position of the

camera, the matrix R gives the “tilt” of the camera relative to a chosen coordinate system, and the

matrix K describes internal characteristics of the camera.

DEFINITION (Optical center). The Platonic vector t labels the optical center of the camera.

DEFINITION (Scene). A scene is that part of the 3D universe that is currently under consideration.

DEFINITION (Camera view). The term view is a formal, generic expression for the light collected

by a camera. Typically a modern camera uses photographic film or a charge-coupled device (CCD)

to capture light, so a photograph or video image is a “camera view.” Views will always be 2D in

this dissertation, although not always flat. Some authors have considered lower-dimensional views

(e.g., [46, 140]).

COMMENT (Views versus cameras). Since the same camera could capture several views of a scene

from different positions, it might be logical to call the triple (K,R, t) a “view” rather than a

“camera,” perhaps using the term “camera” only for K. However, we will follow standard usage

in this dissertation and the term “camera” will mean a particular camera at some instant in time at

a particular location and orientation. The term “view” will refer only to what the camera “sees”

and thus in particular means a 2D object.

DEFINITION (Camera projection function). Informally, the projection function of a camera is a

function φ :
� 3 → � 2 that maps 3D positions in a scene to 2D positions in the camera view. The

mapping φ could also be called the calibration of the camera.

DEFINITION (World coordinates). The domain of φ, which is
� 3 , is called world coordinates. The

Platonic label w will be used for world coordinates. It will always be assumed that the world coor-

dinate system is orthonormal; i.e., the basis vectors of the world coordinate system are all the same

length and at right angles to each other. There are, of course, many possible orthnormal coordinate

system for measuring the scene. If it is necessary to refer to an alternative world coordinate system,

a second Platonic label such as v can be used.

32

DEFINITION (Image coordinates). The range of φ, which is
� 2 , is called image coordinates. Intu-

itively, image coordinates represent a grid that might be superimposed on a photograph for mea-

suring objects in the photograph. Thus it is easy to determine the image coordinates of a scene

point (as opposed to denoting its 3D location), and this fact makes possible all the self calibration

and scene reconstruction discussed later in this dissertation.

DEFINITION (Projection function of a pinhole camera). The basic projection function φ of a pin-

hole camera (K,R, t) is defined using a 3×4 matrix Π and the algorithm of Fig. 3.2. The Platonic

form of Π is

Π = KR [I | −t] = KR




1 0 0 −tx

0 1 0 −ty

0 0 1 −tz


 (3.1)

The form of Π in Fig. 3.2 is basis-specific rather than Platonic, as will be discussed presently.

DEFINITION (Camera matrix). The matrix Π is called the camera matrix of the camera.

COMMENT (Specifying the camera matrix). A specific camera and a specific world coordinate

system are necessary to fully define the camera matrix. If i labels the pinhole camera and w labels

the world coordinate system, then the camera matrix is written Πwi ; this notation symbolizes

the transformation from world coordinates w to “camera” coordinates i. With a specific world

coordinate system, it becomes necessary to specify R, K, and t with respect to this coordinate

system. Note that matrix K will only change by an overall scale factor for different orthonormal

world coordinate systems. The notation Kw and Rw is used in Fig. 3.2 to make it clear that these

matrices depend on the chosen world coordinate system.

DEFINITION (Internal and external calibration). The matrix K is called the internal calibration of

the camera while the matrix R and the vector t, taken together, are called the external calibration.

Various alternative expressions have been used by other authors: “intrinsic” and “extrinsic” are

sometimes used instead of “internal” and “external,” and “orientation” is sometimes used instead

of “calibration.” These terms are used in any combination; for example, “intrinsic orientation” or

“extrinsic calibration.” The term “orientation” is often preferred in photogrammetry literature.

33

ALGORITHM (BASIC PINHOLE PROJECTION)

Let w denote world coordinates, let i denote the pinhole camera (K,R, t), and let Πwi be

the camera matrix of i. If q ∈ � 3 denotes a scene position then the projection of q onto the

image plane of camera i is φi(q) given by the following algorithm:

(1) Determine x, y, z ∈ �
by the following:




x

y

z




:= {q}i = Πwi



 {q}w

1



 = KwRw




1 0 0 −{t}x
w

0 1 0 −{t}y
w

0 0 1 −{t}z
w







{q}x
w

{q}y
w

{q}z
w

1




= KwRw{q − t}w

(2) If z ≤ 0 then φi(q) is undefined. Otherwise, φi(q) = (x/z, y/z).

Figure 3.2 Using a camera matrix Πwi to define the projection function φi of pinhole camera i.
The algorithm given here is a basic interpretation of pinhole projection.

34

Figure 3.3 Diagram of a real pinhole camera imaging a Christmas-tree shape (i.e., an up arrow).
Photographic film is on the back wall of the camera. Note that by having f (focal length) be a
negative number (since the imaging plane is on the negative z-axis), the image is upside-down and
mirror image. We will treat the image plane as if it is on the positive z-axis to avoid this.

DEFINITION (Camera coordinates). The world coordinate system after transformation by the affine

mapping Π is called camera coordinates; that is, the origin of camera coordinates, expressed

in world coordinates, is the point {t}w and the basis is (KR)−1[1, 0, 0]>, (KR)−1[0, 1, 0]>, and

(KR)−1[0, 0, 1]>. A Platonic scene position q expressed in the coordinates of camera i is written

{q}i as in Fig. 3.2.

DEFINITION (Image plane). The image plane of the camera is the plane z = 1 in camera coordi-

nates.

DEFINITION (Image of a point). For a position q in
� 3 , the mapping φ(q) is called the image or

projection of q onto the image plane of the camera.

3.2.2 Physical interpretation and history

A real pinhole camera is a closed, light-proof chamber with a small hole in one wall that allows

light to enter (Fig. 3.3). Typically some means of recording the light is also associated with the

chamber, although the device may be used simply for viewing. Recording is usually performed by

photographic film or a charge-coupled device (CCD), onto which the light falls; alternatively, light

can be recorded by hand (e.g., by drawing).

The small hole in the chamber is called an iris. Because the hole is small, the light entering the

chamber becomes focused, leading, for example, to a sharp image on the photographic film. If the

35

hole is too small, interference effects of light waves will become significant. An enjoyable, basic

introduction to why light is focused by a small iris can be found in Feynman [49].

One may think it strange to consider using anything but an automatic method for recording

the light entering the chamber, but the concept of pinhole cameras greatly predates photographic

film and CCD’s. Early pinhole cameras were used simply for viewing without recording (e.g., as a

novelty) or as a mechanical aid to drawing. In this capacity, they were known as camera obscura.

The term camera comes from the Latin for “chamber.”

3.2.3 Physical derivation of the pinhole camera matrix

Consider the grid G depicted in Fig. 3.4(a), which serves as a 2D coordinate system. The origin

of the system is marked q and the basis vectors are labeled u and v. Now consider embedding this

grid in a plane M in
� 3 (Fig. 3.4(b)). Assume w is a world coordinate system in which

(1) M is the plane z = f for some 0 6= f ∈ �
, and

(2) the u-axis of the grid G is parallel to the x-axis of world coordinates.

As a position on plane M , the point q now represents a 3D location as well as a 2D location on

the plane; let q ∈ � 3 represent the 3D location given by q (Fig. 3.4(c)). Similarly, the 2D basis

vectors u and v also represent 3D direction vectors as shown in Fig. 3.4(d) ; let u,v ∈ � 3 denote

these vectors. Note the three vectors, when represented in world coordinates, have the form of

{q}w = (∗, ∗, f), {u}w = (∗, 0, 0), and {v}w = (∗, ∗, 0).

Thinking of the origin of world coordinates as being the iris of a pinhole camera, consider how

light traveling in a straight line R through this iris would intersect the grid G. Let r ∈ � 3 indicate

the direction of the ray of light in world coordinates. Since q, u, and v are linearly independent, r

can be written as a linear combination

r = au + bv + cq

36

Figure 3.4 Image-plane coordinates in 3D. Note in (d) that u = (u + q) − q and similarly for v.

The line R intersects the grid G at (a/c, b/c) in grid coordinates (to see this, notice that {u}z
w =

{v}z
w = 0, so {r}z

w = c{q}z
w; thus 1

c
{r}w has a z-component of f). Also observe that




a

b

c


 =

[
u v q

]−1

r (3.2)

because u,v,q ∈ � 3 form a spanning basis for
� 3 .

The relationship between abstract pinhole cameras (Section 3.2.1) and the discussion above

about grid projection is as follows. The plane M in
� 3 which contains grid G represents the image

plane of the camera (e.g., the photographic plate or CCD). We will use the notation plan(i) to

denote the image plane M for camera i. The grid G itself represents how the image is measured or

sampled; that is, grid G represents image coordinates, with q as the origin and u and v as the basis

vectors. Conversion from world coordinates to camera coordinates is given by

K =
[

u v q

]−1

Note that K is an upper-triangular matrix because of the form of u, v, and q mentioned earlier.

A vector (a, b, c) in camera coordinates is mapped onto the image plane (and converted to image

coordinates) by dividing by the z-component of the vector: (a, b, c) → (a/c, b/c). This is step

(2) of the algorithm in Fig. 3.2. The complete pinhole camera matrix (Eq. 3.1) and projection

algorithm (Fig. 3.2) together represent the following transformation steps:

37

(1) Translate world coordinates so that the origin is at the optical center of the camera.

(2) Rotate world coordinates so that (1) the (x, y)-plane of world coordinates is parallel to the

camera’s image plane (so any plane z = f is parallel to the image plane) and (2) the world

x-axis is parallel to the camera’s u-axis.

(3) Map lines of light that travel through the world origin (i.e., the camera’s optical center) to 2D

positions on the camera’s image plane by first multiplying by K to get camera coordinates

than dividing by the resulting z-component to get image coordinates.

It remains to be discussed what f represents and how grid G specifically models the mea-

surement of actual camera views. In a real pinhole camera, a scene is projected upside-down and

mirror-reversed onto the image plane (Fig. 3.3). This can be represented by taking f < 0, which

will result in x and y coordinates being multiplied by −1 during the conversion from camera co-

ordinates to image coordinates. Alternatively, a pinhole camera can be thought of as portrayed in

Fig. 1.1. Each device in this figure allows a person to view the scene through a grid, perhaps for

drawing the scene with accurate perspective projection.1 Since the grid is positioned between the

viewer and the scene, this situation can be modeled by taking f > 0; we prefer this interpretation

since the x and y coordinates will have their signs preserved.

We conclude this section with several physical analogies showing how grid G can model the

measurement of positions in a real camera view. For a video or digital image captured with a CCD

camera, grid G might represent the positions of sensors on the CCD. A properly-manufactured

CCD camera will probably not have skew; that is, the u and v basis vectors should be very close

to perpendicular in world coordinates. However, the position of sensors on a CCD may form

rectangles rather than squares; i.e., the vectors u and v may have different lengths. For the pinhole-

projection scenario depicted in Fig. 1.1, the grid has a very direct and literal interpretation: it is

the system of string-lines stretched across the window. In the case of a real pinhole camera using

photographic film, the grid represents the measurement system laid down on the photograph. For

1When used in this way, the device is called “Alberti’s Grid” after a Renaissance artist who wrote about them.

38

example, measurement might be performed in pixels after the photograph has been scanned into a

computer.

3.2.4 Meaning of internal calibration

We now consider the physical meaning of K with respect to a CCD camera. It is actually more

intuitive to consider K−1 than K directly:

K−1 =
[

u′ v′ q′

]
=




horSpace horRowOffset horOrigin

0 verRowOffset verOrigin

0 0 f




Vector u′ has one nonzero component, horSpace, which is the horizontal distance between sensors

as measured in units of the world coordinate system. The prefixes “hor” and “ver” mean “hori-

zontal” and “vertical”, respectively, where u and v are the horizontal and vertical directions on the

image plane. The two nonzero components of v′, verRowOffset and horRowOffset, measure how far

shifted “up and to the right” each successive row of sensors is, again measured in units of the world

coordinate system. The x and y components of q′, horOrigin and verOrigin, give the position of the

origin of image coordinates on the grid G, again measured in world coordinates. This is the offset,

measured in world coordinates, of the image-coordinate origin from the z-axis. The z-component

of q′, denoted f , is called the focal length of the pinhole camera. In photography performed with a

lens, the term “focal length” means the distance between the optical center (i.e., focal point) of the

lens and the image plane when the camera is focused at infinity. Theoretically, pinhole cameras

have infinite depth of field, so every distance (including infinite distance) is always in focus. Thus

the focal length of a pinhole camera is taken to be the distance between the optical center and the

image plane.

When grid G is thought of as being embedded in the image plane of the camera, which is the

plane M in
� 3 as described in Section 3.2.3, then the z-axis of world coordinates intersects the

image plane at a point p ∈ � 3 which corresponds to a 2D position p on grid G. The point p in

the camera view is called the principal point of the camera. By Eq. 3.2, the location of p in image

39

coordinates is given by the following multiplication after dividing by the resulting z-component:

K
[

0 0 1
]>

When K has been normalized to make K(33) = 1 then the previous equation implies (K(13),K(23))

is the position of the principal point on the image plane as measured in image coordinates. The

remaining elements of K do not have such a simple or intuitively-meaningful interpretation, which

is why K−1 was discussed instead.

3.3 Concepts from projective geometry

The goal of this section is to present a variety of concepts related to “projective geometry,”

which is a branch of mathematics devoted to dimensionality-reducing projective maps like φ. Par-

ticular emphasis is given to “homogeneous” coordinates and the duality of representations they

induce. Define the following Platonic labels for mathematical objects: let i be a pinhole camera

(K,R, t), let p be a scene position, and let q = φi(p) be the image of p on the image plane of

camera i. Then we have the following notation and concepts:

DEFINITION (Homogeneous coordinates for a position). The 4-vector

p̃
def
=


 p

1


 = [px,py,pz, 1]>

is said to represent position p in homogeneous coordinates. Any positive scalar multiple of p̃ is an

equivalent representation of p. This type of representation comes from projective geometry and is

commonly used in machine vision and computer graphics. The vector p̃ measured in coordinate

system v is expressed as

{p̃}v
def
=

�
{p}v =


 {p}v

1


 = [{p}x

v , {p}y
v, {p}z

v, 1]>

Notice that homogeneous vectors can be transformed from world coordinates to camera i coordi-

nates with a matrix multiplication:

{p̃}i =


 Πwi

0 0 0 1


 {p̃}w

40

NOTATION (Equality up to a scale). The notation u ∼= v means vectors u and v are equal up to a

nonzero scale factor.

COMMENT (Why the scale of a homogeneous vector does not matter). It was stated above that

p̃ and λp̃ for any λ > 0 are equivalent representations of position p. There are two reasons for

this equivalence. First, the original position p can be recovered from λp̃ by dividing λp̃ by its last

component, which is traditionally labeled the w-coordinate (not to be confused with the use of w

for world coordinates). Second, when used in the projection algorithm of Fig. 3.2 for determining

φi(p), all λp̃ will yield the same image position: Step (1) of the algorithm gives



x

y

z




:= Πwi{λp̃}w = λΠwi



 {p}w

1



 (3.3)

and step (2) removes the scale factor λ by dividing by the last component of the result. While not

needed here, the restriction λ > 0 will be necessary later when considering the “image sphere”

rather than the image plane.

COMMENT (Homogeneous representation of 2D image point). Notice that Πwi{λp̃}w from

Eq. 3.3 is a homogeneous 3-vector representing φi(p). Also notice that {p}i is an equivalent

homogeneous 3-vector representation of φi(p), as is any positive scalar multiple of {p}i. The set

of positive scalar multiples of {p}i is a ray that (1) has its vertex at the optical center of camera i

and (2) pierces the point φi(p) on the image plane of the camera (when the image plane is thought

of as the plane plan(i) in
� 3 described in Section 3.2.1). Fig. 3.5 illustrates the ray. This subject

will be discussed again in relation to duality. Finally, notice that Πwi maps the homogeneous

4-vector representation of p to the homogeneous 3-vector representation of φi(p).

DEFINITION (Direction vectors). While a vector in
� 3 can be thought of as a position in space, it

can also be thought of as a direction. One can imagine a vector as an arrow pointing away from the

origin; the direction the arrow is pointing is the direction represented by the vector. For example,

the vector (1, 0, 0) points in the direction of the x-axis. Directions as Platonic concepts will be

41

Figure 3.5 Homogeneous 2D coor-
dinates. (left) Three-dimensional dia-
gram of scene point p and its projection
into camera i. The 3D vector {p}i is a
homogeneous representation of the 2D
position φi(p). (right) The same dia-
gram from overhead.

labeled with a “hat” as in p̂. It is important to realize that the “hat” is only a reminder that this

vector is to be treated as a direction and not a position; the “hat” is not a function or transformation

and p̂ is just a vector in
� 3 .

EXAMPLE (The direction North as a Platonic direction). Suppose a magnetic compass is placed

in a scene. The needle on the compass will point in the direction “North,” and we can label

this direction with a Platonic direction vector, for instance n̂. The vector n̂ represents where the

compass needle is pointing. Under different world coordinate systems w and v the vector n̂ is

likely to be represented differently; i.e., it is likely that {n̂}w 6= {n̂}v. But the meaning of n̂, as a

particular direction, remains the same regardless of specific coordinate representation.

DEFINITION (Directions in homogeneous coordinates). In homogeneous coordinates, a direction

is a vector of the form (∗, ∗, ∗, 0) ; that is, with a 0 instead of a 1 as the last component. Such a

vector is called a point on the plane at infinity in projective geometry. We will use the notation

˜̂p def
=


 p̂

0


 = [(p̂)x, (p̂)y, (p̂)z, 0]>

to denote the direction represented by vector p̂ in homogeneous coordinates.

42

EXAMPLE (Camera coordinates revisited). Note the following:

{p}i = Πwi{p̃}w (3.4)

{p̂}i = Πwi{˜̂p}w (3.5)

COMMENT (Meaning of plane in plane at infinity). As always in homogeneous coordinates, any

positive scalar multiple of the vector (∗, ∗, ∗, 0) represents the same direction. Hence, despite the

presence of three “slots” in the vector that can contain arbitrary real numbers, there are only two

degrees of freedom in this representation, leading the term “plane” in “plane at infinity.”

COMMENT (Representing 3D planes using homogeneous coordinates). A more formal explana-

tion for the term “plane” in “plane at infinity” comes from the following method for representing

planes in
� 3 using vectors in

� 4 . Let H be the plane in
� 3 that contains position q ∈ � 3 and has

normal n ∈ � 3 . Then a point p is on the plane H if and only if

n>(p − q) = 0

Thus the 4-vector m̃ = [n>,−n>q]> can be thought of as a normal to the plane H expressed in

homogeneous coordinates:

m̃>p̃ = [n>,−n>q]


 p

1


 = 0

The “plane at infinity” is the plane defined by the 4-vector (0, 0, 0, 1), which happens to be the

homogeneous representation of the origin.

COMMENT (Meaning of infinity in plane at infinity). Consider multiplying a point (∗, ∗, ∗, 0) on

the plane at infinity by a camera matrix Πwi. The last column of the 3 × 4 camera matrix, which

represents the camera position, is irrelevant. Thus if two cameras are viewing the same point on

the plane at infinity, both cameras are essentially at the same location. This effect also happens

with points that are very far away from the cameras relative to the distance between the cameras:

the homogeneous vector (λa, λb, λc, 1) is the same as (a, b, c, 1
λ
), which becomes (a, b, c, 0) as λ

grows arbitrarily large. Hence the terminology “at infinity” in “plane at infinity.”

43

DEFINITION (H-infinity matrix). Define the following Platonic matrix for camera i :

hmat(i)
def
= KR

In relation to a specific world coordinate system, we will use the notation

H∞

wi
def
= KwRw

The matrix H∞

wi represents a transformation of directions from world coordinates to camera i co-

ordinates. For example, if û ∈ � 3 is a Platonic direction then

{û}i = Πwi
˜̂u = Πwi


 û

0


 = H∞

wi{û}w

In projective geometry terms, H∞

wi represents a planar homography induced by the plane at infinity,

which explains the notation.

COMMENT (The duality of lines and planes). Let L be a line on the image plane of camera i and let

H be the plane in
� 3 defined by L and the optical center of camera i. Note the 1-1 correspondence

between lines on the image plane and planes through the optical center, such as exists with L and

H; we refer to this as the duality of lines and planes. Since we already know a point on the plane

H , namely the optical center of camera i, we can completely specify H with a vector h ∈ � 3 that is

normal to the plane. Because of the duality of lines and planes, the vector h also specifies the line

L. Note that any nonzero scalar multiple of h represents the same plane and line. Also note that h is

a homogeneous representation of the line L exactly like the homogeneous representation of planes

discussed earlier (see the comment “Representing 3D planes using homogeneous coordinates”).

COMMENT (The duality of points and lines). Let q be a point on the image plane of camera i and

let G be the line in
� 3 defined by q and the optical center of camera i. Note the 1-1 correspondence

between points on the image plane and lines through the optical center, such as exists with q and

G; we refer to this as the duality of points and lines. Since we already know a point on the line G,

namely the optical center of camera i, we can completely specify G with a vector g ∈ � 3 that is

parallel to the line. Because of the duality of points and lines, the vector g also specifies the point q.

44

Note that any nonzero scalar multiple of g represents the same point and line; g is a homogeneous

representation of the point q. We will use the notation φi(p) and {p}i interchangeably with the

understanding that the latter is a homogeneous representation of the former.

COMMENT (Intersection of two lines). One advantage of representing a line on the image plane

as a 3D vector is given in the following: Let U and V be two lines on a camera’s image plane that

intersect in a single point Q. Let u,v ∈ � 3 define the two lines and let q ∈ � 3 define the point of

intersection of the lines. Then

q ∼= u × v (3.6)

To derive this equation, equate the camera’s optical center with the origin and consider u and v

as normals to two planes through the origin. The two planes intersect in a line, which will also

intersect the origin. The cross product of u and v is a nonzero vector contained within both planes,

and hence within their intersection which is the line. The line intersects the image plane at a point

that is contained within both lines U and V ; i.e., the point Q. Hence the line is defined by q.

Note that U and u are Platonic labels for the same object (a line on the image plane), but the

notation u better emphasizes the vector representation of the object. In the future we will rarely

use an additional Platonic label like “U” when using Platonic vectors like “u”; the dual labeling

was used here for emphasis.

COMMENT (Two points define a line). Let p and q be two distinct points on a camera’s image

plane and let u be the line (on the image plane) through the points. Then

u ∼= p × q (3.7)

To derive this equation, equate the camera’s optical center with the origin and consider the plane

through the origin that contains both p and q. This plane also defines the line U ; hence u is

perpendicular to both p and q.

COMMENT (Point on line test). Let p and u be a point and a line, respectively, on a camera’s

image plane. Then the point p is contained in the line u if and only if

p>u = 0 (3.8)

45

To derive this equation, note that u is perpendicular to every vector in the plane (through the origin)

defined by u, and p is one such vector.

COMMENT (Care in specifying coordinate system). Equations like Eq. 3.7 and Eq. 3.8 hold for

any coordinate system as long as all vectors are represented in the same coordinate system. The

equations themselves are Platonic concepts in this sense.

COMMENT (Changing coordinate system for planes). Recall that the matrix H∞

ij represents a

change of coordinate system (i.e., change of basis) for direction vectors. We now discuss how the

transpose of the matrix H∞

ij can be used to change the coordinate system of a plane. Let u and the

origin of camera i define a plane through cent(i). Note that u and the origin of camera j define a

plane through cent(j) that is parallel to the first plane. The first plane can be thought of as the line

{u}i in view i; the second plane is the line {u}j in view j. We have the following:

{u}i
∼= (H∞

ij)
>{u}j (3.9)

This relation can be proven by applying Eq. 3.7 to any two distinct direction vectors that are visible

on the line {u}i in view i (and thus also on the line {u}j in view j). Just as the direction vectors

are points on the plane at infinity, the line they define is called a line on the plane at infinity; it

is the “vanishing line” of a set of parallel planes in
� 3 , like the two planes through cent(i) and

cent(j) described above.

DEFINITION (Field-of-view). The field-of-view (fov) of a camera refers to what a camera can

“see.” A point in a scene is said to be in a camera’s field-of-view if it will be projected into the

camera’s view. Field-of-view can also mean the specific angle measure of what a camera can view

(e.g., the vertex angle of a cone, with vertex at the optical center, in which every scene point is

visible), or can be a rough expression of the breadth of what a camera can see (e.g., “wide” or

“narrow” field-of-view).

COMMENT (Image sphere). The concept of the “image plane” is meant to model the flat film or

CCD or viewing plane that exists in a real camera. However, using a “viewing sphere” is more

natural mathematically, and makes it possible to model cameras with a field-of-view larger than

180◦.

46

Recall that the image plane is the plane z = 1 in camera coordinates. The image sphere is the

sphere centered at the origin with radius 1 in camera coordinates. In step (2) of the basic projection

algorithm in Fig. 3.2, a ray of light (given in camera coordinates) is projected onto the image plane

by dividing it by its z-coordinate, thus finding the point on the ray with z-coordinate equal to 1.

Rays with a non-positive z-coordinate are considered to be from “behind” the image plane and

ignored.

With an image sphere, no ray is ignored. Rays are projected onto the image sphere by scaling

them to have length 1; this replaces step (2) of the basic projection algorithm. Thus an image sphere

can be used to model cameras that take in light from all directions (e.g., omnicameras [122]).

Furthermore, with image spheres the projection process does not grossly distort the original scene

in regions that project onto the image plane far from the principal point. Finally, no two distinct

lines on the image sphere are ever parallel — there are always two intersection points, both given

by the expression in Eq. 3.6.

We note in passing that any 2D surface can be used for abstracting the light-collection process.

For example, cylinders have been used to advantage by several authors [146, 130, 110].

3.4 Epipolar geometry

By observing point or line correspondences between two pinhole camera views, it is possible

to determine the “epipolar geometry” between the views. Once determined, the epipolar geometry

places constraints on the determination of future point correspondences (i.e., it makes it easier to

find other point correspondences). As will be seen later in this dissertation, epipolar geometry can

also be used to determine the internal calibration matrix K of a camera, in a process known as “self

calibration.” Knowledge of epipolar geometry has several other uses, such as enabling projective

scene reconstruction.

In what follows, let i and j denote pinhole cameras (K,R, t) and (K′,R′, t′), respectively,

with different optical centers.

DEFINITION (Epipoles). The epipole of view i (with respect to the pairing of views i and j)

is the location of the optical center of camera j as seen in view i. Formally, let ê = cent(j) −

47

cent(i) = t′ − t be a Platonic direction vector. Then any non-zero scalar multiple of the vector

{ê}i = Πwi{˜̂e}w = {cent(j)}i = {t′}i is called the epipole of view i. The 2D position φi(t
′)

in view i is also called the epipole of view i. Similarly, any non-zero scalar multiple of {ê}j =

{cent(i)}j = {t}j is the epipole of view j.

DEFINITION (Homography induced by the plane at infinity). Any plane viewed by cameras i and

j induces a planar homography between the views. The “plane” at infinity also induces a planar

homography, which is written H∞

ij and given by the following

H∞

ij
def
= K′R′R−1K−1 = hmat(j)hmat(i)−1

Note this is the homography from view i to view j; the reverse is written H∞

ji. As with the ho-

mography H∞

wi discussed earlier, H∞

ij transforms direction vectors from one coordinate system to

another:

{p̂}j = H∞

ij{p̂}i

COMMENT (World camera). The world coordinate system can be thought of as the coordinate

system of an abstract pinhole camera labeled w given by the triplet (I, I, 0). Then, without being

careful about specifying basis,

H∞

wi = KRI−1I−1 = KR = hmat(i)

This is the intuitive meaning of hmat(i), as a planar homography transforming direction vectors

from world coordinates to camera i’s coordinates. Furthermore,

H∞

ij = H∞

wjH
∞

iw

NOTATION (Cross-product matrix). The cross product of two vectors u,v ∈ � 3 can be computed

with the matrix-vector multiplication

u × v = [u]×v

48

where, for u = (x, y, z), we define the cross-product matrix

[u]×
def
=




0 −z y

z 0 −x

−y x 0




DEFINITION (Fundamental matrix). The fundamental matrix Fij between camera view i and

camera view j is [72]

Fij

def∼= [{ê}j]×H∞

ij (3.10)

This definition is only up to a nonzero scale factor. A fundamental matrix has rank 2 because

[{ê}j]× has rank 2 and H∞

ij is invertible.

COMMENT (Physical interpretation of the fundamental matrix). Let q̂ be a Platonic direction

and let t be the optical center of camera i. The set {t + λq̂ : λ ∈ � } is a line parallel to q̂ and

containing t; call this line Q. Assume q̂ is such that line Q does not contain t′, the optical center

of camera j; i.e., assume q̂ and ê are not parallel. For any p = t + λq̂ we have

{p}i = Πwi{p̃}w = Πwi({t̃}w + λ{˜̂q}w) = λH∞

wi{q̂}w = λ{q̂}i (3.11)

{p}j = Πwj{p̃}w = Πwj({t̃}w + λ{˜̂q}w) = {ê}j + λH∞

wj{q̂}w = {ê}j + λ{q̂}j (3.12)

Thus

{p}>j Fij{p}i = ({ê}j + λ{q̂}j)
>[{ê}j]×H∞

ij (λ{q̂}i) (3.13)

= λ2{q̂}>j [{ê}j]×{q̂}j (3.14)

= 0 (3.15)

The equations above tell us that Fij{p}i is a vector that is simultaneously perpendicular (in camera

j coordinates) to both {ê}j and {p}j. Therefore Fij{p}i defines the line through {ê}j and {p}j

on the image plane of camera j. Note that this line is the image of line Q as seen in view j.

Furthermore, since λ was arbitrary, Fij{p}i gives the image of Q using any point p on Q (except

49

Figure 3.6 A pencil of planes.

for t). As λ changes, the position {p}j of p seen in view j will change but the position {p}i of p

seen in view i remains the same.

DEFINITION (Epipolar planes and epipolar lines). The vectors {p}i × {ê}i and {p}j × {ê}j,

together with the optical centers t and t′, respectively, define planes in space called epipolar planes.

These planes intersect the image planes of camera i and camera j at lines that are called epipolar

lines. The first line is called the epipolar line of {p}i and it is given, in the homogeneous sense,

by the vector {p}i × {ê}i (see comments on the duality of lines and planes); similarly for {p}j in

view j. Note that the vectors {p}i × {ê}i and {p}j × {ê}j define the same plane in space, which

is the plane containing both optical centers and the point p.

The set of all possible epipolar planes for a pair of cameras is the set of all planes that contain

both optical centers (and thus the line through the optical centers). The set of all planes that contain

a particular line is called a pencil of planes in projective geometry (Fig. 3.6).

COMMENT (Why a fundamental matrix is not invertible). The physical interpretation of the

fundamental matrix explains why its rank is 2 (and why the fundamental matrix is not invertible):

For every point p on a particular epipolar plane, the fundamental matrix maps {p}i to the same

vector, up to a scale factor, in camera j’s coordinates. That is, all the points in a plane get mapped

to one line. The kernel of this mapping must have dimensionality 1; it is given by the line through

the two optical centers.

50

DEFINITION (Point correspondence). If a scene position p ∈ � 3 is visible in both camera

views, then φi(p) and φj(p) are said to be corresponding points or conjugate points or a point

correspondence between views i and j. Using the point-line duality of homogeneous notation,

we can also say {p}i and {p}j are point correspondences. See Section 3.6 discussing how point

correspondences are determined in practice.

COMMENT (Determining the fundamental matrix from point correspondences). Let p1, . . . ,pn ∈
� 3 be n scene points that are visible in both camera views. Then by Eq. 3.13,

{pk}>j Fij{pk}i = 0 (3.16)

for 1 ≤ k ≤ n. Each such equation places a linear constraint on the components of Fij . Naively,

since Fij is a 3 × 3 matrix, at most 9 constraints are needed to uniquely determine Fij . This is

provided that Fij exists and that only one matrix can satisfy 9 linear constraints of the form Eq. 3.16

simultaneously. By Eq. 3.10, the matrix Fij always exists as long as the cameras have different

optical centers. However, any scalar multiple of Fij will also satisfy the constraints given by Eq.

3.16. This means that Fij can only be determined up to a scale factor using these constraints, that

Fij has at most 8 degrees of freedom, and that at most 8 linear equations are necessary to determine

it (and thus at most 8 point correspondences). It is because of these considerations that Fij was

only defined up to a nonzero scale factor in Eq. 3.10.

However, it is still possible that the set of matrices satisfying the constraints given by Eq. 3.16

is multidimensional; i.e., that Fij and some non-multiple of Fij both satisfy the system, and thus

so does any linear combination of these two matrices. In fact, from certain sets of scene points

pk (e.g., all pk lying on the same plane) Fij cannot be uniquely identified. The conditions on the

set of pk under which Fij can and cannot be determined uniquely (up to a scale factor) have been

given by other authors (e.g., [98, 70]). In general, a randomly-chosen set of 8 scene points pk will

allow Fij to be determined uniquely (up to a scale factor) by the linear system arising from the

constraints in Eq. 3.16. In practice, the linear system must be properly normalized to handle noise

in the point-correspondence data (see [73]).

51

The property that Fij has rank 2 is another constraint not incorporated into the linear constraints

of Eq. 3.16. By utilizing this extra constraint, the number of points correspondences needed to find

Fij is reduced to 7; see Hartley and Zisserman [70]. It has been shown [76, 139] that 6 is the

smallest number of correspondences from which Fij can be determined; however, 3 views are

required rather than 2. The smallest number of line correspondences is 9 [126].

Because of the importance of fundamental matrices to this dissertation, methods for calculating

Fij are discussed in greater detail in Section 3.7.

COMMENT (Transpose of a fundamental matrix). By switching the labels of cameras i and j, we

get the fundamental matrix

Fj i
∼= [{ê}i]×H∞

ji (3.17)

It is not obviously true, but Fj i is the transpose of Fij :

Fj i = (Fij)
> (3.18)

One way to prove Eq. 3.18 is to use the physical interpretation of the fundamental matrix as a

transformation between positions measured in one coordinate system to corresponding epipolar

planes measured in the other. Such a proof requires the fact that (H∞

ij)
> is a change of basis for

planes.

The simplest way to prove Eq. 3.18 is to consider Eq. 3.16 for Fj i versus the transpose of Eq.

3.16 for Fij ,

{pk}>i Fj i{pk}j = 0 = ({pk}>j Fij{pk}i)
> = {pk}>i F>

ij{pk}j

and use the fact that fundamental matrices can be uniquely determined by using enough constraints

of the form in Eq. 3.16.

COMMENT (Extracting epipoles from a fundamental matrix). It is immediately obvious from Eq.

3.10 that {ê}j is a left null eigenvector of Fij; that is

{ê}>j Fij = 0

52

Since Fij has rank 2, {ê}j is the unique left null eigenvector. Furthermore, using Fij = F>
j i and

Eq. 3.17 we see that {ê}i is the unique right null eigenvector of Fij :

Fij{ê}i = 0

Null eigenvectors can be reliably extracted from a matrix using singular-value decomposition (see

any standard reference on numerical linear algebra, such as Golub and Van Loan [59]; an excellent

implementation is given in Golub and Reinsch [60]). Thus a fundamental matrix can be determined

directly from point correspondences between two views, and then epipoles can be extracted from

the fundamental matrix. The eigenvectors {ê}i and {ê}j will often be referred to as the right

epipole and left epipole of Fij , respectively.

COMMENT (Equivalence of epipolar geometry and the fundamental matrix). Knowledge of the

epipolar geometry between two camera views means knowledge of the location of both epipoles

and of the correspondence between epipolar lines (i.e., which pairs of lines in the two views are

induced by the same epipolar plane). This is exactly the information provided by the fundamental

matrix.

3.5 Scene reconstruction

Scene reconstruction is the process of building a 3D model of a scene using 2D camera views.

This process is also called “image-based modeling.” While the focus of this dissertation is on cam-

era self calibration, an important side effect of self calibration is the ability to reconstruct scenes.

Note that scene reconstruction includes recovering the location, orientation, and characteristics of

the cameras viewing the scene; in fact, under some circumstances this is all that scene reconstruc-

tion means. Also note that scene reconstruction has a broad meaning that includes a wide variety of

unintuitive reconstructions, that is, reconstructions in which measurements and angles are not like

what we experience in our usual interactions with a scene. We begin by discussing this “hierarchy”

of scene reconstructions.

53

3.5.1 Hierarchy of scene reconstructions

The hierarchy of scene reconstructions (e.g., [45, 33, 132]) has three levels; listed from most

general to most specific they are “projective,” “affine,” and “metric.” The term “Euclidean” is

sometimes used instead of “metric” (e.g., [35]). The best way to understand this hierarchy is in

reverse, by considering ways of distorting the original scene. Let W be a set of position vectors

in homogeneous notation representing the original scene. Assume the vectors of W have been

measured with an orthonormal coordinate system so that they meet our intuitive expectations about

scene shape. For a concrete example, if a square was in the original scene then W might contain 4

vectors representing the vertices of the square, and these vertices might have the form (0, 0, 0, 1),

(1, 0, 0, 1), (1, 1, 0, 1), and (0, 1, 0, 1). Now consider transforming W using an arbitrary, invertible

4 × 4 matrix Ψ to get W ′ :

W ′ = ΨW

The set of vectors W ′ is called a projective reconstruction of the scene W . This expression comes

from the term projective transformation for matrices like Ψ. Some versions of what W ′ might

look like for the square example are shown in Fig. 3.7. In particular, note in the figure that the

plane at infinity can be mapped to a real plane in
� 3 (meaning points of the form (∗, ∗, ∗, 0) can

be mapped to a set of coplanar points of the form (∗, ∗, ∗, 1)); this demonstrates how unintuitive

projective scene reconstructions can be.

Now consider restricting Ψ so that the bottom row of the matrix is [0 0 0 1] up to an arbitrary

non-zero scale factor. The transformation represented by such a matrix is called an affine transfor-

mation, and the matrix itself is called an affine matrix. Intuitively, an affine transformation of
� 3 is

a linear transformation plus a translation; this is, in fact, the usual mathematical definition.2 When

Ψ is an affine transformation, the vectors in W ′ form what is called an affine reconstruction of W .

See Fig. 3.7 for an example of an affine reconstruction of a square. Affine transformations have

the important property that they fix the plane at infinity, meaning vectors get mapped to the plane

2We are able to represent such a transformation with a single 4 × 4 matrix through the use of homogeneous
coordinates; normally, one thinks of matrices as only representing linear transformations (without added translations).

54

Figure 3.7 Hierarchy of scene reconstructions. In this example, the original scene is a square.

55

at infinity if and only if they are already on the plane at infinity. This property can also be taken as

the definition of affine transformations.

Restricting Ψ even further, let Ψ be an affine transformation with a scaled rotation matrix

in the upper left 3 × 3 block. Such a transformation is called a Euclidean transformation, and

the reconstruction W ′ resulting from this transformation is called either a Euclidean or a metric

reconstruction of W ; in this dissertation, we use the term “metric reconstruction.” Fig. 3.7 gives a

sample metric reconstruction of a square.

Note that all Euclidean transformations are affine and all affine transformations are projective.

The reverse is not true, making this is a proper hierarchy. The hierarchy of transformations defines

the hierarchy of scene reconstructions; see Fig. 3.7 for an intuitive look at the hierarchy and Fig.

3.8 for a Venn-diagram representation of the hierarchy. As will be seen, projective scene recon-

structions are the easiest to create from camera views but are the least intuitive and thus the least

useful. Affine reconstructions are the next easiest to create, but are still not very intuitive or use-

ful. Metric reconstructions are the hardest to create but are very useful; they represent the original

scene up to an arbitrary rotation and overall scaling and thus meet our intuitive expectations about

what a scene should look like. We have “intuitive” expectations about this kind of reconstruction

because in our everyday interactions with the world we deal with rigid objects that can be picked

up, rotated, and translated, and every time we move an object in this manner (i.e., by a Euclidean

displacement) the object becomes a metric reconstruction of its “true” form. As will be seen, met-

ric reconstruction is the best that can be achieved through self calibration; to reconstruct a scene

at its original scale requires some knowledge of specific measurements in the scene (e.g., that the

side of the square is 1 meter in length).

3.5.2 Hierarchy of camera reconstructions

In the preceding section, a set W of measurements of scene positions, acquired using an orth-

normal world coordinate system, was transformed by various 4 × 4 matrices to create alternative

representations of the scene called “reconstructions.” In a similar way, the cameras viewing the

scene can be measured using an orthonormal world coordinate system and the resulting camera

56

Figure 3.8 Hierarchy of scene reconstructions portrayed with a Venn diagram.

matrices can be transformed by various 4 × 4 matrices to create a hierarchy of “reconstructions”

of the cameras.

To express this formally, let n cameras capture views of a scene and let Πk for 1 ≤ k ≤ n be

the camera matrices for these views. If W is transformed by Ψ then each camera matrix needs to

be pre-multiplied by Ψ−1 to ensure the camera views will remain the same:

(ΠkΨ
−1)(ΨW) = ΠkW

The set of cameras ΠkΨ
−1 is called a reconstruction of the original cameras. Note that the inverse

of a projective, affine, or Euclidean transformation is, respectively, a projective, affine, or Euclidean

transformation; i.e., the class of a transformation is unchanged by inversion. Thus we can classify

a camera reconstruction by the class of the transformation Ψ used to create it, just as with scene

reconstructions.

As will be seen, the significance of this stratification comes from the fact that a projective recon-

struction of the cameras viewing a scene can be created using the fundamental matrices between

camera views. Since fundamental matrices can be calculated directly from point correspondences,

this means projective camera reconstructions can be created directly from information available in

the 2D camera views. Furthermore, it will be shown that projective camera reconstructions can be

57

upgraded to affine and metric reconstructions under certain circumstances with no more informa-

tion than is available in the 2D camera views. This is the process of “self calibration,” which is the

central topic of this dissertation.

3.5.3 Triangulation

Triangulation in its simplest form is illustrated in Fig. 1.1: the direction towards a target po-

sition p in space is determined from two different locations, and this information induces two 3D

lines that, when intersected, yield the 3D coordinates of p. Camera views can provide the neces-

sary triangulation information provided the following is known: (1) the 2D projection φi(p) of p

into each camera view, (2) the inverse projection function φ−1
i of each view, and (3) the location of

the optical center of each camera. Note that φ−1
i is a function mapping 2D points to 3D rays, and

that (1) and (2) combine to provide the direction φ−1
i (φi(p)) from the optical center of camera i

towards the target.

Thus the process of triangulation can be used reconstruct a scene from point correspondences,

but only after the set of camera views has been calibrated. Finding the calibration functions of

a set of camera views for a shared coordinate system means reconstructing the camera views. If

only a projective reconstruction of the camera views can be determined, then only a projective

reconstruction of the scene can be created (see Section 3.5.4), and so on for the other levels of

reconstruction.

More elaborate forms of triangulation are available. The most important is the simultaneous

use of more than two camera views to triangulate a target position. This creates an over-constrained

problem that greatly stabilizes the triangulation process relative to noise in the 2D positions φi(p).

It is only this stabilization process that makes scene reconstruction possible from real data, because

even slight errors in the 2D positions φi(p) and in the inverse projection functions φ−1
i can lead to

large errors in the triangulated 3D position otherwise. See Section 11.2 of Hartley and Zisserman

[70] for a linear solution to the over-constrained problem. Another form of triangulation, presented

by Seitz and Anandan [152], involves placing a 2D probability distribution around each measured

2D projection φi(p) to represent the likelihood that the true projection position is somewhere near

58

the measured one. Each 2D distribution induces a distribution cone in 3D, and the “intersection”

of these cones gives a distribution for the position of p in 3D.

3.5.4 Projective reconstruction using a fundamental matrix

Once the fundamental matrix Fij has been determined, it is immediately possible to create a

projective scene reconstruction. Let ej denote the left epipole of Fij and let M be any invertible

3 × 3 matrix such that

Fij
∼= [ej]×M

Note that ej is found directly from Fij but is only determined up to a scale factor; thus we can

write ej = β1{ê}j where β1 ∈ �
and {ê}j is from Eq. 3.10. Next, create the following two 3 × 4

matrices:

Π̆wi :=
[
I , 0

]

Π̆wj :=
[
M , −ej

]
(3.19)

Then camera matrices Π̆wi and Π̆wj are a projective reconstruction of the original cameras which

has been derived entirely from the fundamental matrix Fij .

To prove the claim above, we must find a projective transformation Ψ such that

Π̆wi
∼= ΠwiΨ and Π̆wj

∼= ΠwjΨ

Here recall that Πwi and Πwj are the original metric camera matrices (in the chosen world coordi-

nate system w), which have the specific form

Πwi = KiRi [I , −ti] (3.20)

The key to finding Ψ is to realize that

M = β2H
∞

ij + eja
> (3.21)

for some vector a ∈ � 3 and β2 ∈ �
. The fact that M must have the form given by Eq. 3.21 is

proven in [70]; although M is determined from Fij , which has unknown scale, the unknown scale

59

is handled by β2 and a. Ψ can now be set as

Ψ−1 :=
1

β2


 H∞

wi −H∞

witi

a>H∞

wi α


 =

1

β2


 KiRi −KiRiti

a>H∞

wi α


 (3.22)

where α ∈ �
is determined below. As a test that Ψ is correct and to determine α, observe

Π̆wjΨ
−1 = 1

β2

[
M, −ej

]


 H
∞

wi −H
∞

witi

a
>
H

∞

wi α





= 1

β2

[
β2H

∞

ij H
∞

wi + eja
>
H

∞

wi − eja
>
H

∞

wi , −β2H
∞

ij H
∞

witi − eja
>
H

∞

witi − αej

]

= 1

β2

[
β2H

∞

wj , −β2H
∞

wjti − β3ej

]

= 1

β2

[
β2H

∞

wj , −β2H
∞

wjti − β3β1H
∞

wj(t
′

i − ti)
]

= 1

β2

[
β2H

∞

wj , −β2H
∞

wjt
′

i

]

= H
∞

wj

[
I, −t

′

i

]

= Πwj

where we set β3:= β2/β1 and α:= β3 − a>H∞

witi.

Note that if world coordinates w are chosen to make ti = 0 (so that the world origin is at the

optical center of camera i) and Ri = I, then by Eq. 3.22

Ψ−1 =
1

β2


 Ki 0

a>H∞

wi α


 ∼=




1
α
Ki 0

a>(1
α
Ki) 1


 (3.23)

Eq. 3.23 reappears in Eq. 4.6 of Section 4.3.3.

Once a projective camera reconstruction has been created, a projective scene reconstruction

can be created by triangulating corresponding points on the camera’s image planes. Note that the

material presented in this section was first discussed by Faugeras [44], albeit in a significantly

different form involving choice of projective basis.

3.5.5 The absolute quadric and metric reconstruction

It is convenient at this juncture to discuss the absolute quadric further and to provide a concrete

example. The absolute quadric was previously mentioned in Section 2.2 as part of the history

and context of camera self calibration. The absolute quadric has become very popular for self

60

calibration because of its relative simplicity and the ability it provides to directly utilize known

constraints on internal calibration (i.e., the matrix K).

Let Πwi for 1 ≤ i ≤ n be a series of camera matrices in a metric reference frame and let

Π̆wi
def
= ΠwiΨ

be a projective reconstruction of these cameras, where Ψ is an invertible 4×4 matrix. By choosing

world coordinates so that R1 = I and t1 = 0 (see Eq. 3.20), Ψ has the form given by Eq. 3.23

(after letting K1 absorb the 1
α

term):

Ψ =



 K−1
1 0

−a> 1





Next, define the 4 × 4 matrix

Ω∗
def∼= Ψ−1



 I 0

0> 0



 (Ψ−1)> =



 K1K
>
1 K1K

>
1 a

a>K1K
>
1 a>K1K

>
1 a



 (3.24)

The matrix Ω∗ is known as the dual image of the absolute quadric; the terminology is technical

and understanding its meaning is not necessary for this discussion.
Now consider what happens when we form the following matrix product:

Π̆wiΩ
∗
Π̆

>

wi
∼= KiRi

[
I −ti

]
ΨΩ

∗
Ψ

>


 I

−t
>

i


R

>

i K
>

i

= KiRi

[
I −ti

]

 K

>

1
K

>

1
a

0
> 0


Ψ

>


 I

−t
>

i


R

>

i K
>

i

= KiRi

[
I −ti

]

 K

>

1
K

>

1
a

0
> 0





 (K−1

1
)> −a

0
> 1





 I

−t
>

i


R

>

i K
>

i

= KiRi

[
I −ti

]

 I 0

0
> 0





 I

−t
>

i


 R

>

i K
>

i

= KiRiIR
>

i K
>

i = KiK
>

i
∼= ω∗

i (3.25)

Note that the projective camera matrices Π̆wi can be determined directly from images taken by the

cameras (e.g., using a method like that in Section 3.5.4 for two-camera projective reconstruction),

61

and that in Eq. 3.25 there is no requirement that each camera have the same internal calibration K.

The significance of Eq. 3.25 is that it allows entries in the projective camera matrices Π̆wi to be

directly related to entries in internal calibration matrices, because Ω∗ is the same for each camera.

This can be especially useful when some properties of the internal calibration matrices (e.g., zero

skew) are already known. For example, if we assume

K =




f 0 0

0 f 0

0 0 1




(e.g., because we have predetermined the principal point) then

KK> =




f 2 0 0

0 f 2 0

0 0 1




Now letting

Ω∗ =




a b c d

b e f g

c f h i

d g i j




we can use equation Eq. 3.25 to determine the entries a, . . . , j ∈ �
of Ω∗. Of course, it will

be necessary to use the constraints arising from Eq. 3.25 for several camera views before enough

constraints exist to determine Ω∗. See Pollefeys, Koch, and Van Gool [131, 130] for details. Note

that once Ω∗ has been determined, the projective reconstruction can be upgraded immediately to

metric because K and a have been determined.

One potential problem with this approach, besides the requirement that some assumptions be

made about internal calibration, is that the entries of Ω∗ are not independent of each other, and yet

they are treated as being independent when Eq. 3.25 is invoked. Another problem is the way in

which Ω∗ is defined relative to a specific camera (camera 1 in the example above), thus introducing

bias.

62

Figure 3.9 Physical explanation for
why point correspondences are am-
biguous and thus why the fundamen-
tal matrix is rank deficient (i.e., not in-
vertible). Knowledge that a 3D scene
point projects to a particular location in
the right-hand view only reveals which
epipolar line in the left-hand view the
scene point will project onto.

3.6 Finding point correspondences in practice

If two cameras, i and j, view a scene point p ∈ � 3 then the pair of points φi(p) and φj(p) is

called a point correspondence between the views. This concept can be generalized in the obvious

way when more than two views are available.

Point correspondences are ambiguous, as depicted in Fig. 3.9 where a point in the right-hand

view is shown to correspond to a line in the left-hand view. However, identifying point correspon-

dences between views is the first step in most self-calibration and scene-reconstruction algorithms.

Determining accurate point correspondences is paramount. For most of the history of photogram-

metry, point correspondences were determined manually. Computers have opened the possibility

of automatically determining point correspondences. When only a small number of point corre-

spondences have been determined between two views, the correspondence is said to be sparse.

When a large number of correspondences have been determined, the correspondence is dense.

Because of the labor involved, a dense correspondence is only feasible when determined mechani-

cally, either by a computer algorithm (e.g., [125, 89, 154]), or from available data (e.g., if the views

are the output of a computer graphics algorithm rendering a synthetic scene [26, 156]), or from an

engineered means (e.g., structured light [197]).

63

Software algorithms for determining point correspondences rely on the presence of texture

in the scene, which means identifiable surface variations such as markings (e.g., writing, dirt,

decorations, small holes) or shadows from a fixed light source. Apparent correspondences caused

by occluding boundaries are often erroneous and often mislead algorithms. Having a reliable

fundamental matrix between the views can be of great assistance in finding point correspondences:

if Fij is the fundamental matrix between views i and j and if {p}i is a feature point in view i, then

it is known that the corresponding point {p}j in view j is on the epipolar line given by Fij{p}i.

Thus it is only necessary to search for {p}j on this line or nearby.

3.7 Finding fundamental matrices in practice

Fundamental matrices are notoriously difficult to determine reliably. The best way to find a

fundamental matrix is to (1) use a very large field of view, (2) have reliable methods for eliminating

lens distortion, (3) use many point correspondences, (4) locate point correspondences to sub-pixel

accuracy (or equivalently, use high-resolution views), and (5) determine correspondences by hand

to avoid outliers. In photogrammetry applications, special cameras are used that have no lens

distortion and so suggestion (2) would not even be relevant. However, in many machine vision

applications we would like to be able to use non-specialized cameras, what photogrammetrists

derisively call “amateur equipment.” Suggestion (5) is a traditional part of photogrammetry but

is not a desirable option in machine vision, where algorithms should be automated as much as

possible. To automate the process, the RANSAC method is typically used to cull outliers; this is

discussed in greater detail below.

The following is an outline of the standard automatic technique for finding the fundamental

matrix between two views [130, 70]:

(Step 1) Find feature points in both views.

(Step 2) Find potential conjugate pairs among the feature points.

(Step 3) Use RANSAC to find a fundamental matrix that matches well with the greatest

number of potential conjugate pairs.

64

(Step 4) Use the fundamental matrix to eliminate potential conjugate pairs that are out-

liers.

(Step 5) (Optional) Return to step 2 with the reduced set of feature points.

(Step 6) Use all remaining conjugate pairs simultaneously to find a best-fit fundamental

matrix.

(Step 7) (Optional) Use the calculated fundamental matrix to find more feature points

and better potential conjugate pairs (i.e., ones that approximately match the

epipolar geometry given by the fundamental matrix); return to step 3.

Step 1 is accomplished using corner detectors (e.g., [100, 65]; see also the comparison in [151]).

The goal is to find positions that “stand out” and are likely to be detected in another nearby view as

well. For example, a speck of dirt on a blank wall makes a good feature. Step 2 can be performed by

comparing the immediate neighborhoods around each feature point using cross-differencing. Since

a fundamental matrix can be calculated with 7 or 8 conjugate points, step 3 involves repeatedly

choosing a small number of conjugate point pairs, finding the fundamental matrix for these points,

and checking how well this matrix fits the other conjugate pairs. A fundamental matrix “fits” a

conjugate pair if it generates the correct epipolar line for the pair. Correctness is measured using

the distance from each point to its corresponding epipolar line; smaller distances are better. The

RANSAC process continues until a fundamental matrix is found that fits a large number of the

conjugate pairs.

By step 4, a reasonable fundamental matrix has been found. All potential conjugate pairs

that are in disagreement with the fundamental matrix are considered bad and eliminated. The

optional step 5 assumes that eliminating bad conjugate pairs has improved the chances of RANSAC

randomly finding the correct fundamental matrix. Step 6 assumes that using all remaining “good”

conjugate pairs at once will stabilize the fundamental matrix calculation. The optional step 7 is

part of determining a “dense” correspondence between the two views [89]. When a feature point is

determined in one view, it is only necessary to search along (or nearby) the corresponding epipolar

line in the second view for the other half of the conjugate pair. The epipolar line is found using

65

the estimated fundamental matrix. Both optional steps must be treated in a relaxation manner,

gradually tightening the bounds over repeated iterations.

While this algorithm seems reasonable, it still has many problems in practice. There is no

substitute for good input data! This is why suggestions (1), (2), (4), and (5) at the beginning of the

section are of crucial importance.

Fundamental matrices can also be determined from line correspondences or combinations of

line and points correspondences (e.g., [2, 66, 67]). Some researchers (e.g.,[179]) have experi-

mented with determining trilinear/trifocal tensors [167, 158, 69], from which fundamental matri-

ces can be extracted. The theory is that, since trilinear tensors are determined from 3 views and

have stricter requirements than pairwise epipolar geometry, they can be determined more reliably.

Thus determining a trilinear tensor and then extracting fundamental matrices from it should be a

more reliable way to determine fundamental matrices. In practice, the trilinear tensor seems to be

extremely sensitive to noise and can possibly lead to worse estimates of epipolar geometry than

direct calculation of the fundamental matrix. Stein [169] discussed the possibility of determining

trilinear tensors (and hence fundamental matrices) directly from optical flow.

66

Chapter 4

Screw-Transform Manifolds

4.1 The screw transformation between two views

It was shown by Chasles in 1837, and apparently earlier by both Cauchy and Mozzi [17], that

if a rigid object is arbitrarily moved from one location to another, the movement M of the object

can always be represented as a screw transformation. This means there exists a line in space called

the screw axis, a rotation U around the screw axis, and a translation V parallel to the screw axis

such that

M = U V = V U

Although the mathematical-style notation used above is intended to convey the concept informally,

M, U, and V could be thought of as 4 × 4 matrices representing rigid transformations in a ho-

mogeneous coordinate system. Fig. 4.1 gives a sample screw transformation. The term “screw

transformation” refers to the way a screw both turns around and moves parallel to its axis.

If a camera with fixed internal parameters captures two views of a scene, then there exists a

screw transformation that moves the camera from its first viewing location and orientation to its

second. This screw transformation can be used when defining a world coordinate system for the

cameras; in particular, a coordinate system can be chosen with its z-axis equal to the screw axis and

the position (1, 0, 0)> equal to the optical center of the first camera view. Letting upper-triangular,

3 × 3 matrix K denote the camera’s fixed internal parameters, the camera matrices for the two

67

screw axis

rotation

translation

(a)

rotation

translation

(b)

Figure 4.1 (a) A screw transformation.
Every rigid-body motion can be de-
composed into a purely rotational com-
ponent and a purely translational com-
ponent, which together form a screw
transformation. (b) The two compo-
nents can be composed in either order
to recreate the original motion.

views written in the screw-transformation-based coordinate system are:

ΠA = K R




1 0 0 −1

0 1 0 0

0 0 1 0




ΠB = ΠAS(−γ,−θ)

Here the letters A and B refer to the first and second view, respectively, the matrix R is a rotation

matrix representing the “tilt” of the camera relative to the coordinate system, and the matrix S is

given by

S(γ, θ) =




cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 γ

0 0 0 1




Note that γ and θ are parameters from the screw transformation: γ is the amount of translation

parallel to the screw axis and θ is the amount of rotation around the screw axis. The distance

from the optical center (of either view) to the screw axis is the basic unit of measurement in this

coordinate system; the amount of screw translation γ is in terms of these units.

The two camera matrices given above will also arise from an alternative scenario in which

the camera is motionless while the scene undergoes a transformation equal and opposite to the

original camera motion, namely S(−γ,−θ). Physically this occurs if the camera is mounted at

68

position (1, 0, 0)> while the scene being viewed rests on a “rising turntable” with rotation axis

equal to the z-axis. A rising turntable is a turntable that both rotates around its axis and moves up

and down parallel to its axis. Thus we refer to the alternative interpretation as the rising-turntable

formulation of the viewing scenario. We refer to the duality of interpretation as camera relativism.

The fundamental matrix between the two views can be derived directly from the two camera

matrices ΠA and ΠB (see Section A.1.2). The resulting fundamental matrix given in terms of the

underlying screw transformation is

F = FA + FS (4.1)

FA = [sin θh2 + γ cos θh3]× (4.2)

FS =
1 − cos θ

|H|
[
(h1 × h3)(h1 × h2)

> + (h1 × h2)(h1 × h3)
>

]
+

γ sin θ

|H|
[
(h1 × h3)(h1 × h3)

> + (h2 × h3)(h2 × h3)
>

]
(4.3)

where H = [h1 h2 h3] = KR.

We will use the 4-tuple S = (K,R, θ, γ) to conveniently and formally refer to the view-

capturing scenario described above. Let fma(S) denote the fundamental matrix arising from sce-

nario S and let hin(S) denote H∞ = KRK−1, which is called the relative calibration arising

from scenario S or the homography induced by the plane at infinity. Note that both fma(S) and

hin(S) can be calculated directly from S, the first through Eq. 4.1 and the second through knowl-

edge of K and R. The question we will consider in the next few sections is, what information

does knowledge of F (without knowledge of the 4-tuple (K,R, θ, γ)) provide us about H∞ and

K. This question is of interest because F can be found directly from pairs of views by identifying

feature-point correspondences [44, 73] and thus information about internal and relative calibration

can be found directly from camera views.

69

4.2 Upgrading weak calibration

When the fundamental matrix between two views is known, the views are said to be weakly

calibrated. Two stronger forms of calibration are affine calibration (i.e., knowledge of the rel-

ative calibration H∞ between two views) and metric calibration (i.e., knowledge of the internal

calibration K of the camera). We will use the term monocular fundamental matrix to describe a

fundamental matrix arising from two views taken by a camera with fixed internal parameters. The

goal of this section is to show how a monocular fundamental matrix can be upgraded to affine

or metric calibration through the knowledge of 2 or 3 real numbers, respectively, that are related

to the underlying screw decomposition of the camera motion. Since any choice of real numbers

will lead to different, legal affine or metric calibrations, it is clear that weak calibration cannot be

immediately upgraded without further information. More importantly, the parameterization given

by these real numbers leads to a new method for self calibration (see Section 4.3).

4.2.1 Parameterizing rising-turntable scenarios

A given rising-turntable scenario S = (K,R, θ, γ) has a corresponding fundamental matrix

F = fma(S). There may be many other scenarios S ′ = (K′,R′, θ′, γ′) that give rise to the same

fundamental matrix, so that fma(S ′) = fma(S) = F. Define the set of scenarios consistent with

fundamental matrix F as

consce(F) = {S ′ : fma(S ′) = F}.

Letting ΦF denote the mapping given by Algorithm A–1 (Fig. 4.2) for a fixed F, we have the

following:

CONJECTURE 1. For every S ∈ consce(F), there exists a triplet of real numbers (κ, θ, γ) ∈ � 3

with S = ΦF(κ, θ, γ).

This statement is presented as a conjecture rather than a theorem because it is extremely diffi-

cult to prove formally. We have confidence that the conjecture is true for the following reasons:

• Each step in the algorithm is derived mathematically from Eq. 4.1 (see the step-by-step

derivation in Appendix A.2.1).

70

• Computer experiments are consistent with the conjecture.

Assuming the conjecture is true (except perhaps for isolated special cases), the function ΦF repre-

sents a parameterization of the set consce(F). That is, each member of consce(F) can be associ-

ated with a triplet of real numbers. In Section 4.3 it is shown how this parameterization leads to

“screw-transform manifolds” and a new method for self calibration.

Note that Algorithm A–1 only defines ΦF when the camera undergoes general motion, meaning

γ 6= 0, θ 6= 0, and the screw axis does not intersect the optical center. There are two additional,

nontrivial motions that can occur and each leads to a different definition of ΦF; these cases, called

“turntable motion” and “transfocal motion,” are discussed in Section 4.4.

4.2.2 Parameterizing relative calibration

The previous section introduced the set consce(F) of all rising-turntable scenarios sharing

a given fundamental matrix F. Since each scenario in consce(F) has a corresponding relative

calibration, the set of all relative calibrations that are consistent with F can be defined as

conhin(F) = {hin(S ′) : S ′ ∈ consce(F)}

Letting ΛF denote the mapping given by Algorithm B–1 (Fig. 4.2.1) for a fixed F, we have the

following:

CONJECTURE 2. For every H ∈ conhin(F), there exists a pair of real numbers (κ, θ) ∈ � 2 with

H = ΛF(κ, θ).

Again, we present this statement as a conjecture rather than a theorem because it is extremely

difficult to prove formally, and again we believe the conjecture is true because algorithm B–1

was deduced mathematically from Eq. 4.1 (see Appendix A.2.1 and Appendix A.2.4) and because

computer experiments are consistent with its validity.

As with the function ΦF, the function ΛF represents a parameterization of the set conhin(F). In

this case, each relative calibration that is consistent with a given fundamental matrix corresponds

71

ALGORITHM A–1

(1) Let M be any invertible 3× 3 matrix such that F = [e]×M, where e is the left epipole of

F (i.e., e>F = 0).

(2) Let h3 = (κI − M)−1e.

(3) Let h1 = (FSm) × (FSh3), where [m]× = FA.

(4) Find the unique null eigenvector (σ1, σ2)
> of

[
FSh1, −FAh3

]
. Note that (σ1, σ2)

> =

φ(1/s1, γ/s3)
>, where s1h1 = h1, s3h3 = h3, and φ is an unknown scalar determined in

step (5).

(5) Solve the over-determined system φFSh3 = σ1(1 − cos θ)(h1 × h3) for φ.

(6) Let h2 = (φm − σ2 cos θh3)/(φ sin θ).

(7) Use γ (and φ) to extract s3 from the eigenvector in step (4). Then h3 = h3/s3.

(8) Since KR = H = [h1h2h3], perform QR decomposition on H to recover K and R.

Figure 4.2 Algorithm for mapping (F, κ, θ, γ) to a scenario S = (K,R, θ, γ) ∈ consce(F) that is
consistent with monocular fundamental matrix F. The underlying motion is assumed to be general;
alternative motions are described in Section 4.4, Fig. 4.6, and Fig. 4.8.

ALGORITHM B–1

(1) Perform steps (1)-(6) of Algorithm A–1 (Fig. 4.2) to find h3 and l12.

(2) Use Algorithm C (Fig. 4.4) to find H∞.

Figure 4.3 Algorithm for mapping (F, κ, θ) to H∞ = hin(S) for some scenario
S = (K,R, θ, γ) ∈ consce(F) that is consistent with monocular fundamental matrix F. The
underlying motion is assumed to be general.

72

ALGORITHM C

(1) Let M be any invertible 3× 3 matrix such that F = [e]×M, where e is the left epipole of

F (i.e., e>F = 0).

(2) Let ξ = e>l12 and q = M>l12.

(3) Solve the following 6 × 5 system to find the null eigenvector (λ, λa, 1)>:



M(11) + M(22) + M(33) e> −(1 + 2 cos θ)

Mh3 eh>

3 −h3

(l12)xqy − (l12)yqx (−(l12)yξ, (l12)xξ, 0) 0

(l12)xqz − (l12)zqx (−(l12)zξ, 0, (l12)xξ) 0







λ

λa

1


 = 0

(4) Having determined a ∈ � 3 in step (3), find H∞ using

H∞ ∼= M + ea> (4.4)

Figure 4.4 Algorithm for determining H∞ from F, θ, l12, and h3.

73

to a pair of real numbers. In Section 4.3 the function ΛF is used to define the “modulus-constraint

manifold” while the earlier function ΦF is used to define the “Kruppa-constraint manifold.”

4.3 Screw-transform manifolds and self calibration

The fundamental matrix between two views contains certain limited information about camera

calibration. In this section, we describe two existing self-calibration methods for converting this

information into affine and metric calibration. We then show how the parameterizations given in

Section 4.2 induce objects called “screw transform manifolds” that lead to new algorithms for self

calibration.

4.3.1 Kruppa-constraint manifold

The first published self-calibration method, due to Faugeras, Luong, and Maybank [41], was

based on the Kruppa constraints [92]. In particular, for a scenario S = (K,R, θ, γ) we have

F ∼= [eB]×H∞

where F = fma(S), H∞ = hin(S), and eB is the epipole viewed in camera B, given by eB
∼=

ΠB[1, 0, 0, 1]>. It was observed that

FKK>F> ∼= [eB]×H∞KK>(H∞)>[eB]×

= [eB]×(KRK−1)KK>(KRK−1)>[eB]×

= [eB]×KK>[eB]×

This equation places constraints on ω∗ = KK>. Because F can be determined directly from

camera views and eB can be determined from F, with enough monocular fundamental matrices

ω∗ can be determined and then K can be found by Cholesky decomposition. Notice how in this

technique metric calibration (i.e., the internal calibration matrix K) is found immediately from

weak calibration (i.e., fundamental matrices) without first determining affine calibration. We refer

to this style of self calibration as direct self calibration, in contrast to the stratified approach of

Section 4.3.3.

74

Define the notation kma(S) = K/frob(K), where frob(K) is the Frobenius norm of K (see

Section 6.1.1 for the definition of Frobenius norm). We normalize the matrix to reduce the dimen-

sionality of the internal-calibration search space; the matrix K can only be recovered up to a scale

factor by any self-calibration algorithm anyway. Next define

conkma(F) = {kma(S) : S ∈ consce(F)}

and the mapping

ΩF :
� 3 −→ conkma(F) ⊆ � 5

(κ, θ, γ) 7−→ kma(ΦF(κ, θ, γ))

Note that although conkma(F) is not immediately a subset of
� 5 , it is easy to create an injec-

tive mapping from conkma(F) to
� 5 . For example, the matrix K = [a, b, c; 0, d, e; 0, 0, f] ∈

conkma(F) can get mapped to (a, b, c, d, e) ∈ � 5 . The value f can later be recovered from the

5-vector by assuming frob(K) = 1 and thus f = (1 − a2 − b2 − c2 − d2 − e2)1/2.

The Kruppa-constraint manifold is defined as ΩF(
� 3), the image of

� 3 under the mapping

ΩF. Although we refer to this set and its parameterization as a “manifold,” we will not attempt to

formally prove the properties that define a manifold. Empirically, the term “manifold” is a good

descriptor because the steps defining the algorithm ΦF are continuous in most places. The set
� 3

together with the mapping ΩF is referred to as the coordinate system of the manifold.

4.3.2 Self calibration using Kruppa-constraint manifolds

Let a camera with fixed internal calibration K capture a series of views, and assume that n

pairs of these views overlap sufficiently to determine fundamental matrices F1, ...,Fn. By camera

relativism, each view pair i is equivalent to a rising turntable scenario Si, so that Fi = fma(Si).

By Conjecture 1, each manifold ΩFi
(
� 3) contains K and thus

K ∈
⋂

i

ΩFi
(
� 3)

In other words, K can be found by intersecting the various Kruppa-constraint manifolds arising

from the pairwise fundamental matrices.

75

Since the domain of ΩF is three-dimensional and the range of ΩF is five-dimensional, each

Kruppa-constraint manifold is a three-dimensional manifold in a five-dimensional space. Since

each manifold removes 2 degrees of uncertainty from the location of K, the intersection of three

manifolds yields a zero-dimensional space: a disjoint union of points. In their work concerning

the modulus constraint, Pollefeys and Van Gool [132, 130] showed that when three fundamental

matrices are used there are at most 64 points that satisfy the modulus constraints imposed by each

fundamental matrix (see Section 4.3.3); Schaffalitzky [150] reduced this upper bound to 21. Thus

since every point on a screw-transform manifold satisfies the modulus constraint imposed by the

fundamental matrix generating the manifold, the size of the set of mutual intersection points is no

more than 21. Experimental evidence suggests the size is actually much smaller at around 1 or 2

(see Section 6.1.5).

The observations just presented form the basis of a self-calibration algorithm: capture several

views, find pairwise fundamental matrices between the views, determine Kruppa-constraint mani-

folds from the fundamental matrices, and find the mutual intersection point of the manifolds. The

difficult part is efficiently finding the mutual intersection point. Some algorithms for this task are

presented in Section 5.

4.3.3 Stratified self calibration and the modulus constraint

In this section we look at a stratified approach to self calibration in which the internal camera

parameters are determined in several stages [33, 45, 35, 184, 132, 104]. Specifically, an initial

weak calibration is determined which is then upgraded to affine calibration before finally being

converted to metric calibration.

Let n views of a scene be captured by a camera with fixed internal parameters K. As the camera

is moved around the scene, the various views are related solely by rotations and translations. Thus

the 3 × 4 camera matrices for the n views can be written

Π̆i =
[

H̆i ĕi

]
=

[
KRi ĕi

]

76

where H̆i is a 3 × 3 matrix and Ri is a rotation matrix. By choosing the appropriate metric

coordinate system, we can assume ĕ1 = 0 and R1 = I.

Under the stratified self-calibration paradigm, the first step in finding K and finding Π̆i is to

place the camera matrices in a common projective basis. These initial projective camera matrices

will be labeled Πi and are related to the metric camera matrices by an invertible 4 × 4 matrix Γ

representing a transformation of projective basis:

Πi =
[

Hi ei

]
= Π̆iΓ (4.5)

We will refer to the initial set of camera matrices Πi in the common projective basis as a pro-

jective reconstruction of the scene. The usual approach to obtaining this projective reconstruction

(e.g., [144, 13]) is to identify feature points in the scene that are visible in more than one camera,

then reconstruct the features in a common projective basis (e.g., using fundamental matrices [44]),

and then find the projective camera matrices by relating the reconstructed features to their viewed

positions on the camera image planes. However, features are not an implicit part of the projective

reconstruction and we will not refer to them further.

We can always choose the projective basis so that Π1 =
[

I 0

]
. By Eq. 3.23 (using α = 1

and Rw = I) and with the assumptions so far, Γ must have the form

Γ =


 K−1 0

−ă> a


 (4.6)

This form is commonly used (e.g., [130]). Different values for the scalar a simply lead to different

overall scale factors for the final metric reconstruction. Since metric reconstruction only involves

recovering the scene up to a scale factor, we can choose a = 1 for convenience.

The second stage in stratified self calibration is to upgrade the projective reconstruction to an

affine reconstruction. This is equivalent to finding ă in Eq. 4.6. The final stage is to upgrade the

affine reconstruction to metric by finding K. The latter step can be performed in a simple way by

solving a linear system [68]; the hard step is finding ă during the second stage.

77

Pollefeys et al. [136] introduced an elegant method for determining ă called the modulus con-

straint. Notice that from Eq. 4.5 and the assumption a = 1 we get

Hi = H̆iK
−1 − ĕiă

>

ei = ĕi

leading to

KRiK
−1 = Hi + eiă

> (4.7)

Since the left-hand side of Eq. 4.7 is conjugate to a rotation matrix, its eigenvalues must all have

the same modulus (i.e., absolute value) and this leads to constraints on ă. Similarly,

KRjR
−1
i K−1 = H∞

1j(H
∞

1i)
−1 = (Hj + ejă

>)(Hi + eiă
>)−1 (4.8)

Here the left-hand side is conjugate to the rotation matrix RjR
−1
i leading to additional constraints

on ă. Let H∞

ij (a) denote the right-hand side of Eq. 4.7 and Eq. 4.8, respectively, with ă replaced

by a generic vector a ∈ � 3 :

H∞

ij (a) =





Hi + eia
> if i = 1

(Hj + eja
>)(Hi + eia

>)−1 if i > 1
(4.9)

By expanding the characteristic equation for H∞

ij(a) and using the modulus constraint, each (i, j)

pair with i < j leads to a fourth-order multivariate polynomial φij in the components of a that

vanishes wherever H∞

ij (a) satisfies the modulus constraint (i.e., all its eigenvalues have the same

modulus); see [133] for the specific form of φij. Note that φij represents a necessary but not

sufficient condition on the legality of a: if H∞

ij (a) ∈ conhin(Fij) then φij(a) = 0 but the reverse

is not necessarily true.

Since ă has the property φij(ă) = 0 for all pairs (i, j), ă is given by

ă = arg min
a∈� 3

∑

(i,j)

(φij(a))2 (4.10)

If n is large enough (n ≥ 4), Eq. 4.10 has a single solution except for some special collections

of views called critical motion sequences (e.g., see [42, 172]). When n = 3 there are at most

78

ALGORITHM D

(1) If i = 1, then Eq. 4.7 can be used to find a. For instance, let E1 = [ej 0 0], E2 = [0 ej 0],

and E3 = [0 0 ej], then solve

[H∞

1j Hj E1 E2 E3][σ 1 ax ay az]> = 0.

where the 3 × 3 matrices (H∞

1j, Hj, etc.) are treated as column vectors in
� 9 . Since the

null eigenvector will be found up to a scale factor, divide by its second component to get

the correct a = (ax, ay, az). The algorithm is done.

(2) Otherwise i 6= 1 and Eq. 4.8 must be solved for a; the remaining steps of the algorithm

are for this task.

(3) Define qi and mi by [q1 q2 q3] = H∞

ijHi and [m1 m2 m3] = Hj. Let v1 = m1 × m2,

v2 = q1 × m2 + m1 × q2, and v3 = q1 × q2.

(4) Solve φ2v1 + φv2 + v3 = 0 for the scalar φ. One closed-form solution is φ = −(vx
3v

y
1 −

v
y
3v

x
1)/(vx

2v
y
1 − v

y
2v

x
1). A least-squares approach is preferable.

(5) The equation to solve is now U + wa> = 0, where U = H∞

ijHi + φHj and w =

H∞

ijei + φej. This can be solved as in step (1):

[U W1 W2 W3][1 ax ay az]> = 0.

Figure 4.5 Algorithm for determining a from H∞

ij for view pair (i, j) with i < j.

79

21 solutions as mentioned in Section 4.3.2. Eq. 4.10 can be solved using nonlinear minimization

techniques.

4.3.4 Modulus-constraint manifolds

When all the cameras can be placed in the same projective basis (the “initial projective recon-

struction” of Section 4.3.3), a simpler form of screw-transform manifold can be used. The key

advantage to this alternative form is that γ is no longer needed in the parameterization. Rather than

being 3-dimensional manifolds in a 5-dimensional space like the Kruppa-constraint manifolds,

these new manifolds are only 2-dimensional and exist in a 3-dimensional space.

Once all the cameras have been placed in the same projective basis, we can define the function

H∞

ij (a) from the previous section. Note that if H∞

ij(a) is given for some unknown a, then a can be

determined using Algorithm D (Fig. 4.5); let ave : H∞

ij(a) 7−→ a denote this mapping. A step-by-

step derivation of Algorithm D is given in Appendix A.2. Define the set of “a” vectors consistent

with fundamental matrix F as

conave(F) = {ave(H) : H ∈ conhin(F)}

Remember that H∞

ij(ă) is the relative calibration between views i and j. That is, if the screw

decomposition of the motion between views i and j is Sij = (Kij,Rij, θij, γij) then H∞

ij(ă) =

hin(Sij) up to a scale factor. Thus H∞

ij (ă) ∈ conhin(Fij) and ă ∈ conave(Fij). This provides a

method for restricting the location of ă: enumerate over all possible relative calibrations that are

consistent with fundamental matrix Fij and look at all corresponding vectors a; ă must be among

this set.

We now formally name the set introduced above. In Section 4.2 it was discussed how conhin(F)

can be parameterized by two real numbers using the mapping ΛF. Define the mapping

ΨF :
� 2 −→ conave(F) ⊆ � 3

(κ, θ) 7−→ ave(ΛF(κ, θ))

80

CLASSIFICATION OF PAIRWISE CAMERA MOTIONS

θ γ SCREW AXIS LOCATION CLASSIFICATION

0 0 no motion

0 6= 0 pure translation

6= 0 0 through optical center unifocal motion

6= 0 0 not through optical center turntable motion

6= 0 6= 0 through optical center transfocal motion

6= 0 6= 0 not through optical center general motion

Table 4.1 Classification of pairwise camera motions.

The modulus-constraint manifold is defined as the set ΨF(
� 2) together with the parametrization

given by ΨF. As with the Kruppa-constraint manifold, we will not attempt to formally prove that

this set and its parameterization form a manifold in the mathematical sense but rather we use the

term descriptively. See Fig. 5.1 for a visualization of several modulus-constraint manifolds; the

term a-space refers to
� 3 as the range space of ΨF.

Since ă ∈ ΨFij
(
� 2), self calibration with modulus-constraint manifolds can be achieved just

like self calibration with Kruppa-constraint manifolds, by finding the mutual intersection point of

a sufficient number of manifolds. Since each modulus-constraint manifold is 2-dimensional and

exists in a 3-dimensional space, each manifold places 1 constraint on the location of ă. Thus three

or more manifolds are necessary to restrict ă to a 0-dimensional set (i.e., a disjoint set of points).

4.4 Non-general camera motions

In this section, we use screw decomposition to categorize every possible pairwise motion of a

camera. Of the 6 categories that arise, the cases called “general motion,” “turntable motion,” and

“transfocal motion” have screw-transform manifolds associated with them. The “general motion”

81

case was presented in Section 4.3 and the remaining two cases are discussed here. We conclude

this section with a theorem that provides a simple test for differentiating between each motion case.

4.4.1 Classifying pairwise camera motions

A pairwise camera motion is a rigid-body transformation1 that takes a camera from one posi-

tion and orientation to another; the camera’s internal parameters are unchanged. Table 4.1 shows

the partition of pairwise camera motions into categories based on screw decomposition. Three ele-

ments of the decomposition are used: the amount of rotation θ, the amount of translation γ, and the

location of the screw axis. With each element, a binary question is resolved: First it is determined

whether θ and γ are nonzero, indicating whether there is any rotation or translation. Then it is

determined whether the screw axis intersects the optical center (of both camera views) or not.

Many of the categories given in Table 4.1 have been previously labeled and investigated in the

context of self calibration by other authors, which indicates that the partition is natural. Trans-

lational motion was one of the first cases studied because of its simplicity and its use in affine

reconstruction [120]. The case we call “unifocal motion,” meaning rotation of the camera around

its optical center, has been studied extensively because of its use in mosaicing. For example, Hart-

ley [68] showed how metric self calibration can be achieved from unifocal motion, and several

authors (e.g., McMillan [116] and Davis [28]) have used unifocal motion to self-calibrate sim-

plified camera models when creating mosaics. Turntable motion has been investigated for self

calibration in the context of actual turntables [52, 104] and arising from planar motion [12]. To

the best of our knowledge, the case we call “transfocal motion” has not been specifically identified

and investigated before.

Besides the trivial case of no motion, all remaining motions are termed ”general.” Most self-

calibration papers (e.g., [41, 132, 180]) only require that the camera change location and rotate,

and thus these papers simultaneously cover general motion, turntable motion, and transfocal mo-

tion. We show later in this section that transfocal motion contains less information for calibration
1Arbitrary rigid-body transformations are also called “displacements” in the terminology of kinematics [17].

82

than the other two cases, which may make it a degenerate case for some of the earlier calibra-

tion methods. Some collections of camera motions called critical motion sequences [172] do not

contain enough information to allow a metric coordinate frame to be uniquely identified. Critical

motion sequences exist outside of the motion categories given here; for example, a critical motion

sequence might consist entirely of general motions or turntable motions or a combination of the

two.

4.4.2 Turntable motion

Turntable motion arises when there is no translational component to the screw decomposition

and the screw axis does not intersect the optical center. In this case, γ = 0 and θ 6= 0 and the

fundamental matrix formula from Eq. 4.1 becomes

F = FA + FS (4.11)

FA = [sin θh2]× (4.12)

FS =
1 − cos θ

|H|
[
(h1 × h3)(h1 × h2)

> + (h1 × h2)(h1 × h3)
>

]
(4.13)

Note that Eq. 4.1 is still applicable (i.e., the derivation given in Section A.1.2 is still applicable)

because we are assuming that the screw axis does not intersect the optical center; this will not be

true for the transfocal motion case discussed in Section 4.4.3. Also note that Eq. 4.11 was published

earlier by Fitzgibbon and Zisserman [52] in the context of self-calibration from turntable motion,

where it was given without proof, and this is the earliest reference to the equation of which we are

aware.

The most obvious way for turntable motion to occur is when a stationary camera views an

object on a rotating turntable. It will also occur when a camera is translated parallel to a plane

while rotating around an axis perpendicular to the plane [12].

As in the case of general motion discussed in Section 4.3, two screw-transform manifolds arise

from turntable motion, one suitable for direct self calibration and the other for stratified self cali-

bration. Simply let ΩF be defined by Algorithm A–2 (Fig. 4.6) and let ΛF be defined by Algorithm

B–2 (Fig. 4.7). Note that γ is replaced by a symbolic variable γ ′ in these parameterizations because

83

ALGORITHM A–2

(1) Let m be given by [m]× = (F − F>)/2 = FA.

(2) Let h2 = m/ sin θ.

(3) Let l12 = −(FSm)/((1 − cos θ) sin θ).

(4) Use FSh1 = 0 to find h1 (i.e., find the null eigenvector of FS).

(5) Let h1 = (‖l12‖ / ‖h1 × h2‖)h1.

(6) Find l13 from the fact that (FS − (1 − cos θ)[h1]×) is [l13 l13 l13]> up to arbitrary scale

factors on the rows.

(7) Let h3 = R(l13, κ)h1 where R(n, k) denotes the rotation matrix with rotation axis n and

angle of rotation 2πk.

(8) Let h3 = γh3. Note that γ is not related to the amount of screw translation in this case.

(9) Since KR = H = [h1h2h3], perform QR decomposition on H to recover K and R.

Figure 4.6 Algorithm for mapping (F, κ, θ, γ ′) to a scenario S = (K,R, θ, 0) that is consistent
with monocular fundamental matrix F arising from turntable motion.

ALGORITHM B–2

(1) Perform steps (1)-(7) of Algorithm A–2 (Fig. 4.6) to find h3 and l12
∼= h1 × h2.

(2) Use Algorithm C (Fig. 4.4) to find H∞.

Figure 4.7 Algorithm for mapping (F, κ, θ) to H∞ = hin(S) for some scenario S = (K,R, θ, 0)
that is consistent with the F. Turntable motion is assumed.

84

γ is assumed to be 0. The new parameter γ ′ is no longer related to the screw decomposition; it

simply provides the unknown scaling factor for h3. Other than this, γ ′ can be treated like γ or any

other parameter in the the algorithms of Section 4.3.

4.4.3 Transfocal motion

Transfocal motion arises when the screw axis intersects the optical center and γ 6= 0. The

position of the screw axis means that the rising-turntable model must be changed. In particular, it

can no longer be assumed that the first camera’s optical center is at (1, 0, 0)>. Instead, we take the

first camera to be at (0, 0, 0)> and the second to be at (0, 0, 1)>. Note that we assume the amount

of screw translation is 1. Any other value would simply lead to a different overall scaling factor for

the internal calibration and scene reconstruction, and since self-calibration can only be achieved

up to an overall scaling factor it is sufficient to assume the screw translation is 1. Thus γ will not

play a role in the equations arising from transfocal motion.

We use the notation S = (K,R, θ) to describe a transfocal motion scenario S. This nota-

tion is just like the notation of Section 4.1 except without γ. The fundamental matrix fma(S)

corresponding to S is

F = FA + FS (4.14)

FA = [cot θh3]× (4.15)

FS =
1

|H|
[
(h1 × h3)(h1 × h3)

> + (h2 × h3)(h2 × h3)
>

]
(4.16)

One way to derive Eqs. 4.14–4.16 is by taking the limit of Eq. 4.1 scaled by 1/γ as γ → ∞.

This works because in a rising-turntable scenario γ measures the amount of screw translation as

a multiple of the distance between the optical center and the screw axis. Thus making γ grow is

equivalent to shrinking the distance between the optical center and the screw axis. An alternative,

direct derivation is given in Section A.2.3.

The framework for describing the screw-transform manifolds associated with transfocal mo-

tion is just like that for general and turntable motion. However, an extra parameter is needed for

85

ALGORITHM A–3

(1) Let h3 be given by [h3]× = FA.

(2) Deterministically pick an arbitrary line through h3 to serve as the line l13
∼= h1 × h3. For

example, if h3 = [x, y, z]> then let l13 = [−y, x, 0]>.

(3) Let h1 = R(l13, κ1)h3 where R(n, k) denotes the rotation matrix with rotation axis n and

angle of rotation 2πk.

(4) Let l23 = FSh1

(5) Let h2 = R(l23, κ2)h3.

(6) Let h3 = tan θh3.

(7) Let φ = (FSh1)
>(h2 × h3)/ ‖h2 × h3‖2.

(8) Let h1 = γ′h1.

(9) Let h2 = γ′φh2.

Figure 4.8 Algorithm for mapping (F, κ1, κ2, θ, γ
′) to a transfocal motion scenario S = (K,R, θ)

that is consistent with F.

ALGORITHM B–3

(1) Perform steps (1)-(5) of Algorithm A–3 (Fig. 4.8) to find h3 and l12
∼= h1 × h2.

(2) Use Algorithm C (Fig. 4.4) to find H∞. Note θ is used only in this step.

Figure 4.9 Algorithm for mapping (F, κ1, κ2, θ) to H∞ = hin(S) for some transfocal motion
scenario S = (K,R, θ) that is consistent with F.

86

each type of manifold. Let ΩF be defined by Algorithm A–3 (Fig. 4.8) and let ΛF be defined by

Algorithm B–3 (Fig. 4.9).

With these definitions, ΩF leads to a 4-dimensional manifold in the 5-dimensional search space

for K and ΛF leads to a 3-dimensional manifold in the 3-dimensional search space for a. Thus

it is still possible to perform direct self calibration from ΩF using transfocal motions, although

5 fundamental matrices are now needed. However, it is unclear whether transfocal motions can

be used for stratified self calibration from ΛF since the intersection of several screw-transform

manifolds in a-space will still be 3-dimensional. Since each manifold will be smaller than the

entire search space (because θ, κ1, and κ2 are restricted to the domain [0, 1]), the intersection of

many manifolds may sufficiently restrict the location of ă because, in the presence of noise, ă can

never be found with complete certainty anyway. The intersection process can be further improved

if θ can be restricted to a more limited range.

The intersection algorithms given in Section 5 can still be applied after suitable modifications

have been introduced to account for the increased number of parameters.

4.4.4 Tests for classifying pairwise camera motions

Table 4.2 provides a simple test for identifying each class of pairwise camera motion. Such

tests are important because they allow a self-calibration algorithm to automatically use the correct

screw-transform manifold or alternative calibration method in the cases of translational and uni-

focal motion. Note that every class of motion has either an H∞ matrix or a fundamental matrix

associated with it, and the tests are performed directly from these matrices.

Before proving the correctness of the tests (Theorem 1), the concept of abstract feature points

must be introduced. An abstract feature point is the projected location of a position in space into

both camera views as determined by each camera’s matrix. Abstract features behave just like real

feature points except they exist only as the information they provide; they are invisible and do not

even need to be in either camera’s field of view. When stating Theorem 1 and its proof, enough

information from abstract feature points is assumed to be available (e.g., from an oracle) to perform

87

the tests. The concept of abstract feature points is needed to avoid situations in which the tests

might be fooled (e.g., by placing photographs of different views in front of the camera without

actually moving the camera) or in which there simply is not enough information to perform the

tests (e.g., the camera is in a featureless room, or the two views do not overlap at all). The theorem

is thus made correct at all times regardless of what visual information is actually available. In

practice, of course, performing the tests requires sufficient visual information and the tests could

be fooled or could be impossible to perform.

LEMMA 1. Let two views of a scene be captured by arbitrary cameras. Then exactly one of the

following statements is true:

(i) The two cameras share the same optical center, there exists a planar homography mapping

one view onto the other (i.e., mapping every abstract feature point from one view onto the

corresponding abstract feature point in the other), and the views do not induce a fundamental

matrix.

(ii) The two cameras have different optical centers, the views induce a fundamental matrix, and

there does not exist a planar homography mapping one view onto the other.

Proof: Either the cameras share the same optical center or they do not. In the former case, the pla-

nar homography mapping the first view onto the second is given by H∞ = K′RK−1, where K and

K′ are the internal calibration matrices for the two cameras and R is a rotation matrix (given by the

screw decomposition). In the latter case, the fundamental matrix is defined as [K′e]×H∞ where e

is the displacement vector between the two optical centers expressed in the same metric coordinate

system used to express K′. If the optical centers are the same, e = 0 and the fundamental matrix is

not defined, proving (i) implies ¬(ii). Now assume that the optical centers differ but there exists a

planar homography H that maps all abstract feature points from one view into the other. Let A and

B denote the optical centers of the two cameras and let C be the spacial location of some abstract

feature point. Let D be another point on the line AC, and use the notation p and p′ to denote the

projection of spacial point P into the first and second views, respectively. Note that c = d in the

88

first view but c′ 6= d′ in the second view, which contradicts the existence of planar homography H

that maps c to c′ and d to d′. Thus the existence of H implies that both optical centers are at the

same location, proving (ii) implies ¬(i). �

LEMMA 2. Every fundamental matrix has rank 2.

Proof: A fundamental matrix is defined as [e]×H∞ for some e. H∞ is invertible, so it has rank 3,

and [e]× represents a cross-product operation, so it has rank 2. �

LEMMA 3. If two views are captured by a camera with fixed internal parameters undergoing either

turntable or general motion and if the underlying screw rotation θ is not a multiple of π, then the

motion is turntable if and only if det(FS) = 0.

Proof: Call the two cameras involved camera A and camera B. Let eA and eB denote the epipole

in camera A and camera B, respectively. Clearly if γ = 0 then det(FS) = 0 because h1 is a null

eigenvector of FS (examine Eq. 4.3). Now assume det(FS) = 0 but γ 6= 0. In the logic below

we will be using a fixed-camera, rising-turntable formulation [103] with the optical center at the

origin of
� 3 (so there will only be one camera, fixed in position at the origin, viewing a scene

that undergoes a screw transformation; camera A will denote what the camera views before the

transformation and camera B will denote what the camera views after the transformation). Also,

for vectors f , g ∈ � 3 , 〈f , g〉 will denote both the space spanned by f and g and the line on the

image plane induced by this space. Let u ∈ � 3 be a scene point whose projection into camera B,

denoted by uB, is in the null space of FS (i.e., FSuB = 0). Using Eq. 4.3, FSh3
∼= h1 ×h3 6= 0 so

h3 corresponds to a different position in view B than uB. Since the epipolar line for uA in view A

is represented by both 〈uA, eA〉 and by u>
B
F = u>

B
FS+u>

B
FA = u>

B
FA = (m×uB)>, we conclude

m, uB, uA, and eA are all coplanar. Let q ∈ � 3 be an arbitrary scene point that projects to the line

〈uB, eA〉 in view A (which equals the line 〈uA, eA〉). So qA is a linear combination of uB and eA

and thus FqA
∼= FuB

∼= m × uB, implying qB lies in the plane 〈m,uB〉 which is also the plane

〈uA, eA〉. In other words, points that project to the line 〈uA, eA〉 in view A also project to that line

in view B (after the screw transformation). If the planes 〈uA, eA〉 and 〈h1,h3〉 are identical then

eA lies on the rotation axis 〈h1,h3〉, which can only happen if θ is a multiple of π (by Eq. A.11).

89

Since we assume this is not the case, 〈uA, eA〉 and 〈h1,h3〉 represent distinct lines in view A which

intersect at a point vA. For some scale factor k, v = kvA is a point on the rotation axis in space.

vB is the projection of v after the screw motion; in this case, the screw motion translates v by γ

along the screw axis, so under the fixed-camera formulation vB and vA are at different positions

on the axis line 〈h1,h3〉. But vA is on the line 〈uA, eA〉 and so vB must also be on this line, leading

to the conclusion that vB = vA, a contradiction. �

THEOREM 1. Let two views of a scene be captured by a camera with fixed internal parameters

and assume θ 6= kπ, where θ is the amount of screw rotation and k is an integer. Let H denote

the homography between the views if it exists and otherwise let F denote the fundamental matrix

induced by the views and let e denote the left epipole of F (so that e>F = 0). Then exactly one of

the following statements is true:

(i) H exists and is the identity matrix, the views are identical, and the camera underwent no

motion.

(ii) H exists and is not equal to the identity matrix and the camera underwent unifocal motion

(i.e., the camera rotated around its optical center).

(iii) F exists, F ∼= [e]× (i.e., F is antisymmetric with 0’s on the main diagonal), and the camera

underwent translational motion.

(iv) F exists, FS 6= 0 and FSe = 0, and the camera underwent transfocal motion.

(v) F exists, FSe 6= 0 and det(FS) = 0, and the camera underwent turntable motion.

(vi) F exists, det(FS) 6= 0, and the camera underwent general motion.

Proof: First observe that the statement of the theorem is well-defined because by Lemma 1 either

H exists or F exists but not both. We know that the motion classes given in Table 4.1 partition the

set of all pairwise camera motions since each class is defined by a series of binary tests (i.e., either

θ = 0 or θ 6= 0, etc.). Thus only two claims need to be proven: (1) the conditions associated with

90

motion class X hold when the underlying motion is in class X, and (2) the conditions associated

with distinct motion classes X and Y cannot hold simultaneously.

Proof of claim (1): If there is no motion, then clearly the views are identical, the optical centers

are equal so that H exists, and H = I. If there is unifocal motion, then H exists by Lemma 1 and

H 6= I because θ 6= 0. If there is translational motion, then θ = 0 and, by Eq. 4.1, F ∼= [h3]×.

Here h3 equals the left epipole e. If there is transfocal motion, Eq. 4.14 shows that e ∼= h3 and

thus that FSe = FSh3 = 0. Furthermore, FS 6= 0 because FSh2
∼= h1 × h3 and h1 and h3 are

linearly independent since the internal calibration matrix K is invertible. If there is turntable or

general motion then Lemma 3 establishes that det(FS) = 0 for turntable motion and det(FS) 6= 0

for general motion (note that the condition on θ is necessary to use Lemma 3). Furthermore, if

there is turntable motion then e = −(1 − cos θ)h1 − sin θh2 by Eq. A.11 with γ = 0, leading to

FSe = (1 − cos θ) sin θ|H|−1(h1 × h2) by Eq. A.6 and Eq. A.7 with γ = 0. Thus FSe 6= 0 since

h1 and h2 are linearly independent and θ is not a multiple of π.

Proof of claim (2): Let the notation ¬(y) indicate that statement (y) cannot hold; then it is

sufficient to show that if the conditions of statement (y) are met then ¬(z) for every z > y. If H

exists then ¬(iii), ¬(iv), ¬(v), and ¬(vi). Furthermore, if H = I as in statement (i) then ¬(ii). Now

assume F exists. If F ∼= [e]× then FS = 0; this follows because [e]× ∼= F = FA + FS where FS

is symmetric and FA and [e]× are both antisymmetric with 0’s on the main diagonal. Thus having

F ∼= [e]× as in statement (iii) implies ¬(iv), ¬(v), and ¬(vi). If FSe = 0 as in statement (iv), then

¬(v) and ¬(vi) immediately follow (the latter because det(FS) = 0). Finally, if det(FS) = 0 as in

statement (v) then ¬(vi). �

91

TESTS FOR CLASSIFYING PAIRWISE CAMERA MOTIONS

CLASSIFICATION TEST

DEGREES
OF

FREEDOM
NOTES

AFFINE METRIC

no motion views identical 0 5 H
∞ = I

pure translation F is a cross-product matrix 0 5 H
∞ = I

unifocal motion homography exists between
views 0 2

F is not defined; H
∞ is

the homography
between views

turntable motion det(FS) = 0 and F
S
e 6= 0 2 3

transfocal motion F
S 6= 0 and F

S
e = 0 3 4

general motion det(FS) 6= 0 2 3

Table 4.2 Tests for determining in which category a given pairwise camera motion belongs, using
only point correspondences between the views.

92

Chapter 5

Manifold Intersection Algorithms

As was discussed in Section 4.3.2 and Section 4.3.4, self-calibration can be achieved by finding

the mutual intersection point of three or more screw-transform manifolds.1 In the case of Kruppa-

constraint manifolds, the mutual intersection point is the internal calibration matrix K up to an

unknown scale factor. Finding the mutual intersection point of a set of Kruppa-constraint mani-

folds represents a direct self-calibration technique, meaning calibration is determined immediately

from fundamental matrices generated by pairs of views without creating an initial projective re-

construction of the cameras or upgrading to an affine reconstruction.

In the case of modulus-constraint manifolds, the mutual intersection point is the vector ă ∈ � 3

which can be used to upgrade an initial projective reconstruction to affine. Once affine camera ma-

trices have been determined, the pairwise relative calibrations are known and upgrading to metric

reconstruction (i.e., finding K) is a simple matter. In this way, modulus-constraint manifolds can be

used in a stratified self-calibration technique. As with the Kruppa-constraint manifolds, pairwise

fundamental matrices are required by this approach; however, an initial projective reconstruction

of the cameras is also required (i.e., every camera matrix must be placed in the same projective

basis).

In both self-calibration approaches, the mutual intersection of three screw-transform manifolds

is a set of disjoint points (except when special, critical-motion sequences are involved). In some

cases it is possible to find the set of all mutual intersection points and then eliminate incorrect

points using other criteria. Otherwise, additional screw-transform manifolds can be utilized: as

more manifolds are incorporated, the set of mutual intersection points grows smaller until only the

1It is coincidental that only three manifolds are necessary in both cases

93

Figure 5.1 Piecewise-linear approximate surfaces fitted to three modulus-constraint manifolds in
a-space. Determining the mutual-intersection point ă of the manifolds makes it possible to upgrade
projective reconstruction to affine, after which metric reconstruction can easily be determined. The
inset shows one modulus-constraint manifold by itself; notice the lone discontinuity. The two
dimensions of the grid underlying each approximate surface are κ and θ.

94

correct self-calibration remains. Note, however, that our experiments suggest finding the mutual

intersection point of just three modulus-constraint manifolds is usually sufficient to restrict ă to a

set of one or two points (see Section 6.1.5).

The key task becomes creating an efficient, fast, and robust algorithm for finding the mutual

intersection of several manifolds. We have experimented with three approaches: a surface-fitting

technique [105], a voting algorithm [103], and a Monte-Carlo Markov-Chain scheme. Each ap-

proach is briefly summarized below; more details for the voting algorithm can be found in Ap-

pendix B.1.1. Note that each approach can be used with either Kruppa-constraint manifolds or

modulus-constraint manifolds; these are general-purpose algorithms that can determine the mutual-

intersection points of any set of manifolds. Thus it is irrelevant whether direct or stratified self

calibration is being performed.

5.1 Surface fitting

One direct approach to solving the intersection problem is to fit an approximate, piecewise-

linear surface to each screw-transform manifold and then find the mutual intersection points of

the approximate surfaces. Our method involves imposing a coordinate grid onto each manifold;

see Fig. 5.1 for a visualization. First, a feasible range is determined for each underlying screw-

transform parameter. For the underlying parameter θ, which represents screw rotation, the range

[−π, π] can be used. For κ and γ, a range bounded by large positive and negative values should be

sufficient. Once a finite range for each parameter has been decided, we can treat each parameter

as being a real number in the range [0, 1]. A grid can then be imposed on each manifold in the

obvious way, such as in the following pseudocode for the modulus-constraint manifold case:

grid : array[0..m][0..m] of 3-vectors
for i := 0 to m

for j := 0 to m
grid[i][j] := psif(theta(i/m), kappa(j/m))

Here psif denotes the function ΨF and theta and kappa denote predetermined conversion func-

tions that take x ∈ [0, 1] to the desired range of θ and κ, respectively. For the Kruppa-constraint

95

ALGORITHM E (SURFACE FITTING)

Goal: Find all mutual-intersection points of a set M̆ of manifolds.

Preconditions: There are only a finite number of mutual intersection points; a parameteriza-

tion is known for each manifold in M̆ ; a finite search range has been determined for each

parameter.

(1) For each manifold in M̆ , find an approximate, piecewise-linear surface (see Section 5.1).

Let M denote the set of approximate surfaces.

(2) Pick 3 surfaces (m1, m2, m3) from M .

(3) Find the set P of mutual intersection points for (m1, m2, m3) (see Section 5.1).

(4) For each p ∈ P , determine how well p fits with all surfaces in M .

(5) Repeat from step (2) a fixed number of times or until the fit is sufficiently good; use

standard RANSAC protocols to determine how many loops are necessary [51].

(6) Return the mutual intersection point that fit best with the largest number of surfaces.

Figure 5.2 Manifold intersection algorithm using surface fitting and RANSAC.

96

manifold the grid array is 3-dimensional and contains 5-vectors, and an additional conversion func-

tion gamma and corresponding inner loop must be used, as well as ΩF instead of ΨF.

Once the grid has been established, each grid square (or cube) can be divided into trian-

gles (or tetrahedrons). For example, the square delimited by grid[i,j] and grid[i+1,j+1]

becomes two triangles with vertex sets { grid[i,j], grid[i+1,j], grid[i,j+1] } and {
grid[i+1,j+1], grid[i+1,j], grid[i,j+1] }, respectively. The set of triangles (tetrahe-

drons) forms the desired piecewise-linear surface approximation for the manifold.

With the surface approximations established, consider the case of intersecting just three man-

ifolds. The process has two steps: first all pairs of intersecting triangles for two of the manifolds

are determined, and then each of these triangle pairs is tested for intersection with each triangle of

the third manifold. In pseudocode:

pairwise : set of triangle pairs
pairwise = []
foreach t1 in triangles1

foreach t2 in triangles2
if intersect(t1, t2) then

pairwise := pairwise + [(t1,t2)]

mutual : set of points
mutual = []
foreach t3 in triangles3

foreach (t1,t2) in pairwise
if intersect(t1,t2,t3) then

mutual := mutual + [intersection point of t1, t2, and t3]

Here trianglesi is the set of triangles forming the approximation of manifold i and intersect

is a Boolean function indicating whether the given triangles intersect. This simple algorithm can

be made more efficient with appropriate data structures and through the use of bounding boxes to

quickly eliminate many cases where triangles do not intersect.

When more than three manifolds are available, successive loops could be used to further pare

down the set mutual. However, in the presence of noise a set of 4 or more manifolds will not have

a well-defined mutual intersection point. Note that if the noise level is small enough, a set of three

manifolds will still have true mutual intersection points, albeit at incorrect locations.

97

Because of the last observation and because it is generally good practice when dealing with

noisy data, we make use of extra manifolds (i.e., any manifolds above the minimum three) by com-

bining RANSAC with the triangle-based intersection algorithm given above. The use of RANSAC

is feasible because the surface-fitting intersection algorithm runs very quickly (see Section 6.1.3)

and because only three manifolds need to be drawn from the set of all manifolds for every random

sample, meaning only a small number of draws is necessary to be confident with the result. The

complete RANSAC-style, surface-fitting, manifold-intersection algorithm is shown in Fig. 5.2.

In general, the approach outlined in this section works extremely well in practice, as the exper-

iments of Section 6.1 demonstrate. Drawbacks to the algorithm stem from the process of “sketch-

ing” each manifold (i.e., fitting an approximate surface) because each grid takes a certain amount

of memory to hold and a certain amount of time to sketch. The amount of memory and time re-

quired is proportional to the square of the resolution (i.e., the variable m from the first pseudocode)

for modulus-constraint manifolds and the cube of the resolution for Kruppa-constraint manifolds.

Experiments suggest a resolution of 20 or 30 is the bare minimum necessary for usable results;

higher resolutions will, of course, produce finer results.

5.2 Voting-based algorithm

In this section, we present a voting scheme [103] for determining the intersection points of

several manifolds. The voting scheme can be thought of as a Hough transform [82] (see also [87])

for self calibration. This approach has the same strengths in the presence of noisy data that the

Hough transform has: large numbers of inliers will consistently vote for the same, correct answer

while small numbers of outliers will vote for random, incorrect answers; thus the correct answer

will receive much more support than any other answer. Furthermore, all the available data is used

simultaneously, unlike in RANSAC-based approaches where only a minimal subset of the data is

considered during any single iteration. One drawback is the large memory requirement for storing

the votes. Another is the length of time the algorithm must be run for a reliable winner to emerge

from the voting process. Perhaps the most crucial drawback is the coarse resolution for the voting

98

grid, which can cause the wrong area of the search space to appear correct during early stages of

the voting algorithm, thus misdirecting the entire search process.

For 1 ≤ i ≤ n, let Fi :
� m −→ � k define an m-dimensional manifold Fi(

� m) in a k-

dimensional space (m < k). Define the set of mutual intersection points Q = {q ∈ � k : ∀i ∃p ∈
� m [q = Fi(p)]}. Assume that all n manifolds contain at least one point in common, meaning

|Q| ≥ 1; our goal is to find at least one element of Q. Furthermore, assume that a hypercube

V ⊂ � k can be identified that contains at least one of the mutual intersection points. V is the

search region.

The idea behind the voting scheme is to uniformly divide the search region V into equal-size

hypercubes called voting voxels and then count how many manifolds intersect each voxel. Any

voxel w that contains a member of Q will receive the maximum possible number of votes (i.e., n

votes). Voxel w is then used as the new search region U and the entire voting process is repeated

with U in place of V . We will refer to this reduction of search space size as a “zoom-in” step.

With each iteration the search region gets smaller until a mutual intersection point can be directly

determined (e.g., using the linear intersection method discussed later).

In practice, it is not possible to directly count how many manifolds intersect each voting voxel.

Instead, the counting process is statistically approximated through voting. Points are randomly

generated on each manifold (ideally, forming a uniform sampling across each manifold) and then

each voxel that contains one or more points on manifold i receives a vote from manifold i. Note

that each voxel is allowed at most one vote from each manifold. The voxel that receives the most

votes is labeled w. To be safe, instead of using the volume of voxel w as the next search region, U

is taken to be a region half the size of V and centered on w (or on the centroid of the votes received

by w and its immediate neighbors). The full algorithm is given in Fig. 5.3.

Sample points are generated on each manifold by randomly selecting underlying coordinates

(step (3) of the algorithm). For example, in the case of direct self calibration from Kruppa-

constraint manifolds, three real numbers κ, θ, γ ∈ �
are chosen at random (within some pre-

determined range) and the corresponding sample point becomes ΩF(κ, γ, θ). As the algorithm

99

ALGORITHM F (VOTING)

Goal: Find a member of Q, where Q is the set of all mutual-intersection points of a set M of

manifolds. The members of M are m-dimensional manifolds in
� k .

Preconditions: |Q| ≥ 1; a parameterization is known for each manifold in M ; a finite search

range has been determined for each parameter.

(1) Choose a volume V ⊂ � k that contains members of Q.

(2) Partition V into equally-sized voting voxels (k-dimensional hypercubes). A finer sub-

division slows down the algorithm but improves success. However, because real data

contains noise the voxels must be large enough to allow for manifolds that only come

close to intersecting.

(3) For each manifold i: Randomly select a point c ∈ � m to serve as coordinates, calculate

the corresponding point Fi(c) ∈
� k on manifold i , and determine the voxel v containing

Fi(c). A vote is cast for v provided manifold i has not already voted for v.

(4) Repeat from step (3) until one voxel w receives enough votes (which will be some fraction

of the maximum possible number of votes n).

(5) “Zoom in” step: Define a new volume U half the size of V and centered around the win-

ning voxel w. Return to step (2) using the smaller volume U in place of V . Manifolds that

have not yet generated any sample points within the new search region U are eliminated

from future consideration.

(6) The algorithm continues until a sufficient resolution has been reached (e.g., enough man-

ifolds are approximately linear within the current search region to use Eq. 5.1).

Figure 5.3 Voting-based manifold intersection algorithm: a Hough transform for self calibration.

100

continues, the search region becomes smaller and smaller and simply picking parameters at ran-

dom will not be efficient because the corresponding sample point will probably lie outside the

reduced search region. Instead, the underlying parameters are restricted to a range that is likely to

correspond to points within the reduced search region. This range is determined from the set of

sample points that already lie in the current search region (see the discussion of “range dithering”

in Appendix B.1.2). Note that both the process of sampling each manifold based on underlying

parameters and of sampling a small region of each manifold by restricting the range for the param-

eters is made possible by the very existence of the parameterization.

As the search region becomes smaller, the manifolds that continue to intersect it will appear

more and more linear within the search region. This is an inherent property of manifolds stemming

from the fact that manifolds are smooth and have derivatives. After the search region V has been

reduced in size a few times, the search algorithm can attempt to fit a hyperplane to the sample

points of each manifold that lie within it. If a good fit can be achieved for enough manifolds then

the desired point of intersection can be determined in one step by intersecting the hyperplanes. For

example, if t manifolds can be approximated by hyperplanes and if hyperplane i is defined by the

normal vectors ni
1, . . . ,n

i
k−m ∈ � k and point pi ∈ � k lying somewhere on the hyperplane, then

the mutual intersection point q ∈ � k can be determined immediately because ni
j · (q−pi) = 0 for

all i, j. The latter series of equations becomes the linear system:

[
n1

1, n1
2, · · · , n1

k−m, n2
1, · · · , nt

k−m

]>
q

=
[

n1
1 · p1, n1

2 · p1, · · · , nn
k−m · pt

]>
(5.1)

During experiments with Kruppa-constraint manifolds, it typically took 4 or 5 zoom-in steps before

enough manifolds were sufficiently linear to find q directly from Eq. 5.1 [103].

In the case of direct self calibration from Kruppa-constraint manifolds, choosing the initial

search region V is easy. Every possible internal calibration is an upper-triangular 3 × 3 matrix.

Since the overall scale factor is irrelevant, it can be assumed that the matrix has a Frobenius norm

equal to 1. Thus the largest possible search space for internal calibration matrices can be identified

101

with the hypercube {(x, y, z, w, u) ∈ � 5 : x, y, z, w, u ∈ [−1, 1]}. Each point in this region

corresponds to an upper-triangular matrix [x y z; 0 w u; 0 0 (1 − x2 − y2 − z2 − w2 − u2)1/2].

When using modulus-constraint manifolds in a-space, empirical evidence suggests that ă will

be close to (0, 0, 0)> provided the initial projective reconstruction is chosen properly. Our imple-

mentation searches for an initial projective reconstruction that is fairly “rounded,” meaning the

standard deviation of the position of each scene point from the centroid of the scene in the di-

rection of each principle component is about 1. Thus, assuming ă will be close to (0, 0, 0)>, the

initial search region can be chosen as {(x, y, z) ∈ � 3 : x, y, z ∈ [−η, +η]} for some small η (e.g.,

η = 20). Of course, a larger η can be used if the initial choice fails.

In real applications the manifolds will not all intersect at a single, well-defined point because of

noise. All self-calibration algorithms need to deal with this fact whether they explicitly calculate

the manifolds or not. The voting algorithm has the advantage that it can find a small region that

is intersected by all or most of the manifolds, and it can provide some measure of confidence

that this region contains the true solution because the more manifolds a region contains and the

smaller it is, the more reliable the solution is. More importantly, the voting algorithm is inherently

robust to outliers. If any fundamental matrix Fi is severely incorrect (and thus an outlier), it will

generate a manifold that only sporadically intersects the other screw-transform manifolds under

consideration. Votes generated by this manifold will not coincide with votes generated by the other

(inlying) manifolds and thus the erroneous manifold will not influence the zooming-in process of

the algorithm. After a few zoom-in steps, the incorrect manifold will be outside the reduced search

region and will be dropped from consideration.

5.3 Monte-Carlo Markov-Chain approach

Strictly speaking, Monte-Carlo Markov-Chain (MCMC) algorithms calculate estimates of ex-

pected values [123]; they do not search for global extrema.2 In this section we will abuse the

MCMC technique by using it to find the mutual-intersection point of three manifolds, a process
2However, the field of stochastic optimization uses many Monte Carlo methods, including MCMC-based techniques

as well as simulated annealing and genetic algorithms.

102

κ

(p,q)θ
(x,y)

0 1

1

0

Figure 5.4 Each state in the MCMC search space represents a position on each of three mani-
folds, using 4 integers (p, q, x, y) per manifold. The figure shows how a quadruple (p, q, x, y) gets
mapped to a position on a manifold. x and y are converted to the range [0, 1], and if x + y > 1
the position is in the upper triangle of the lattice square (colored gray). The two triangles are han-
dled separately since each lattice point lives in

� 3 and thus each lattice “square” is really a skew
quadrilateral formed of two non-coplanar triangles.

103

that is equivalent to searching for the global maximum of a particular inverse-distance function.

MCMC will efficiently search for this global maximum because the stochastic process underlying

MCMC will spend most of its running time in states of high likelihood. In our case, the states of

high likelihood will be those near the mutual intersection points of the three manifolds; thus the

algorithm will be likely to “stumble across” the mutual-intersection points or at least come very

close to them in a small amount of time.

We now present the algorithm in the context of finding mutual-intersection points of a set

of modulus-constraint manifolds; how to use the algorithm with Kruppa-constraint manifolds is

discussed later in this section. In our approach, a grid is first laid over each manifold as described

in Section 5.1 and portrayed in Fig. 5.1. Let each grid have size n×n. Each state in the state space

will have the form

(p1, q1, x1, y1; p2, q2, x2, y2; p3, q3, x3, y3)

where all entries are integers and pi, qi ∈ [0, n − 1] and xi, yi ∈ [0, m − 1] for some m. Each state

indicates three positions, one for each manifold we are trying to intersect. The entries pi, qi, xi,

and yi taken together indicate a position on manifold i as shown in Fig. 5.4. The numbers pi and qi

indicate a lattice point on the grid of manifold i and can be thought of as the lattice position. The

numbers xi and yi indicate the sub-lattice position. Taken together, they represent a position in one

of two triangles as shown in Fig. 5.4 and these two triangles together cover one lattice square.

We use the Metropolis algorithm [117, 123, 32] for exploring the state space. To use this

algorithm, each state is assigned a likelihood with the highest likelihoods belonging to the mutual

intersection points and the next highest likelihoods belonging to states that are close to mutual

intersection points. This is accomplished easily by using inverse mutual distance for likelihood:

like(s) =
1

(dist12(s) + dist13(s) + dist23(s) + ε)µ

Here distij(s) means the Euclidean distance between the points on manifolds i and j that state

s represents. ε is simply a very small number (e.g., 10−6) to prevent division by 0. The power

factor µ influences the search process: when µ is small there is little difference in the likelihood

of different states, making the search process undirected; when µ is large, the search process can

104

get “trapped” in local maxima, taking a long time to continue exploring other regions of the state

space. Thus the choice of µ can be critical in making a usable algorithm (i.e., one that converges

in a reasonable number of iterations). Note that, under the theory of MCMC algorithms, the global

maximum will eventually be found regardless of the choice of µ because every state will eventually

be visited.

The Metropolis algorithm proceeds as follows:

S := random starting state
best state := S
best like := like(S)
while (best like not satisfactory) and

(max iterations not performed) begin
T := random new state to consider; see comments
r := like(T)/like(S)
x := random real number in the range [0,1)
if (x<r) then begin

S := T
if (like(S)>best like) then begin

best like := like(S)
best state := S

end
end

end

Our approach to picking the new state T allows for both coarse and fine search simultaneously,

which is critical to making a working algorithm. We do the following:

x := random real number in the range [0,1)
i := random integer between 1 and 3
let u and v be integers chosen randomly from the set {-1,0,+1}

so that either u or v is 0 and the other value is nonzero
T := S
if (x < 0.5) then begin

T.p[i] := (T.p[i] + u) mod n
T.q[i] := (T.q[i] + v) mod n

end
else begin

T.x[i] := (T.x[i] + u) mod m
T.y[i] := (T.y[i] + v) mod m

end

105

If the test (x < 0.5) is true then p[i] and q[i] are modified and coarse-level search is per-

formed; otherwise x[i] and y[i] are modified and fine-level search is performed. To help avoid

getting trapped in a local maximum, the new state T can occasionally be chosen from the state

space at random; adding this step also makes it clear that the state space is fully connected as re-

quired by MCMC algorithms. In theory, of course, the resolution of each grid could be increased to

make coarse-level search the equivalent of fine-level search; however, time and memory constraints

prevent the manifold grids from having arbitrary resolution.

The main loop is repeated for a set number of iterations or until a state has been found that

is sufficiently close to a mutual intersection point. By the end of the iterations, a “best state” has

been determined. This state represents three positions, one on each manifold, and each position is

within a particular triangle (Fig. 5.4). Thus to finish the algorithm, the mutual intersection point

of the three triangles is found. If there is no mutual intersection point (i.e., none contained within

all three triangles) then the algorithm has failed and can be restarted with a new random state.

If the three triangles do have a mutual intersection point, then the algorithm has succeeded. To

further refine the result, a “zoom-in step” could be performed (where the algorithm is repeated on

a finer grid centered around the approximate mutual intersection point). In our experiments, such a

zoom-in step has proven unnecessary; the piecewise-linear approximation to the screw-transform

manifold that each grid represents is sufficiently good that make working at higher resolution is

unnecessary.

The algorithm contains several parameters that must be chosen by experimentation. These

factors are µ, n, m, the number of iterations, the likelihood of choosing T at random, and the

balance factor between coarse and fine search. Our experiments typically have used values of

µ = 1, n = 50, m = 100, and an equal balance between coarse and fine search; see Section 6.2.5

for a discussion on the number of MCMC iterations to perform.

The MCMC approach can be easily modified to work with Kruppa-constraint manifolds. Since

Kruppa-constraint manifolds are 3-dimensional, the state space requires two extra parameters per

manifold (one for coarse-level search and the other for fine-level search). The new states have the

106

form:

(p1, q1, r1, x1, y1, z1; p2, q2, r2, x2, y2, z2; p3, q3, r3, x3, y3, z3)

where all entries are integers and pi, qi, ri ∈ [1, n] and xi, yi, zi ∈ [0, m − 1] for some m. The

algorithm works in the same way as described above with the obvious modifications required by

the extra parameters. The final “best state” found by the algorithm will represent one position

on each manifold, and each position will lie within a tetrahedron rather than a triangle. In the 5-

dimensional search space, the three tetrahedrons will intersect in a single point which will be one of

the mutual intersection points of the three manifolds or a close approximation. If the tetrahedrons

do not intersect, the algorithm is restarted with a new random starting state.

Note that if the manifolds intersect in more than one place the algorithm will only return one

such mutual intersection point; this was also true of the voting algorithm (Section 5.2). Exper-

imental evidence suggests that three modulus-constraint manifolds will usually intersect in 1 or

2 locations (see Section 6.1.5). Thus the algorithm may need to be rerun until two intersection

points have been found. This represents an obvious inefficiency; a strength of the surface-fitting

algorithm (Section 5.1) is that it finds all mutual intersection points in a single pass.

107

Chapter 6

Experimental Evaluation of Self Calibration from Screw-Transform
Manifolds

6.1 Experimental results for the surface-fitting algorithm

Experiments using both real and simulated data were performed to answer the following ques-

tions about the surface-fitting algorithm (SURFIT) of Section 5.1:

(1) Does the algorithm work with noise-free data (i.e., is the mathematics of screw-transform

manifolds correct and can surface fitting be used to find the required mutual-intersection

point of the manifolds)? How does performance degrade as noise increases?

(2) How fast does the algorithm run?

(3) Does the use of more than three views improve results? By how much?

(4) How many points are contained in the mutual intersection of three screw-transform mani-

folds in a-space?

(5) Does the method work with views taken by a real camera (which does not necessarily follow

a pinhole model)? How do the reconstructions look?

For an explanation of why the fourth question is important, see the discussion in Section 6.3.

The questions above are answered with respect to SURFIT in Sections 6.1.2–6.1.6. Similar

questions with respect to the MCMC-based algorithm of Section 5.3 are answered in Section 6.2;

for experimental results of the voting algorithm of Section 5.2, see Manning and Dyer [103].

108

Before presenting the SURFIT experimental results, we discuss in Section 6.1.1 how the synthetic

data sets were generated, introduce the error measure used in the experiments, and introduce a

nomenclature for describing each synthetic data set.

6.1.1 The synthetic data sets and their nomenclature

Many experiments were performed using randomly-generated, synthetic data sets. A typical

data set was created as follows: First an internal calibration matrix K was generated randomly

within realistic ranges for each parameter. The following Matlab-style pseudocode shows specifi-

cally how K was generated:

%% NOTE: randpm() returns a random number in the range [-1,1];
%% simulated image size contains dimensions of simulated image in pixels
K(1,1)=1+randpm()*0.2;
K(2,2)=K(1,1)+randpm()*1.0/20; %% make pixel height similar to width
%% lens width factor=0.2; %% "wide lens"
lens width factor=0.6; %% "medium lens"
K(1,1)*=lens width factor;
K(2,2)*=lens width factor;
K(1,2)=randpm()*1.0/25; %% skew factor
K(1,3)=0.5+randpm()*0.15; %% \ make principal point near middle
K(2,3)=0.5+randpm()*0.15; %% / of image, +/-15% in each dimension
K(3,3)=1;
K(2,1)=K(3,1)=K(3,2)=0;
K=[simulated image size.x,0,0; 0,simulated image size.y,0; 0,0,1]*K;

Next, an object consisting of 2 perpendicular squares with feature points uniformly spread across

the squares was created and a series of cameras, all with the same internal calibration K, were

placed randomly so that each was able to view every feature point on the object. See Fig. 6.1 for a

sample scene and Fig. 6.2 for a sample camera view. All simulated views were 1000×1000 pixels.

To answer the first question, we must have a way of quantifying how well a self-calibration

algorithm works. We do this by measuring the distance between the internal calibration matrix K′

calculated by the algorithm and the true internal calibration matrix K, which the algorithm should

ideally have determined. For a distance metric, we use the Frobenius norm as is widely done in

self-calibration literature:

error(K,K′) = frob(K/frob(K) − K′/frob(K′))

109

Figure 6.1 Example of a randomly-generated synthetic scene. On the left is the scene object and
on the right are three cameras viewing the scene.

Figure 6.2 A typical camera view of a synthetic scene. View is 1000 × 1000 pixels; the box
indicates the boundary of the view. Note that the object does not span the full view, making
accurate calculation of the fundamental matrix more difficult.

110

SYNTHETIC DATA SETS

FIGURE SIGNATURE(S)

Fig. 6.3 〈 1160, 4, 2, 50, 50, 170, wide 〉

Fig. 6.4
〈 591, 4, [0, 2], 50, 50, 170, wide 〉

〈 611, 4, [0, 2], 50, 50, 240, medium 〉
〈 434, 5, [0, 2], 50, 50, 170, wide 〉

Fig. 6.5
〈 1160, 4, [0, 4], 50, 50, 170, wide 〉

〈 1200, 4, [0, 4], 50, 50, 240, medium 〉
〈 855, 5, [0, 4], 50, 50, 170, wide 〉

Fig. 6.6 〈 1160, 4, [0, 4], 50, 50, 170, wide 〉

Fig. 6.7 〈 204, 3, 0, 300, 100, 170, medium 〉

Fig. 6.8
〈 204, 3, 0, 300, 100, 170, medium 〉
〈 415, 3, 0, 20, 100, 170, medium 〉
〈 378, 3, 0, 100, 10, 170, medium 〉

Table 6.1 Description of each synthetic data set used in the experiments of Section 6.1.

111

where the Frobenius norm is defined as

frob(




a b c

d e f

g h i


) = (a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2 + i2)1/2

The exact significance of this error measure is difficult to specify. Clearly, if the error is 0 then per-

fect results have been achieved. However, it is unclear how to interpret small errors. For instance,

if scene reconstruction is the ultimate goal then a qualitatively-good reconstruction can often be

achieved even if the Frobenius error is large. This is because other factors are also important: the

baseline distance between views, the amount of rotation between pairs of cameras, and the num-

ber of views being used (which stabilizes triangulation). As a rule of thumb, a Frobenius error of

0.001 usually means very good reconstruction results, although as was just indicated, larger errors

in internal calibration can still yield excellent reconstructions.

Each data set is described by 7 terms

〈 ntrials, nviews, noise, nka, nth, object width, { wide | medium } viewing angle 〉

which have the following meaning:

ntrials: number of random trials contained in the data set

nviews: number of cameras used

noise: uniform noise, in pixels, added to each feature point as viewed on each camera’s image

plane; “d pixels of uniform” noise means each feature point was displaced in both the x and y

direction by any amount between −d and +d pixels with equal likelihood; note that this means

each feature might be displaced by up to d
√

2 pixels from its true location; sometimes noise will

be given as a range [m, M], which means that for each trial a random r ∈ [m, M] was chosen and

then uniform, random noise of radius r was added to each feature; thus different trials could have

different levels of noise within the same data set

112

nka, nth: dimensions of the approximate surface (i.e., the grid) that is fit to each screw-transform

manifold; in the pseudocode at the start of Section 5.1, these are the dimensions of the array grid;

nka and nth correspond to the κ and θ directions, respectively

object width: measure of how much of the image plane was spanned by the object being viewed;

when “object width” for a data set is w, this means the object had a “width” of at least w pixels on

the image plane of each camera in the data set for each trial (but might have had a greater width);

the specific measure of the object’s width for a single view was the standard deviation of all feature

points on the camera’s image plane

viewing angle: our experiments used two rough measures of viewing angle, called “wide” and

“medium”; the exact meaning of these terms is given by the pseudocode at the beginning of this

section, but roughly the “wide” viewing angle was close to 150◦ while the “medium” viewing angle

was close to 90◦

Table 6.1 gives the signatures for every synthetic data set used in the experiments of this sec-

tion, listed by which figure they were used in. As an example, the data set used to generate Fig.

6.3 has the signature 〈 1160, 4, 2, 50, 50, 170, wide 〉. This signature means 1160 randomly-

generated trials were performed, each having 4 cameras with “wide” viewing angles, 2 pixels of

uniform noise, and a medium-size (170 pixels) minimum retinal object width. Furthermore, the

approximate surfaces that were fit to each manifold were 50 × 50 grids; the full range of both κ

and θ were uniformly sampled at 50 locations each.

Since the self-calibration algorithms of this paper operate directly from fundamental matrices,

the calculation of the fundamental matrices is crucial. We used the standard, normalized-linear

method [73] so our results should be easy to reproduce. There are improved, nonlinear methods

for calculating fundamental matrices (see [70]) and using these may improve the performance of

our calibration algorithms.

113

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.01 0.02 0.03 0.04 0.05

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

DISTRIBUTION OF ERROR

4 views, 2 pixels noise

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.002 0.004 0.006 0.008 0.01

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

ERROR DISTRIBUTION

4 views, wide lens, medium object
4 views, medium lens, large object
5 views, wide lens, medium object

Figure 6.3 Error distribution for the sur-
face-fitting algorithm applied to synthetic
data with noise radius 2 pixels. See Table 6.1
for a full description of the data set.

Figure 6.4 Comparison of error distributions
for several different data sets (see Table 6.1
for detailed descriptions).

6.1.2 Answer to question 1: Algorithm correctness

The first question is answered by the graphs in Figs. 6.3–6.5. Fig. 6.5 shows error decreasing

towards 0 as noise decreases towards 0, indicating that the surface-fitting algorithm would work

perfectly in the absence of noise. Also from this graph we see that noise can reach almost 2.4

pixels before error rises above 0.001 in the 5 camera, wide-view case, indicating that the surface-

fitting algorithm performs very well even in the presence of noise.

The other two figures were generated from noisy data sets; the noise radius for Fig. 6.3 was

fixed at 2 pixels, while that for Fig. 6.4 varied from 0 to 2 pixels. These histograms show the vast

majority of trials having very small error, again demonstrating that the surface-fitting algorithm

performs well in the presence of noise.

6.1.3 Answer to question 2: Algorithm speed

The surface-fitting algorithm has two distinct phases: projective reconstruction followed by

calibration. The projective-reconstruction phase is not a part of our research and we do not include

its timing here. Our implementation performs a simple, brute-force search in order to find an initial

projective reconstruction that is reasonably “round.” The search process can be very slow (on the

114

order of 30 seconds to 2 minutes). It is our understanding that closed-form solutions exist for this

problem that execute almost instantaneously.

After the initial projective reconstruction has been found, the second phase of calibration in-

volves upgrading the reconstruction to affine and then metric. Upgrading from affine to metric has

a closed-form solution and can be performed instantaneously [68, 132]. The surface-fitting algo-

rithm being tested in this section concerns the first part of the problem: upgrading the projective

reconstruction to affine. The algorithm uses three fundamental matrices at a time in a RANSAC pro-

cess (see Section 5.1). The total running time of the algorithm depends on how many iterations of

RANSAC are performed. RANSAC can continue until: (1) a certain error level has been reached, (2)

every possible triplet of fundamental matrices has been chosen from the initial set, or (3) enough

triplets have been chosen for a particular probability of success to be achieved (meaning it is likely

that a triplet of “good” or “inlying” fundamental matrices have been chosen, leading to a good

calibration).

Since the RANSAC process involves an indeterminate number of iterations, we time the algo-

rithm by timing how long each RANSAC iteration takes. A histogram of per-iteration run times is

given in Fig. 6.6. This histogram shows that typical iterations take 0.25-0.75 seconds. When 4

camera views are used for calibration, there are at most 4C2 = 6 fundamental matrices and at most

6C3 = 20 iterations of RANSAC. One could thus expect a runtime of 5-15 seconds. This calculation

does not take into account the fact that sometimes iterations take significantly more than 1 second

to execute.

The surface-fitting algorithm also requires a preprocessing step. Namely, for each fundamental

matrix there is a corresponding screw-transform manifold and each such manifold must have a

surface fitted to it. The surface-fitting process runs in a fixed time dependent on the desired resolu-

tion of the surface, because each manifold sample point takes a fixed amount of time to calculate.

Our implementation running on a Sun Ultra Sparc required 5.033 × 10−4 seconds mean time to

compute each grid point, so approximate surfaces with a 50 × 50 resolution, which were used in

most experiments, required 1.258 seconds per surface. This time could be improved: A surface is

generated by fixing a value of κ then iterating over all θ before moving to the next value of κ. The

115

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
E

D
IA

N
 E

R
R

O
R

 (F
ro

be
ni

us
)

NOISE (pixels)

MEDIAN ERROR VS. NOISE

4 views, wide lens, medium object
4 views, medium lens, large object
5 views, wide lens, medium object

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1 2 3 4 5 6

FR
A

C
TI

O
N

 O
F

TR
IA

LS

TIME (sec/iteration)

TIME PER RANSAC ITERATION

4 views, wide lens, medium object

Figure 6.5 Relationship between noise and
error in three different data sets.

Figure 6.6 Distribution of run times.

calculations involving a particular κ could be performed once and then only those calculations in-

volving θ would need to be performed during the inner loop. For example, steps (1)-(4) and much

of step (5) in Algorithm A–1 (Fig. 4.2) can be performed without knowledge of θ. Our timings,

however, do not include such efficiencies and are thus slower than they could be.

6.1.4 Answer to question 3: Advantage of extra views

Does the use of more views improve calibration? This question is answered by Fig. 6.5. To

generate this graph, hundreds of trials were run each with a different noise radius chosen randomly

between 0 and 4 pixels. The data sets were specifically:

〈 1160, 4, [0, 4], 50, 50, 170, wide 〉
〈 1200, 4, [0, 4], 50, 50, 240, medium 〉
〈 855, 5, [0, 4], 50, 50, 170, wide 〉

Notice that 2 data sets used 4 views and 1 set used 5 views. The 4-view data sets differ in camera

viewing angle and retinal object size. The data was then plotted as follows: for a given data set,

every trial that had a noise radius between 0 and 0.5 pixels was identified and then the median error

for this subset was calculated. This median error was plotted with an x-coordinate of (0+0.5)/2 =

0.25 pixels and the process was repeated for noise radii in the range 0.5 to 1.0 pixels, 1.0 to 1.5

pixels, and so on.

116

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8 10

FR
A

C
TI

O
N

 O
F

TR
IA

LS

MUTUAL INTERSECTION POINTS

DISTRIBUTION OF MUTUAL INTERSECTION POINTS

300 Ka, 100 Th

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8 10

FR
A

C
TI

O
N

 O
F

TR
IA

LS

MUTUAL INTERSECTION POINTS

DISTRIBUTION OF INTERSECTION POINTS FOR VARYING GRANULARITIES

300 Ka, 100 Th
 20 Ka, 100 Th
100 Ka, 10 Th

Figure 6.7 Distribution of the number of
mutual intersection points of three modu-
lus-constraint manifolds.

Figure 6.8 Distribution of mutual intersec-
tion points for modulus-constraint manifolds
of differing granularities.

The resulting graph shows the following: First, as was already noted in Section 6.1.2, it shows

that error decreases towards 0 as noise decreases towards 0. Second, it shows that using 5 views

produces notably better results than using 4 views, ceteris paribus. Finally, it shows that using a

wide field of view greatly lowers the error from using a medium-size field of view.

The last observation is significant because a wide field of view is rarely used in calibration and

reconstruction in general (and yet apparently it should be). We believe the improvement arises

because the fundamental matrix calculation becomes more stable as the field of view increases,

and our calibration technique is entirely dependent upon fundamental matrices.

6.1.5 Answer to question 4: Number of mutual intersection points

Question 4 is answered by Fig. 6.7 and Fig. 6.8. The first figure shows the distribution of

the number of mutual intersection points found during each trial of a data set with signature

〈 204, 3, 0, 300, 100, 170, medium 〉. Approximately 85% of trials had either 1 or 2 mutual

intersection points. Roughly 2% found no intersection points; this was probably due to the fi-

nite granularity of the surfaces that were fitted to each manifold. Few trials showed more than

three mutual intersection points. These results suggest to us that the three-view self calibration

problem has either 1 or 2 solutions for cameras in general arrangement. Under this interpretation,

117

results showing 0 or 3 or more intersections are errors arising from the approximate surface-fitting

technique.

The second graph shows how the granularity of the fitted surface affects the number of mutual

intersection points found. The term “granularity” here means how many different values of κ and

θ were used to generate the approximate surface; using more values means a better approximation,

but also means a longer runtime and more memory consumption. For example, a granularity of

“100 Th” means 100 values uniformly spaced in the domain [−π, π] were used for θ. The domain

of κ is [0, 1] for the mapping described in Appendix B.2. In the figure, the solid line corresponds

to the data used in the previous figure (Fig. 6.7) and represents the highest granularity tested. The

other two lines show the effect of reducing the granularity of κ and θ independently. The results

were somewhat worse when θ had a low granularity.

In general, the results are consistent regardless of the granularity, showing a spike at 1 and

2 mutual intersection points. For the two data sets with lower granularities, the spikes in the

histograms are diminished as would be expected.

6.1.6 Answer to question 5: Performance with real cameras

In this subsection, we discuss the results of two experiments performed with real cameras.

The goal of the first experiment was to acquire extremely high-quality data using a real camera in

order to test how well our self-calibration and reconstruction algorithms would perform under ideal

circumstances. The second experiment tested our algorithms with a more realistic and cluttered

scene.

6.1.6.1 Experiment 1: High-quality data

To make a high-quality data set, we created a calibration object from a cardboard box by

removing sides from the box until only three walls remained, all meeting at a single vertex. We

covered the inside faces of these walls with a dot pattern printed on a laser printer (see Fig. 6.9).

In order to establish a separate, 2-dimensional coordinate system for the dots on each face, three

dots on each face were given a unique appearance; these dots served as the positions (0, 0), (1, 0),

118

and (0, 1) in local coordinates. The remaining dots on each face represented lattice points in the

local coordinate system. A set of six photographs of the box was taken using a camera with fixed

internal parameters and minimal radial lens distortion. The photographs were taken from different

positions and orientations, but most of each face was visible in each photo.

Once the views were captured, the center of each dot was determined automatically. Because

lighting was not uniform across the faces, a manual preprocessing step was performed to equalize

the appearance of dark and light regions (i.e., the black dots and white paper) before extracting the

dot centers. Also, the three faces were manually partitioned from each other in each view in order

to identify which face each dot belonged to. The center of mass of each dot as it appeared in each

view was used to approximate the projection of the dot’s true center into that view; see [149] for

another use of this approximation.

Thus every dot was assigned three identifying coordinates in each view. The first coordinate

indicated which of the three faces the dot belonged to and the second and third coordinate were

the dot’s x and y positions on that face in the local coordinate system. Note that the same dot

will be assigned the same three coordinates in each view. In this way, point correspondences

were automatically determined between each of the six views. There were several hundred point

correspondences between any two views and the correspondences covered the complete field-of-

view of the camera; these two facts together made ideal circumstances for calculating pairwise

fundamental matrices.

Once the fundamental matrices were calculated, self calibration and reconstruction could be

performed. The following three calibration methods were tested on this data: direct self calibra-

tion using the voting scheme [103], stratified self calibration using the voting scheme [104], and

stratified self calibration using the surface-fitting technique described in this paper. The results

in each case were essentially identical, indicating the extreme high quality and low noise of this

data set. The reconstructions appear to be near perfect, with each face perpendicular to the other

two, each feature on each face lying in nearly the same plane, and features on each face forming

orthonormal lattice grids (Fig. 6.10). For the voting algorithms, all six of the camera views were

used to perform calibration; for the surface-fitting algorithm, only three were used.

119

Figure 6.9 Photo of calibration box.

Figure 6.10 Reconstructed calibration box. On the right is an orthographic, overhead view showing
the regularity of the dot pattern on the reconstructed surface.

120

Note that our analysis of the experimental results presented above is empirical rather than

analytical. That is, we are interested in describing the apparent visual quality of the results rather

than comparing the results to physical measurements of the original scene and camera. There are

two reasons for this:

First, the only way to know the “true” internal calibration of the camera is to calibrate the

camera using an alternative calibration technique. However, any alternative technique would still

have to contend with noisy data and would ultimately produce only an approximation of the “true”

internal calibration. Furthermore, the camera used in the experiments was not a pinhole camera

and thus there was no “true” internal calibration matrix for this camera to begin with. At best,

an analytical analysis of the self-calibration results would only compare one approximation with

another.

Second and more importantly, our self-calibration algorithms have already been thoroughly

tested with synthetic data to determine their capacity for finding correct internal calibrations. We

know from these experiments that the algorithms can determine the true internal calibration of a

pinhole camera to an arbitrary degree of precision provided the input data is sufficiently accurate.

The data generated by the calibration box experiment is very good, verging on synthetic, and thus

could only serve to reinforce the results from our synthetic-data experiments. In real applications,

the input data would be of much lower quality: the feature points would not be determined with

such subpixel accuracy, there would be fewer feature points, and the features would not cover the

complete camera view.

6.1.6.2 Experiment 2: Realistic scene

For the second experiment, we used a scene with more-natural objects than the calibration box

in Experiment 1. The scene consisted of three objects placed on a mostly-flat, patterned rug on a

flat floor, in front of a flat wall perpendicular to the floor (Fig. 6.11). The objects were chosen for

their shape, color, and texture.

121

The first object was a cardboard box,1 chosen because its two visible walls should appear per-

pendicular to each other and to the ground in the reconstruction. Also, the features on these walls,

as on all the flat surfaces, should be coplanar in the final reconstruction; this is a measure of the

quality of the feature correspondences independent of the correctness of the metric reconstruction

since coplanar points will remain coplanar in any projective reconstruction. Note that the cardboard

box has matte surface-reflectance properties and limited surface texture for point correspondences.

The second object was an inflatable plastic globe. The shape of the globe is mostly spherical;

however, viewed from overhead (i.e., looking down on the North Pole) the globe has a rounded

hexagonal cross section. The plastic surface of the globe is fairly reflective, potentially introducing

correspondence problems.

The third object was a furry toy monster. This object has a complicated, anthropoid shape

without being overly-detailed and thus was good for testing the capabilities of the reconstruction.

Furthermore, the furry surface texture provided a challenge for determining point correspondences.

Only the SURFIT calibration algorithm was tested on this data set. The algorithm was applied

using only three views (Fig. 6.11), and the three chosen views were closely positioned in space

making the calibration and reconstruction task more difficult due to small baselines and small

rotation angles. Reconstruction results are shown in Fig. 6.11. Our algorithm returned only a

single internal calibration, and this was the calibration used for the reconstructions.

Note that the walls of the cardboard box are close to perpendicular and the sphere is spheri-

cal. The toy monster also has the correct anthropoid shape, although many more feature points

would be necessary to produce a realistic reconstruction (e.g., the two horns are lacking). Note

in particular the correct chin and brow ridges, and the distinct, rounded legs. The flat floor and

back wall are very planar in the reconstruction, indicating the highly-quality of the feature point

correspondences.

However, there are problems. The back wall is not perpendicular to the floor and the texture on

the rug is not uniformly proportioned (i.e., the texture appears larger in some regions than others

even though it is uniform on the original rug). These problems are almost certainly due to the close

1In fact, the box was the back of the box from in Experiment 1.

122

Figure 6.11 A scene reconstructed from three closely-spaced reference views (inset).

123

spacing of the original views. For example, a reconstruction in which the wall was perpendicular to

the floor would probably have fit the given input data only as well as the reconstruction produced

by our algorithm; from where the cameras are, it is impossible to determine if the back wall is

slanted or perpendicular to the floor, given the noise in the data. On the other hand, if one of the

cameras had been positioned to view the wall and floor more “edge on” then it would have been

more evident to the algorithm (in the given data) that the wall and floor were perpendicular. This is

an important, recurring problem in scene reconstruction: when there is noise in the data, incorrect

reconstructions can fit the data as well as the correct reconstruction.

From a practical standpoint, a more important problem stems from the fact that the objects are

viewed from only one side and thus can only be reconstructed in a very limited fashion. Views from

many different angles would have been necessary to produce a complete scene reconstruction (and

even then some parts of the scene would not be adequately visible, like parts of the objects near the

floor). Trying to reconstruct scenes using widely-separated views introduces new problems due to

accumulation of errors and the difficulty in finding point correspondences over wide baselines; see

the SMILE workshops [90, 135], which were dedicated to this topic.

Note that, once the full camera calibrations (including position and orientation) have been

determined by our algorithm, it is possible to use a wide variety of techniques to visualize the

scene in a more-complete manner. An important class of visualization techniques besides scene

reconstruction are light field [96] or lumigraph [63] techniques. Light-field rendering requires

a dense set of views with full camera calibration for each view; no point correspondences are

required (or recovered) and no scene reconstruction is performed. Starting with a dense set of

views, self-calibration techniques can be used to recover camera calibration for each view after

which light-field rendering becomes possible (see [75, 130] for an example of this approach).

Alternatively, knowledge of camera calibration can be used in conjunction with view interpo-

lation techniques [181, 26, 190, 153, 110] to produce virtual camera views transitioning between

original reference views under the control of an end user. Such interpolation techniques work by

directly manipulating the original input images and thus can potentially produce more detailed-

looking output than scene reconstruction (because all the detail visible in the original views is still

124

more-or-less present in the interpolated views, up to the quality and density of the feature corre-

spondences). Dynamic view morphing [108] in particular requires affine camera calibration when

three or more moving objects are present.

Finally, knowledge of camera calibration makes scene reconstruction possible. Space carving

[93] and voxel coloring [154] use full camera calibration to find dense correspondences between

camera views, building a voxelized scene reconstruction as a side effect. The dense-correspon-

dence-finding algorithm of Koch [89] also requires full camera calibration. Once dense correspon-

dences have been determined, detailed scene reconstruction can be performed in a variety of ways,

usually producing a triangle mesh as output. The “Facade” system [31] utilizes full camera calibra-

tion along with user interaction to create scene reconstructions. View interpolation techniques and

texture-mapped scene reconstructions can both benefit from the view-dependent texture mapping

used in Facade, and camera calibration is required for view-dependent texture mapping.

6.1.7 Implementation details

To complete our discussion of experimental results for the SURFIT algorithm, we need to dis-

cuss several important implementation details. These details are also relevant to the experimental

results for the MCMC-based algorithm presented in Section 6.2.

6.1.7.1 Measuring the goodness of a mutual intersection point

Each experimental trial involves performing a series of RANSAC iterations. For each RANSAC

iteration, a number of mutual intersection points are determined by the SURFIT algorithm; in the

case of the MCMC-based algorithm, one or zero mutual intersection points are determined. Each

mutual intersection point is converted into an internal calibration matrix K, which is then assigned

a number indicating how well K meets certain expected criteria for an internal calibration. We

will call this the goodness of the mutual intersection point. As successive RANSAC iterations are

performed, the calibration algorithm remembers which mutual intersection point had the highest

goodness score so far. When all iterations have been performed, the intersection point with the

highest goodness is considered the best answer and the calibration corresponding to this point is

125

returned by the algorithm. Thus how the “goodness” of a mutual intersection point is measured

is an important implementation detail. Note that one can think of goodness as an error measure;

however, we are using the term “goodness” instead of “error” because error can only be measured

if the correct solution is known a priori. In this sense, the relationship between error and goodness

is like the relationship between probability and likelihood.

Our measure of goodness involved two components. Let q be a mutual intersection point and

let K be the corresponding internal calibration. The first goodness criterion was that K must be

reasonable for a real camera. Specifically, we required that

0.85 < K(11)/K(22) < 1.15 (6.1)

0.35 < K(13)/w < 0.65 and 0.35 < K(23)/h < 0.65 (6.2)

where h and w denote the height and width of the camera view in pixels. The first condition

(Eq. 6.1) specifies that the camera must have somewhat rhomboid pixels (rather than arbitrary

parallelogram-shaped pixels). The second condition (Eq. 6.2) indicates that the principal point

must be somewhat central to the view. Both of these test are lenient; if more information were

known about the expected internal calibration of the camera, these tests could be made tighter.

When K did not meet these basic criteria, our implementation gave q a very poor goodness score

(by adding a large penalty).

The second criterion of goodness was based on the following: The point q can be used to

recover the H∞ matrix between each pair of camera views using Eq. 4.9, with q in place of a. By

the left-hand sides of both Eq. 4.7 and Eq. 4.8,

K−1H∞

ij(q)K ∼= Rij (6.3)

for some rotation matrix Rij. If the correct internal calibration was found and all data was noise

free, then the following holds:

0 =
∑

ij

frob(I − Rij(Rij)
>) (6.4)

126

where the sum is over all pairs of views i and j for which a fundamental matrix was provided. Eq.

6.4 uses the fact that rotation matrices are orthogonal. The left-hand side of Eq. 6.3 must be scaled

properly before using Eq. 6.4; in particular, its determinant must become 1 after scaling.

How close the sum in Eq. 6.4 was to 0 was the second criteria of goodness we used. Essentially,

the sum in Eq. 6.4 was used as the main error measure for each candidate internal calibration, and

those calibrations that did not meet the first criteria had a severe penalty. In this way, a single

number measuring the “goodness” of each mutual intersection point was produced.

Pollefeys [130] used a different measure of goodness. In his experiments, the goodness of a

candidate internal calibration K was based on how well K met expectations about its form. In

particular, K was expected to represent a camera with square pixels and a principal point in the

center of the view. The candidate solution that was closest to the expected form would have the

highest goodness and would be returned as the final answer. This contrasts with the technique given

above, in which goodness is based on how well a candidate calibration induces rotation matrices

between pairs of views, and the expected form of internal calibration is used only to eliminate

solutions that do not represent reasonable cameras. Our approach allows recovery of cameras that

have pixels of unknown (but reasonable) shape, for instance, without assuming the pixels have a

particular aspect ratio.

6.1.7.2 Normalizing the search space

Screw-transform manifolds provide an explicit representation of the set of legal camera cali-

brations corresponding to particular fundamental matrices, in contrast to, for example, the Kruppa

constraints or the modulus constraint which provide implicit representations. An important benefit

of having an explicit representation is that it becomes possible to normalize the search space to

provide maximum separation (in the metric of the search space) between alternative solutions to

calibration.

Consider Fig. 5.1, which shows three modulus-constraint manifolds in a-space. Before trying

to find the mutual intersection points of a triplet of manifolds like these, our implementation first

127

fits a plane to each manifold and then transforms the search space so that the three fitted planes cor-

responded to the (x, y)-plane, the (x, z)-plane, and the (y, z)-plane. In this way, the three manifolds

are made very distinct from each other. After transformation, the mutual intersection points lie in

the vicinity of the origin while the outer reaches of each manifold are maximally separated. The

basis for this idea is the empirical observation that, as in Fig. 5.1, each manifold consists of two

broad, flat outer regions surrounding a small, curved inner region, and in general each manifold

runs roughly in two directions rather than all three of a-space.

Our particular technique for transforming the search space is to create a cloud of points by

uniformly sampling the lattice points from each of the three approximate manifolds and then find

the principle components of this cloud. There will be three principle components because a-space

has three dimensions. The search space is normalized by (1) translating the center of mass of the

cloud of points to the origin, (2) mapping the three principle components to the unit x, y, and z

vectors, and (3) stretching the space so that the standard deviation of the cloud of points in the

direction of each principle component is 1. Because each manifold has an approximately planar

shape, this simple technique will meet the objectives of normalization stated earlier.

Normalizing the search space as described in this section was performed for all experiments

in both Section 6.1 and Section 6.2. For the SURFIT algorithm, normalization makes the use of

bounding boxes meaningful and could help stabilize the triangle-intersection tests. For the MCMC

algorithm, normalization is crucial because it ensures the distance between sample points that are

not close to a mutual intersection point is large.

6.2 Experimental results for the MCMC-based algorithm

This section discusses the results of self-calibration experiments performed using the MCMC-

based manifold-intersection algorithm (Section 5.3). The following questions were addressed by

the experiments:

(1) Does the algorithm work with noise-free data (i.e., is the algorithm correct)? How does

performance degrade as noise increases?

128

(2) How fast does the algorithm run?

(3) Does the use of more than three views improve results? By how much?

(4) How many MCMC-iterations and how many RANSAC-iterations should the algorithm per-

form?

(5) How does the MCMC-based algorithm compare to the surface-fitting algorithm?

When interpreting the results of this section, note that the implementation details given in

Section 6.1.7 for the SURFIT algorithm also apply to the MCMC-based algorithm.

6.2.1 The synthetic data sets and their nomenclature

As in Section 6.1, many experiments using randomly-generated, synthetic data sets were per-

formed. The nomenclature for these sets is the same as in Section 6.1.1 except that two additional

data fields are required to store parameters specific to the MCMC-based algorithm:

mcmc iterations: number of iterations of the MCMC loop performed during each RANSAC iteration

before returning the best answer found

ransac iterations: number of iterations of the RANSAC loop performed during each experimental

trial

Thus each data set is described by 9 terms

〈 ntrials, nviews, noise, nka, nth, object width,

{ wide | medium } viewing angle, mcmc iterations, ransac iterations 〉

Table 6.2 gives the signatures for every synthetic data set used in the experiments of this sec-

tion, listed by which figure they are used in. All other comments from Section 6.1.1 apply to the

experiments in this section as well.

129

SYNTHETIC DATA SETS

FIGURE SIGNATURE(S)

Fig. 6.12

〈 1580, 3, [0, 4], 50, 50, 170, wide, 100000, 50 〉
〈 1020, 4, [0, 4], 50, 50, 170, wide, 100000, 50 〉
〈 1700, 5, [0, 4], 50, 50, 170, wide, 100000, 50 〉
〈 1680, 6, [0, 4], 50, 50, 170, wide, 100000, 50 〉

Fig. 6.13 〈 1020, 4, [0, 4], 50, 50, 170, wide, 100000, 50 〉
〈 1160, 4, [0, 4], 50, 50, 170, wide 〉

Fig. 6.15 〈 360, 3, 0, 50, 50, 170, wide, 100000, 100 〉

Fig. 6.16 〈 432, 4, 0, 50, 50, 170, wide, 100000, 100 〉

Fig. 6.17

〈 260, 4, 0, 50, 50, 170, wide, 5000, 30 〉
〈 260, 4, 0, 50, 50, 170, wide, 10000, 30 〉
〈 260, 4, 0, 50, 50, 170, wide, 50000, 30 〉
〈 260, 4, 0, 50, 50, 170, wide, 100000, 30 〉
〈 260, 4, 0, 50, 50, 170, wide, 200000, 30 〉

Fig. 6.18

〈 260, 4, 0, 50, 50, 170, wide, 100000, 5 〉
〈 260, 4, 0, 50, 50, 170, wide, 100000, 10 〉
〈 260, 4, 0, 50, 50, 170, wide, 100000, 30 〉
〈 260, 4, 0, 50, 50, 170, wide, 100000, 50 〉
〈 260, 4, 0, 50, 50, 170, wide, 100000, 100 〉

Table 6.2 Description of each synthetic data set used in the experiments of Section 6.2.

130

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
E

D
IA

N
 E

R
R

O
R

 (F
ro

be
ni

us
)

NOISE (pixels)

MEDIAN ERROR VS. NOISE

3 views, wide lens, medium object
4 views, wide lens, medium object
5 views, wide lens, medium object
6 views, wide lens, medium object

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
E

D
IA

N
 E

R
R

O
R

 (F
ro

be
ni

us
)

NOISE (pixels)

MEDIAN ERROR VS. NOISE

surfit, 4 views, wide lens, medium object
mcmc, 4 views, wide lens, medium object

Figure 6.12 Relationship between noise and
error in four different data sets

Figure 6.13 Direct comparison between
SURFIT and MCMC-based algorithms.

6.2.2 Answer to question 1: Algorithm correctness

The question of whether the mathematics of screw-transform manifolds is correct and can be

used for self calibration was answered by the experiments in Section 6.1.2. The graph in Fig. 6.12

showing error converging to 0 as noise goes to 0 also implies the correctness of the mathematical

theory.

The question of whether the MCMC-based intersection algorithm can be used to locate the

mutual-intersection point of several screw-transform manifolds is answered both by the conver-

gence seen in Fig. 6.12 and also by the histograms in Figs. 6.15–6.16. The histograms demonstrate

that, in the absence of noise, the mutual-intersection point can be found by the MCMC-based algo-

rithm with a high-probability of success. Results from further noise-free experiments are shown in

Fig. 6.14, which demonstrate that as the granularity of each approximate surface increases (making

the surfaces less and less approximate) the algorithm finds the correct answer more often. With a

high granularity, the algorithm finds the correct answer about 98% of the time (Fig. 6.14(right)).

Note that the histogram in Fig. 6.15 may seem to suggest that there is only one mutual-

intersection point for three screw-transform manifolds, but this is misleading. If, for instance,

there were 2 mutual-intersection points then the MCMC-based algorithm would only return 1 of the

two intersection points and the success rate would be less than 50% (unless, due to some unknown

property of the mathematics, the two mutual intersection points always happened to correspond

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

DISTRIBUTION OF ERROR

3 views, 0 noise, 50 Ka, 50 Th

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

DISTRIBUTION OF ERROR

3 views, 0 noise, 150 Ka, 75 Th

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

DISTRIBUTION OF ERROR

3 views, 0 noise, 300 Ka, 150 Th

Figure 6.14 Increasing granularity (smoothness) of the approximate manifold surfaces leads to
improved convergence for the MCMC-based intersection algorithm. From left to right the dimen-
sions of the manifold sampling grids were 50 × 50, 150 × 75, and 300 × 150, where the first and
second numbers are the dimensions of the κ and θ axii, respectively. Note that 50 × 50 grids were
used for most experiments in the dissertation.

to similar internal calibrations). However, our implementation adds a severe penalty factor to any

potential solution (i.e., mutual-intersection point) that does not represent a reasonable internal cal-

ibration. The criteria is fairly lenient; see the discussion in Section 6.1.7.1 about the added penalty

factor. Thus it could be that other mutual-intersection points exist, but that they tend to produce

unreasonable internal calibrations and are discarded by the algorithm. However, given the results

of Section 6.1.5 that suggest there are between 1 and 3 mutual intersection points typically, the

histogram in Fig. 6.15 seems to further imply a single mutual-intersection point.

6.2.3 Answer to question 2: Algorithm speed

Each RANSAC iteration of the MCMC-based algorithm runs at constant speed; this speed is

directly proportional to the number of MCMC iterations performed. It takes 0.2728 seconds for our

implementation to perform 100000 MCMC iterations on an 800 MHz Pentium III. The complete

runtime is then

(
number of

fundamental matrices

)
×

(
time to create
manifold grid

)
+

(
number of

RANSAC iterations

)
×

(
0.2728 seconds

)

132

plus the time needed to construct the initial projective reconstruction, which is not part of our

research. The RANSAC process can be short circuited as soon as an internal-calibration matrix

with a sufficient goodness score (Section 6.1.7.1) has been found; however, the process is fast

enough that we chose to use a fixed number of RANSAC iterations in the experiments.

For comparison with the timing results from Section 6.1.3, which were from experiments per-

formed on a much slower computer, it took 1.261 × 10−4 seconds mean time to compute each

manifold grid point on an 800 MHz Pentium III; thus a surface with resolution 50× 50 took 0.315

seconds to compute per manifold. Based on this, run times for experiments in Section 6.1.3 should

be divided by 4 (roughly) before comparison with the results in this section.

6.2.4 Answer to question 3: Advantage of extra views

This question is answered by the plot in Fig. 6.12. There is a very significant decrease in

error when 4 camera views are used instead of the minimum 3. However, using 5 or 6 views does

not seem to produce better results than using 4 views. Note that the same number of RANSAC

iterations were performed in all trials and using more RANSAC iterations for the 5-view and 6-view

cases might have produced better results (because these cases have more triplets of manifolds to

explore); however, we ran no experiments to test this. Regardless, using more RANSAC iterations

has the cost of a longer run time.

6.2.5 Answer to question 4: Choosing MCMC parameters

A common complaint against many machine-vision algorithms is the need to carefully tune the

algorithm’s parameters in order to achieve good performance. This is not the case with the two

intersection algorithms we ran experiments on. The surface-fitting algorithm has no parameters

beyond those used to create the approximate manifold surfaces (e.g., granularity) and to determine

the “goodness” of potential solutions; performance of the algorithm does not hinge on choosing

ideal parameters, and we have given some suggested values for these parameters throughout this

dissertation. The only additional parameters that need to be set for the MCMC-based algorithm are

133

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

DISTRIBUTION OF ERROR

3 views, 0 pixels noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006

FR
A

C
TI

O
N

 O
F

TR
IA

LS

ERROR (Frobenius)

DISTRIBUTION OF ERROR

4 views, 0 pixels noise

Figure 6.15 Histogram showing likelihood
of successful calibration from 3 views and
noiseless data.

Figure 6.16 Histogram showing likelihood
of successful calibration from 4 views and
noiseless data.

the number of RANSAC iterations to perform and the number of MCMC iterations to perform per

RANSAC iteration, as we now explain.

With the surface-fitting algorithm, the number of RANSAC iterations depended solely on the

anticipated number of outlying fundamental matrices. This is because each iteration would yield

all possible mutual-intersection points for the chosen triplet of manifolds and thus there was no

need to re-explore that triplet. However, the MCMC-based algorithm produces at most one possible

solution per triplet, and may not produce any solutions if it gets trapped in a local minimum of

the error function. Thus there is a need to perform many extra RANSAC iterations to increase the

probability of success.

We chose to perform a fixed number of RANSAC iterations, using the same number for each

experimental trial. The graph in Fig. 6.18 shows the effect of using different numbers of RANSAC

iterations; see Table 6.2 for a description of the data sets used. As expected, using more RANSAC

iterations increased the likelihood of success; we chose to use 50 iterations for most of the experi-

ments in this section.

Each RANSAC iteration consists of drawing three manifolds at random and then using an

MCMC-based search process in an attempt to locate a mutual intersection point of the manifolds

as described in Section 5.3. The search process starts at a random state representing three points

134

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50000 100000 150000 200000

M
E

D
IA

N
 E

R
R

O
R

 (F
ro

be
ni

us
)

MCMC ITERATIONS

MEDIAN ERROR VS. MCMC ITERATIONS

4 views, wide lens, medium object

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 20 40 60 80 100

M
E

D
IA

N
 E

R
R

O
R

 (F
ro

be
ni

us
)

RANSAC ITERATIONS

MEDIAN ERROR VS. RANSAC ITERATIONS

4 views, wide lens, medium object

Figure 6.17 Median error for various
amounts of iterations of the the MCMC loop.

Figure 6.18 Median error for various
amounts of iterations of the RANSAC loop.

in a-space (one position on each of the three manifolds). New states are explored stochastically

with a tendency to explore states that have the three positions near each other in a-space (and thus

potentially close to a mutual-intersection point). The number of MCMC iterations to perform is a

parameter that must be tuned. Higher numbers are always better for reliability but slow down the

algorithm.

The graph in Fig. 6.17 shows results from using different numbers of MCMC iterations (with a

fixed number of RANSAC iterations). Most of our experiments used 100000 iterations; the graph

suggests that using 200000 iterations, while doubling the runtime, would have produced little

benefit in reducing error.

6.2.6 Answer to question 5: Comparison with surface-fitting algorithm

The surface-fitting algorithm will always produce better results than the MCMC-based algo-

rithm, since both rely on the same underlying approximate surfaces but the surface-fitting algo-

rithm finds all mutual intersection points while the MCMC-based algorithm may or may not find

any mutual intersection points. However, the MCMC-based algorithm has several significant prac-

tical advantages and thus it is important to know how well it performs relative to the surface-fitting

algorithm. The graph in Fig. 6.13 shows a direct comparison of the results of the two algorithms.

135

The two significant advantages of the MCMC-based algorithm are (1) it is very simple to im-

plement regardless of the dimensionality of the manifolds and (2) it is not necessary to sample

and store approximate surfaces for the manifolds since the manifolds can be sampled on the fly

(albeit with a significantly slower runtime). The second property is extremely important when

intersecting higher-dimensional manifolds, where storage and preprocessing time for creating ap-

proximate surfaces might become infeasible. It is also important for potential implementation of

the algorithm on low-powered, portable platforms which may not have much memory. Potentially,

the slow down in runtime could be offset by using many low-powered microprocessors working in

parallel because the algorithm is arbitrarily scalable.

6.3 Self calibration from three views

In this section, we explain why Question 4 from Section 6.1 is important. Recall that each

screw-transform manifold in a-space is 2-dimensional while a-space itself is 3-dimensional. There-

fore the intersection of three or more manifolds will, in general, be a set of discrete points. One

of these points represents the original internal calibration of the camera, while the others are either

meaningless or provide alternative, legal internal calibrations for the camera. If it turns out that

the intersection of three manifolds always yields a set with only one point, then self calibration

can be achieved from just three camera views. Alternatively, if the number of mutual intersection

points is large then it will probably be necessary to use more than three camera views in order to

make this set smaller. If the number of mutual intersection points is always 2, for instance, it might

suggest that every camera calibration has a “dual” calibration that is consistent with the observed

data (i.e., the set of fundamental matrices). In other words, the self calibration problem may not

have a unique solution until a sufficient number of camera views are incorporated.

The number of mutual intersection points (i.e., the number of legal camera calibrations) is

critical when solving for calibration by minimizing an error function. This is because:

136

• The optimization algorithm (e.g., Levenberg-Marquardt or gradient descent) needs to be run

at least one time for each global minimum, where each global minimum corresponds to a

legal internal calibration.

• The optimization algorithm will probably need to be run more than one time, using different

starting locations, to find some of the global minima. In particularly bad cases, such as when

a global minimum has a small attraction basin, the optimization algorithm may need to be

run hundreds or thousands of times and may still not succeed.

• Without knowing how many mutual intersection points exist, it is impossible to know when

enough global minima have been found for the search process to stop.

• With noise-free data, all legal internal calibrations correspond to global minima of the error

function. Because of noise in real data, however, some legal internal calibrations may cor-

respond to local minima that are not global minima. Knowing how many legal calibrations

are supposed to exist could help differentiate between meaningless local minima and local

minima that correspond to legal internal calibrations. For example, if it is known that n legal

calibrations are supposed to exist, the algorithm could return the n local minima with the

smallest error measure.

• With RANSAC, the smaller the sample size the faster and more reliably the algorithm works.

If using three camera views leads to only 1 or 2 possible internal calibrations then RANSAC

can be used with a sample size of 3. Otherwise, it may be necessary to use 4 or more views in

each sample to get a unique calibration and RANSAC may become infeasible (the algorithm

may run too slowly or there may not be enough inlying fundamental matrices for a good

sample).

These considerations are of particular importance because almost all existing self calibration algo-

rithms rely on minimizing an error function to find calibration (e.g., [41, 71, 77, 180, 132, 131, 99,

53], to cite just a few; also, the MCMC-based algorithm of Section 5.3 falls into this category).

137

Note that the surface-fitting method of Section 5.1 is not an energy-minimization method and

does not suffer from the drawbacks listed above. The surface-fitting method determines every

mutual intersection point in one pass, which makes it ideal for experimentally determining the

number of mutual intersection points in the three-view case.

Pollefeys [132] pointed out that, for three camera views, there is clearly an upper bound of 64

mutual-intersection points. By eliminating some impossible cases, Schaffalitzky [150] reduced the

number to 21. Even this latter number is large enough to make self calibration from three views

seem infeasible. However, our experiments using the surface-fitting method suggest that there

are, in most instances, only 1 or 2 mutual intersection points (see Fig. 6.7 and the experiments of

Section 6.1.5) and thus self calibration from three views is feasible. The experiment shown in Fig.

6.11 was performed using only three views.

138

Chapter 7

Calibration and Image-Based Rendering for Dynamic Scenes

7.1 Overview

Up until this point we have only been considering scenes that contain no motion, which are

called static scenes. A scene can be considered static if all camera views are captured simultane-

ously; alternatively, a static scene is one that does not evolve over time. The opposite of a static

scene is a dynamic scene, a scene that contains motion or changes over time. As will be seen,

dynamic scenes present new challenges that researchers are just beginning to investigate. They

also present new opportunities for gaining information about a scene or the cameras viewing the

scene.

The standard term for scene reconstruction is “structure from motion,” but this is not to be

confused with the kind of motion we consider in this chapter. We can define “structure from

motion” as follows:

Structure from motion: Reconstruction of a rigid scene using changes in the way the scene looks

in camera views due to either (1) a change in camera positions or orientations, (2) a displacement

of the scene, or (3) a combination of (1) and (2).

Thus the “structure from motion” problem can actually apply to static scenes as long as the camera

moves (and thereby provides the “motion”). In constrast, the issues discussed in this chapter

concern dynamic scenes almost exclusively. This is because we will consider dynamic scenes

that have several different objects undergoing different motions, and thus there will be no way to

substitute motion of the camera for motion of the objects.

139

Each moving object in a scene represents a separate, classical structure-from-motion problem.

For instance, camera calibration might be determined separately from each moving object and

then the results might be adjusted to arrive at a solution that is optimal for all the objects simulta-

neously. However, the movement of the scene objects relative to each other presents a new source

of information for calibration or reconstruction. This extra information is used in Section 7.2 in

conjunction with screw-transform manifolds and in Section 7.3 to produce a linear algorithm for

affine self calibration.

One major use of camera calibration and scene reconstruction is to produce new views of a

scene from novel vantage points (i.e., physically-correct views that are different from the input

views). However, in some cases new, physically-correct views of a scene can be created without

determining camera calibration (beyond the projective level) or performing scene reconstruction.

In Section 7.4 and Section 7.5 we look at methods for interpolating between views of a dynamic

scene; Section 7.5 addresses dynamic scenes that contain several moving objects following ap-

parent straight-line trajectories, and Section 7.5 addresses dynamic scenes that contain rotating

objects.

By examing view interpolation performed without camera calibration, we see how much more

is possible when camera calibration can be determined. As will be seen, uncalibrated view inter-

polation severely limits control of the position and orientation of the virtual camera, and can even

require the virtual camera to change over time, introducing undesirable distortion. With dynamic

scenes, some calibration information may be necessary just to produce constant velocities in the

moving objects. Furthermore, only a few special-case dynamic scenes can be interpolated without

camera calibration, and specialized algorithms and preconditions are required for each case. In

contrast, when camera calibration is known then scene reconstruction becomes possible, leading

to unlimited control over camera and scene motion. These observations add further evidence that

camera calibration is a necessity for useful IBR techniques.

140

7.2 Using screw-transform manifolds with dynamic scenes

We begin the discussion of dynamic scenes by showing one way to use the theory of screw-

transform manifolds in conjunction with dynamic scene data. Let two fixed cameras A and B,

possibly with different internal parameters, view a moving object. Assume the object has a rigid

structure but can undergo any displacement. Let each camera capture a view of the moving object

at time t = 0 and t = 1, leading to 4 reference views in all. Alternatively, we can think of cameras

A and B as being in a stereo rig which is moved through a static scene.

We can think of the 4 views as corresponding to 4 separate cameras in fixed positions. Us-

ing the fundamental matrices between the 4 cameras, we can place all the cameras in the same

projective basis. Note that there are only 5 distinct fundamental matrices induced by this system.

Furthermore, two of the fundamental matrices are monocular (i.e., are generated by two views

that share the same internal parameters). Each monocular fundamental matrix induces a screw-

transform manifold in a-space. Note that it is legitimate to refer to a single a-space despite having

two distinct internal parameters (i.e., from camera A and camera B) because all cameras have been

placed in the same projective basis. The vector ă in a-space that will upgrade the projective recon-

struction to affine lives in the intersection of the two screw-transform manifolds. Unfortunately,

this intersection is 1-dimensional (because each manifold is 2D and a-space is 3D).

There is a clever way to further limit the location of ă. Each screw-transform manifold is

parameterized by 2 parameters: θ and κ. Consider creating a new search space called a,θ-space by

adding an extra dimension to a-space that will correspond to the θ coordinate. For example, if (κ, θ)

is mapped to position (x, y, z) in a-space, then (κ, θ) will be mapped to position (x, y, z, θ) in a,θ-

space. The two screw-transform manifolds under consideration induce a pair of 2D manifolds in

a,θ-space through this mapping. Note that the θ coordinate of ă on both manifolds in a-space must

be the same because the moving scene object undergoes the same rotation as it is viewed by both

cameras A and B.1 This means that the intersection of the screw-transform manifolds in a,θ-space

will contain a point corresponding to ă; the θ coordinate of this point will be the rotation angle of

1This is not true for γ, the amount of screw displacement of the object, which is measured as a multiple of the
distance between each camera and the axis of screw rotation and is thus camera dependent.

141

the moving object. Furthermore, note that the intersection of two 2D manifolds in 4D space is a

0-dimensional set (i.e., a set of discrete points) when the manifolds are in general configuration.

Thus affine calibration can be determined by searching in a,θ-space rather than a-space. Given that

the two manifolds under consideration intersect in a 1D manifold in a-space, it might be expected

that their images in a,θ-space also intersect in a 1D manifold making the problem indeterminate.

However, it has been shown that this problem, in the form a stereo-rig problem, has a unique

solution [200]. A key difference between the technique of this section and that of Zisserman et al.

is that the technique presented here works entirely from fundamental matrices.

7.3 Linear algorithm for affine self calibration from scene motion

7.3.1 Introduction

In this section, we present a linear algorithm that utilizes the relative motion of objects in a

dynamic scene to determine the affine calibration between two cameras viewing the scene [111].

That is, the algorithm finds the homography induced by the plane at infinity between two views

of the scene. Among other things, knowledge of affine calibration can be used for affine scene

reconstruction and as an intermediate step in metric self-calibration.

The algorithm finds affine calibration directly from the fundamental matrices associated with

moving objects. At least two fundamental matrices are required, but additional ones can be incor-

porated naturally into the linear system, providing greater numerical stability. If the two cameras

have different optical centers, then the stationary background elements of the scene give rise to the

standard fundamental matrix, which can also be incorporated into the linear system.

Although two views of a moving rigid-body object will usually give rise to a fundamental ma-

trix, the matrix can only be used by our algorithm if the object’s motion meets certain conditions.

The simplest form of these conditions is that the object must undergo a rigid translational motion.

However, since only two views of the scene are actually used by our algorithm, this basic condition

can be generalized. First, notice that the two views must be captured at different times for the dy-

namic nature of the scene to be relevant. Consequently, there is a missing interval of time between

when the views are captured. During this missing interval, the object can undergo any motion as

142

long as the total change in the object and its location is equivalent to a single, rigid translational

motion. When this condition is met, we say the scene has apparent linear motion.

The term object has a specific meaning in this section, defined by the general condition just

given: An object is a group of particles in a scene for which there exists a fixed vector u ∈ � 3

such that each particle’s total motion during the missing time interval is equal to u. Throughout

this section, objects will be assigned numbers and the notation ui will represent the motion vector

for object i.

The problem of finding the affine calibration between two views has been widely studied and

is of great use in machine vision. For example, once the affine calibration has been recovered,

affine scene reconstruction is immediately possible (e.g., by triangulation, or see [45]). Among

other things, affine reconstruction can be used for affine, model-based object recognition, tracking,

augmented reality, feature transfer, and novel view generation in image-based rendering. Finding

affine calibration is also an essential intermediate step in the stratified approach to metric self-

calibration [4, 200, 35, 134, 45]. For instance, if three views of a scene are available that have all

been captured by the same camera with constant internal parameters and if affine calibration can be

recovered for each pair of views, then the metric calibration of the camera can be determined [132,

130]. In the realm of pure image-based rendering, it has been shown [108] that affine calibration

can be used to directly generate linear interpolation sequences for dynamic scenes having apparent

linear motion without the need for scene reconstruction.

Various techniques for finding the affine calibration between pairs of views have been pub-

lished. Several authors [183, 4] used the fact that if two views are captured by a fixed camera

undergoing a rigid translational motion, then the infinity homography between the views is known

to be the identity matrix. Faugeras [45] described an alternative approach to affine calibration that

also involves pure translational motion. Other techniques [12, 5] have been developed for the re-

stricted case of planar camera motion, that is, for when the camera’s internal parameters do not

change and the camera only undergoes translations and rotations that are parallel to a fixed plane.

None of these techniques are directly related to dynamic scenes, and they all place restrictions on

camera motion; our technique places restrictions on object motion but not camera motion.

143

The most direct method for finding affine calibration is to identify four conjugate directions

(i.e., points on the plane at infinity) that are not all coplanar; like all planar homographies, the in-

finity homography is completely determined by its behavior on four points [45]. Pollefeys demon-

strated that affine calibration between two views taken by the same camera can be determined from

just two conjugate directions if the modulus constraint is utilized [132]. Since one conjugate direc-

tion can be determined from the motion of each moving object in the scene, these techniques might

be applicable when two or more moving objects are present. However, the technique presented in

this section is usable even when only one moving object is present (because the static background

can provide the second necessary fundamental matrix); additionally, the cameras can be different

in our approach.

The technique presented by Zisserman et al. [200] and later expanded upon by Horaud et al.

[78] applies, in general, to a different class of problems than our technique and uses a completely

different mathematical approach. Zisserman’s algorithm is for a stereo rig viewing a static scene

from two different locations and is mathematically based upon projective reconstruction of conju-

gate points. In contrast, our technique works directly from fundamental matrices without any need

for reconstruction; thus additional errors introduced during projective reconstruction (e.g., errors

introduced through triangulation) are avoided. Furthermore, in our technique it is not strictly nec-

essary to identify conjugate points at all if the fundamental matrices can be determined by some

other means. For example, Stein [170] presented a direct method for finding the trilinear tensor

between three views using optical flow; the required fundamental matrices could be determined

from such a trilinear tensor [70]. While our technique could be applied to the stereo rig problem

for static scenes if the rig undergoes a rigid translation (see Section 7.3.6.2), it is not possible in

general to apply Zisserman’s technique to the dynamic scenes considered here.

Recently, several sections have been published concerning the use of dynamic scene informa-

tion for various types of calibration. Fitzgibbon and Zisserman [53] studied the problem of metric

self calibration from multiple moving objects. Their techniques, however, are presented as nonlin-

ear minimization problems whereas the technique we present is linear. More closely related to the

144

problem presented here, Shashua and Wolf [160] developed a technique for finding the dual Hten-

sor between three views of a dynamic scene in which all the objects move along straight-line paths.

Their algorithm is linear and, in principal, the dual Htensor could be used to find the relative cali-

bration between any two views. However, the optical centers of the views must lie on the same line

or alternatively the entire scene and all the scene motion must be in a single plane. Our technique

only requires two views and has no restrictions other than the apparent linear motion requirement

given earlier. Finally, Stein [171] presented a method for finding the weak calibration between two

widely-separated views using statistics acquired from a dynamic scene over an extended period of

time. His technique is unrelated to the present work and will not be discussed further.

7.3.2 Notation and preliminary concepts

Assume two camera views are captured at times t = 0 and t = 1 using pinhole cameras, which

are denoted camera A and camera B, respectively. In this section, a fixed-camera formulation

is used, meaning the two cameras are treated as if they are at the same location and the world

is moving around them; this is accomplished by subtracting the displacement e between the two

cameras from the motion vectors vi of all objects in the scene. In the reformulated scene, object i

moves by ui = vi − e and what had been the stationary background becomes an object that moves

by −e. Under the fixed-camera formulation, the camera matrices are just 3 × 3 and thus each

camera represents a basis for
� 3 . The basis induced by camera A will be called basis A, and so on.

We reiterate that, although we choose to reinterpret the cameras as sharing the same optical center,

in actuality the cameras can be at different locations and can be completely different internally.

Note that the vectors e, ui, and vi are Platonic. In this section, when we wish to express such a

vector in a particular basis we will simply use a subscript rather than curly braces and a subscript;

hence, for e in the basis of camera B we use eB instead of {e}B. Also note that we will not be

distinguishing between Platonic directions and Platonic positions.

If cameras A and B are at different locations in the original scene, then e is nonzero and there

exists a fundamental matrix F for the cameras which has the following representation (by Eq.

145

A
B

u0

u1

−e

−e

A B

0

1

v
1

e

Figure 7.1 Example of the fixed-camera formulation. (left) Two different cameras A and B view a
dynamic scene from different positions. Camera A captures a view at time t = 0; camera B at time
t = 1. The scene has one moving object (labeled 1) and one stationary object (labeled 0). Object 1
translates by v1 between time t = 0 and t = 1. The displacement between the two optical centers
is e. (right) The same two views would have been captured under this alternative scenario: The
two cameras share the same optical center, object 0 translates by u0 = −e, and object 1 translates
by u1 = v1 − e.

146

3.10):

F = [eB]×H∞

AB
(7.1)

Here [·]× denotes the cross product matrix and H∞

AB
is the homography induced by the plane at

infinity, the quantity we seek to calculate. When the two cameras share the same optical center, the

fundamental matrix is 0 and has no meaning. However, for each moving object i in the scene, we

can define a new kind of fundamental matrix. If, after switching to the fixed-camera formulation,

object i is moving in direction ui, then the fundamental matrix for the object is:

Fi = [ui
B
]×H∞

AB
(7.2)

The epipoles of Fi are the vanishing points of object i as viewed from the two cameras, and the

epipolar lines trace out trajectories for points on object i.

Notice that, under the fixed-camera formulation, the stationary background in the original scene

becomes just another moving object (provided e is nonzero). Hence by using the fixed-camera

formulation we are able to create a single mathematical theory that applies to pairs of cameras at

different locations as well as to pairs of cameras that share the same optical center (e.g., two views

from a single camera that is undergoing a zoom or rotating around its optical center).

7.3.3 Motion-based affine calibration

We now show how affine calibration can be computed directly from the motion of two scene

objects that are not moving parallel to each other. Let the two objects be indexed by the set {0, 1}
and consider Eq. 7.2. Observe that H∞

AB
is a rank three invertible matrix, but [ui

B
]× is rank two,

and consequently Fi is also rank two. Because of the rank deficiency in [ui
B
]×, the following

arises: Let Si = {M ∈ � 3×3 : Fi = [ui
B
]×M}. Then Si is a 4-dimensional vector space over

the real numbers; specifically, a basis for Si is given by the matrices pi
0,p

i
1,p

i
2,p

i
3 ∈

� 3×3 , where

pi
0 = H∞

AB
and

pi
1 = [ui

B
, 0, 0], pi

2 = [0,ui
B
, 0], pi

3 = [0, 0,ui
B
]

Because H∞

AB
is in the basis of both S0 and S1, and because u0 and u1 are not parallel, S0 ∩ S1 =

〈H∞

AB
〉, where 〈 · 〉 denotes the subspace generated by a set of vectors. Since we only need to find

147

H∞

AB
up to a scalar, we only need to find one nonzero element in the intersection of S0 and S1. This

is accomplished by first finding any two matrices pi
4 such that

Fi = [ui
B
]×pi

4 (7.3)

Next, notice that Si is spanned by pi
1, pi

2, pi
3, and pi

4 (because if pi
4 is in 〈 pi

1,p
i
2,p

i
3 〉, then

[ui
B
]×pi

4 = 0). Consequently, there exist scalars k1, . . . , k8 such that

H∞

AB
= −k1p

0
1 − k2p

0
2 − k3p

0
3 − k4p

0
4

= k5p
1
1 + k6p

1
2 + k7p

1
3 + k8p

1
4 (7.4)

The second equality in Eq. 7.4 means that

[
p0

1 p0
2 p0

3 p0
4 p1

1 p1
2 p1

3 p1
4

]
[k1 k2 ... k8]> = 0 (7.5)

Here we treat the matrices pi
j as column vectors in

� 9 . The above can be solved using standard

techniques from linear algebra (e.g., singular value decomposition to find the eigenvector of eigen-

value 0). Once the ki’s are found, we can find H∞

AB
(up to a scalar) using Eq. 7.4.

Formally, we must show that the left-most matrix in Eq. 7.5 has rank 7. The rank is less than

8 since Eq. 7.4 has a solution. The vectors p0
1, p0

2, p0
3, p1

1, p1
2, and p1

3 clearly form a linearly

independent set because u0 and u1 are not parallel. If p1
4 = h1p

0
1 + h2p

0
2 + h3p

0
3 + h4p

1
1 +

h5p
1
2 + h6p

1
3 for some scalars hi, then by Eq. 7.3, F1 = [h1u2, h2u2, h3u2] where u2 = u1 × u0.

This is a contradiction since F1 has rank 2, not rank 1. Thus 7 of the column vectors are linearly

independent.

Because of the reliance on the linear independence of the column vectors in Eq. 7.5, it is crucial

that u0 and u1 be linearly independent; the algorithm becomes unstable as the two objects move in

nearly parallel directions.

7.3.4 Generalizing to multiple objects

If more than two moving objects are present in the scene, then the mathematics presented above

can be generalized to incorporate each object’s fundamental matrix simultaneously into one large,

linear system.

148

Let the objects be numbered 0 to n − 1. Let P(i) denote the 9 × 4 matrix

[pi
1 pi

2 pi
3 pi

4]

and let 09×4 denote the 9 × 4 matrix filled entirely with 0’s. We construct a matrix M by the

following method:

Start with M equal to the null matrix. For each i ∈ {0, . . . , n-2} and j ∈ {i+1, . . . , n-1} such that

ui and uj are not parallel, enlarge the matrix M by appending the following 9 × n matrix to its

bottom:

[

i−1︷ ︸︸ ︷
09×4, . . . , 09×4,P(i),

j−i−1︷ ︸︸ ︷
09×4, . . . , 09×4,−P(j),

n−j︷ ︸︸ ︷
09×4, . . . , 09×4] (7.6)

Once M has been constructed, the following system is solved (e.g., by singular value decomposi-

tion):

M [k1 k2 . . . k4n]> = 0

Affine calibration can now be determined from the following, which holds for every i ∈ {0, . . . , n−
1}:

H∞

AB
= k4i+1p

i
1 + k4i+2p

i
2 + k4i+3p

i
3 + k4i+4p

i
4 (7.7)

7.3.5 Experiments with synthetic data

Extensive experiments with synthetic data were conducted to test the approach. In this section,

we summarize the experimental method and present the results.

7.3.5.1 Experimental procedure

The general pattern for each trial run was as follows: Two or more objects were generated and

a random translation was assigned to each object. Two cameras with random internal parameters

were created and randomly positioned so that both objects at time t = 0 were visible in the first

camera and both objects at time t = 1 were visible in the second camera. Next, noise was added to

the projected points on each image plane and then the method described in Section 7.3.4 was used

to recover the affine calibration between the cameras.

149

For different trials, the overall scale of each object was magnified or reduced, the distance that

the objects moved was scaled by different amounts, and the amount of noise was varied. The error

in the recovered H∞

AB
was measured using the following error metric:

Error Metric: Treating the matrices as vectors in
� 9 , with vectors p and q denoting the calculated

H∞

AB
and the true H∞

AB
, the error was calculated as:

1 − |p · q|
‖p‖ ‖q‖

Note that this quantity is 1 − | cos(θ)|, where θ is the angle between the vectors. An error metric

based on the Frobenius norm would have represented the distance between the two matrices as

points in
� 9 and thus two matrices that were almost equal except for an overall sign factor would

have erroneously had a large error. We avoid this issue of overall sign by using the cosine of the

angle between the matrices, thus measuring parallelness.

Each object consisted of up to 100 points selected randomly in a unit sphere such that the

density of points was uniform throughout the sphere. The internal parameters of the cameras

were randomly generated within ranges that are realistic for actual cameras. Each image was size

640 × 480 pixels; this fact is crucial for interpreting the results that follow since measurements

(e.g., noise added) will often be given in pixels.

Within the framework outlined above, three different scenarios were created to simulate differ-

ent conditions under which the algorithms of this section might be used in practice:

Scenario I: At time t = 0, the objects are near each other in space; by time t = 1 the objects

have moved (each in an arbitrary direction) and are viewed by camera B, which is near camera A

in space.

Scenario II: Objects are located arbitrarily within a circle and are only allowed to move parallel

to the plane of the circle. Cameras are positioned randomly along the outside of the circle at a

higher elevation than the objects.

Scenario III: Objects are located within a sphere of radius five units, and cameras are located in a

larger, co-centered sphere but outside the sphere of the objects. Objects can move in any direction.

The positioning of cameras A and B close together in Scenario I simulates a hand-held camera,

where the camera might not travel very far between views compared to how far the objects travel.

150

Scenario II simulates a “parking lot” where vehicles drive along the flat surface of the lot and

surveillance cameras are positioned on buildings around the lot. Scenario III tests the algorithm

under fully general conditions. Note that, when only two objects are used (as was usually the

case), each scenario corresponds to the motion of vehicles over level terrain because two vectors

are always mutually parallel to some plane.

One final detail should be noted: Noise was added to the projected points on the retinas in such

a way that no outliers were created. Specifically, if the trial run called for an average of ν pixels

of noise, then uniform noise with a radius of 2ν pixels was added to each point; thus no conjugate

point was more than 2ν pixels from its true position on the retina. It is assumed that, in practice,

outliers would be removed by earlier steps in processing. Because of the lack of outliers, accurate

fundamental matrices could be found by a normalized linear method [73].

7.3.5.2 Results

Table 7.1 shows how calibration error was related to the number of conjugate points and to the

average amount of noise added to each conjugate point. As would be expected, error decreases as

the number of conjugate points increases and as the amount of noise decreases. The large standard

deviations stem from occasional outliers; the scatter graphs in Fig. 7.2 give a visual indication of

how the error values are distributed.

Recall that the algorithm becomes unstable as the objects move more parallel to each other

in 3D when considered under the fixed-camera formulation. This instability is demonstrated in

Fig. 7.2(a). Notice that there are few outliers for angles above approximately 20◦. Thus for the

remaining scatter graphs as well as for the table just presented, trials in which the angle between

the object motion vectors was less than 20◦ were eliminated. For every trial in all the scatter graphs,

100 conjugate points were used per object and an average of 1.25 pixels of noise was added per

point.

The scatter graph in Fig. 7.2(b) shows how error is reduced as noise is reduced. Notice that

there are some outliers even at small noise levels, but the general trend is clear.

151

CALIBRATION ERROR

average noise added per point

5.003 pixels 2.500 pixels 1.250 pixels 0.500 pixels 0.250 pixels

σ=0.261 σ=0.130 σ=0.065 σ=0.026 σ=0.013

100 points error=0.0838 error=0.0338 error=0.0207 error=0.00536 error=0.00277

σ=0.153 σ=0.0839 σ=0.0777 σ=0.0102 σ=0.00400

60 points 0.103 0.0470 0.0200 0.00993 0.00276

σ=0.167 σ=0.109 σ=0.0497 σ=0.0516 σ=0.00413

30 points 0.142 0.0632 0.0295 0.0125 0.00764

σ=0.182 σ=0.115 σ=0.0726 σ=0.0384 σ=0.0225

10 points 0.381 0.230 0.115 0.0494 0.0313

σ=0.276 σ=0.236 σ=0.172 σ=0.101 σ=0.0911

Table 7.1 Calibration error for various amounts of object points and noise levels.

CALIBRATION ERROR

2 objects 3 objects 4 objects

100 points 0.0207 0.0144 0.0102

60 points 0.0200 0.0169 0.0124

30 points 0.0295 0.0235 0.0218

10 points 0.1154 0.0696 0.0651

Table 7.2 The positive effect of using more moving objects.

152

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Angle Between Object Motion Vectors (Degrees)

E
R

R
O

R

0 1 2 3 4 5 6
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

ACTUAL NOISE (PIXELS)

E
R

R
O

R

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

AVERAGE OBJECT SIZE (PIXELS)

E
R

R
O

R

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

SMALLEST RETINAL OBJECT MOTION (PIXELS)

E
R

R
O

R

(a) (b)

(d)(c)

Figure 7.2 (a) Calibration error vs. angle (in degrees) between object motion vectors considered
under the fixed-camera formulation; (b) calibration error vs. average noise added to each point; (c)
calibration error vs. object area on the image plane; (d) calibration error vs. retinal object motion

153

A (time=0) B (time=1)

object
1

object
2

Figure 7.3 The four views on the left are the source views of the box that were used to find the two
fundamental matrices for calibration. Views from camera A are on the left and views from camera
B are on the right; the top pair shows object 0 moving towards the camera while the bottom pair
shows object 1 moving laterally. The three rightmost views show the affine reconstruction of the
box as seen from different angles.

Fig. 7.2(c) demonstrates how error is reduced as the objects appear larger on the image plane.

Notice that when the average object size covers less than about 40 pixels in the image, error in-

creases rapidly.

It might be hypothesized that the algorithm would be stabilized by greater projected object

motion. However, Fig. 7.2(d) shows that error was not affected by the amount of apparent motion

of the objects across the image plane, at least for the ranges tested. It would be expected, however,

that as the amount of motion approached the noise level, the error would increase; this was not

tested, however.

Finally, the table below shows how the result is stabilized by the use of more moving objects.

Also note the improvement gained by using 30 conjugate points rather than 10; this could be

due to increased stability brought on by using more conjugate points to compute the fundamental

matrices.

7.3.6 Experiments with real data

In this section, we present the results from two experiments performed with real scenes.

154

7.3.6.1 Experiment I

The first experiment was designed to produce very reliable data. The object that was used in

the experiment was covered with a regular dot pattern (see Fig. 7.3), and the center of each dot was

determined to subpixel accuracy by an automatic algorithm that found the center of mass of each

dot. The cameras were fixed in position throughout the experiment.

Only one actual object was used, but it was moved in two different directions and thus served

as two different objects. This means the two objects were not visible at the same time, but that

fact is irrelevant to the algorithm when the cameras are in fixed positions relative to each other

(e.g., as on a stereo rig). This situation occurs, for example, when a pair of fixed cameras are

monitoring the intersection of two roads. Occasionally, lone vehicles will cross the intersection,

going in either direction. Each vehicle would give rise to a fundamental matrix, and over time the

affine calibration could be accurately computed.

The ground truth affine calibration between the two views was acquired by using a three-

dimensional calibration grid containing several hundred points at known positions. Each camera

matrix was computed directly from the known 3D to 2D correspondences stemming from the

calibration grid. Prior to this, radial distortion was corrected for as a separate step.

The ground truth affine calibration, as determined directly from the full camera matrices, was

H∞

AB
=




0.005270 −0.002681 0.3752

0.002858 0.004966 −0.9269

0.0000009253 −0.0000000624 0.005347




while the affine calibration determined using the motion of the box was

H∞

AB
=




0.005127 −0.002625 0.3773

0.002789 0.004809 −0.9260

0.0000009684 −0.0000001226 0.005186




The distance between the matrices, using the same error metric used for the synthetic experiments,

was 2.71 × 10−6, or about 0.13◦ when treating the matrices as vectors.

155

Figure 7.4 Views used in the second experiment. From left to right: the view from camera A at
time t = 0, the view from camera B at time t = 0, and the view from camera A at time t = 1.

7.3.6.2 Experiment II

The second experiment utilized objects that had more natural texture so that fewer and less

reliable point correspondences were obtained. In this experiment, several objects were placed on a

piece of section such that the section could be slid across a table to simulate motion of the objects

or the cameras. As before, the object was viewed by two cameras that were fixed in position

throughout the experiment. The input images that were used for this experiment are shown in Fig.

7.4. Notice that the center view is zoomed in and has much less radial distortion than the left

view. The left and center views, corresponding to camera A and camera B respectively, form one

pair representing the object at time t = 0. From this pair, a fundamental matrix was recovered

via standard techniques using about 30 point correspondences that were selected by hand. Next,

the object was slid across the table in a manner approximating a pure translation. One final view

was then captured from camera A only; this is shown as the rightmost view in Fig. 7.4. A second

fundamental matrix was computed using the right and center views, again using about 30 point

correspondences selected by hand.

Our algorithm was then applied to the two fundamental matrices, yielding the affine calibration

H∞

AB
=




0.351 0.153 0.196

−0.433 0.505 0.151

−0.222 −0.053 0.546




The ground truth affine calibration was determined from vanishing points. In particular, a regular

grid was viewed by both cameras as it was placed in various orientations in space. The vanishing

156

Figure 7.5 As an additional test of the affine calibration determined in the second experiment,
affine reconstruction of a planar calibration grid was performed using two views of the grid (left).
Four views of the reconstructed surface are shown on the right.

points of this grid, found automatically by a separate program, represent conjugate directions in

the two views; four such points at infinity are sufficient for finding the affine calibration and many

more than four were actually used. The affine calibration thus determined was

H∞

AB
=




0.359 0.139 0.208

−0.431 0.497 0.128

−0.211 −0.069 0.557




Again, agreement is very good despite the many potential sources of error in this experiment. The

distance between the matrices, using the same error metric, was 0.000756, or about 2.2◦.

As an additional test of accuracy, the affine calibration determined by our algorithm was used

to reconstruct a regular, planar grid of points that was viewed by both cameras (see Fig. 7.5). The

reconstruction shows some curvature in the grid lines, probably resulting in part from residual lens

distortion errors since reconstruction using the “ground truth” affine calibration yielded similar

curvature artifacts. Radial distortion was prominent in camera A and less so in camera B; this

distortion was corrected for as a separate preprocessing step using the same method as in the first

experiment. However, some distortion seems to have remained. Despite this, we still see agreement

in the two affine calibrations even though they were determined by distinct methods.

157

7.3.7 Conclusion

Dynamic scenes contain sources of information that are not present in static scenes, but not

many methods exist to utilize this extra information. This section presented a linear algorithm

that utilizes dynamic scene information to determine the affine calibration between two generally-

positioned camera views. The algorithm has been shown to work on both synthetic and real data.

Through experiments with synthetic data, it has been shown that the algorithm degrades gracefully

with noise and the results improve as more moving objects are incorporated.

It remains to be investigated how the ideas of this section could be extended to utilize more than

two views. The trilinear tensor arising from three views should stabilize the fundamental matrix

calculation and improve results. Moreover, it may be possible to compute the affine calibration

directly from pairs of trilinear tensors.

7.4 View interpolation for dynamic scenes with apparent linear motion

7.4.1 Introduction

View interpolation [26] involves creating a series of virtual views of a scene that, taken together,

represent a continuous and physically-correct transition between two reference views of the scene.

Previous work on view interpolation has been restricted to static scenes. Dynamic scenes change

over time and, consequently, these changes will be evident in two reference views that are captured

at different times. Therefore, view interpolation for dynamic scenes must portray a continuous

change in viewpoint and a continuous change in the scene itself in order to transition smoothly

between the reference views (Fig. 7.6).

Our approach to this problem is based upon an earlier technique called view morphing [153],

which provides a method for interpolating between two widely-spaced views of a static scene.

The technique has several strengths that make it suitable for practical applications. First, only

two reference views are assumed. Second, it does not require that camera calibration be provided

nor does it need to calculate the camera parameters. Third, the method works even when only a

sparse set of correspondences between the reference views is known. If more information about

158

Figure 7.6 A dynamic scene at three different times. The goal of view interpolation for dynamic
scenes is to synthesize the view from the camera in the middle frame starting with only the two
reference views from the cameras in the left and right frames.

the reference views is available, this information can be used for added control over the output and

for increased realism.

In addition to view morphing, numerous existing methods could be used to create view in-

terpolations for static scenes [44, 116, 6, 155, 178]. However, none of these methods is directly

applicable to dynamic scenes. Avidan and Sashua [7] provide a method for recovering the geome-

try of dynamic scenes in which the objects move along straight-line trajectories. Once the geometry

is recovered, dynamic view interpolations could be created using the standard graphics pipeline.

However, their algorithm does not apply to the problem discussed in this section because it as-

sumes that five or more views are available and that the camera matrix for each view is known or

can be recovered. There are several mosaicing techniques for dynamic scenes [83, 28], but mosaic-

ing involves piecing together several small-field views to create a single large-field view, whereas

view interpolation involves synthesizing new views from vantage points not in the reference set.

Because the original view morphing algorithm assumes a static scene, we refer to it as static

view morphing to distinguish it from the dynamic view morphing technique presented in this sec-

tion.

We seek to perform view interpolation directly from the reference views, without additional

information about the scene. Consequently, there will be a missing interval of time between when

the reference views were captured, and it will be impossible to know for certain what occurred

during the missing interval. It is not our goal in this work to try and deduce the most likely manner

159

in which the scene changed. Instead, we are interested in portraying some possible way in which

the scene could have changed, and we want the portrayal to be physically correct and continuous.

Our method is for dynamic scenes that satisfy the apparent-linear-motion assumption: For each

object in the scene, all of the changes that the object undergoes during the missing time interval,

when taken together, are equivalent to a single, rigid translation.

The term object has a specific meaning in this section, defined by the condition given above:

An object is a group of particles in a scene for which there exists a fixed vector û ∈ � 3 such that

each particle’s total motion during the missing time interval is equal to û.

A method for dynamic view interpolation, even if it is physically accurate, may be unsatisfac-

tory if it portrays objects moving along unreasonable trajectories. For instance, when portraying a

car driving across a bridge, it is essential that the car stay on the bridge during the entire sequence.

To address this problem, we have developed techniques for portraying both straight-line motion

(in a camera-based coordinate frame) and straight-line, constant-velocity motion (in camera and

world coordinate frames). For brevity, we refer to the latter style of portrayal as linear motion. Fig.

7.6 depicts a linear motion view interpolation.

If the reference cameras share the same position in world coordinates, then the virtual camera

shares that position as well and straight-line motion relative to the virtual camera also implies

straight-line motion in world coordinates. However, this may not be the case if the virtual camera

moves during the view interpolation, as Fig. 7.7 demonstrates. It is easy to show that if all objects

can be portrayed undergoing linear motion in camera coordinates, then the virtual camera can

be considered undergoing linear motion in world coordinates, in which case all the objects will

undergo linear motion in world coordinates as well.

7.4.2 Static view morphing

Static view morphing works by first prewarping the reference views to make their image planes

parallel. After the prewarp, conjugate points in the two views are linearly interpolated to produce

a physically-accurate new view of the scene. The new locations of the conjugate points are used

to guide a morphing algorithm in filling the remainder of the virtual view. Only the interpolated

160

(i) (ii)

Figure 7.7 (i) A round object is filmed moving
along a trajectory that is a straight line in the cam-
era’s frame of reference. The object is shown at
equal time intervals and does not move at constant
velocity. (ii) If the camera was in motion dur-
ing the filming, then the object did not follow a
straight-line trajectory in world coordinates.

conjugate points are guaranteed to be viewed in the correct, physically-accurate locations. By

increasing the density of conjugate points, the virtual view can be made arbitrarily accurate. The

prewarp is performed from information available in the fundamental matrix, which is calculated

directly from the conjugate points. Complete details of the algorithm can be found in [153].

7.4.3 Dynamic view morphing

7.4.3.1 Preliminary concepts

We assume the two reference views are captured at time t = 0 and time t = 1 through pinhole

cameras, which are denoted camera A and camera B, respectively.

We always use a fixed-camera formulation, meaning we assume that the two reference cameras

are at the same location and that the world moves around them; this is accomplished by subtracting

the actual displacement between the two cameras from the motion vectors of all objects in the scene

(Fig. 7.1). Under this assumption, the camera matrices are just 3×3 and each camera is equivalent

to a basis for
� 3 . Note that no assumption is made about the cameras other than that they share the

same optical center; the camera matrices can be completely different.

We let W denote the world coordinate frame and use the notation H∞

WA
to mean the transforma-

tion between basis W and basis A. Hence H∞

WA
is the camera matrix for A. Of particular interest

to our work is the matrix H∞

AB
. Note that capital script letters will always represent 3× 3 matrices;

in particular, I is the identity matrix.

161

u

B

A
��

ζ

ω
[t=0]

ω
[t=1]

Figure 7.8 Cameras A and B share the same
optical center ζ and are viewing a point on
an object that translates by û. The image
planes of the cameras are parallel to each
other and to û, and hence interpolation will
produce a physically-correct view of the ob-
ject. On each image plane a line parallel to
û is shown.

The fundamental matrix F for two cameras A and B that are at different locations has the

following representation (by Eq. 3.10):

F = [{ê}
B
]×H∞

AB
(7.8)

Here [·]× denotes the cross product matrix. When the two cameras share the same optical center,

the fundamental matrix is 0 and has no meaning. However, for each moving object Ω in the scene,

we can define a new kind of fundamental matrix. If, after making the fixed-camera assumption, Ω

is moving in direction û, then the fundamental matrix for the object is:

FΩ = [{û}
B
]×H∞

AB
(7.9)

The epipoles of FΩ are the vanishing points of Ω as viewed from the two reference cameras, and

the epipolar lines trace out trajectories for points on Ω.

7.4.3.2 View interpolation for a single moving object

Assume the two reference cameras share the same optical center and are viewing a point ω that

is part of an object Ω whose translation vector is û. Let q and q + û denote the position of ω at

time t = 0 and t = 1, respectively (Fig. 7.8).

Assume for this subsection that the image planes of the cameras are parallel to each other and

to û. The first half of this condition means that the third row of H∞

WA
equals the third row of H∞

WB

162

scaled by some constant λ. The second half means that 0 = {û}z
A

= {û}z
B

= (H∞

WA
{û}

W
)z =

(H∞

WB
{û}

W
)z, where (·)z denotes the z-coordinate of a vector. Note that the condition can be met

retroactively by using standard rectification methods [153, 106]; this is part of “prewarping” the

reference views as mentioned in Section 7.4.2.

Setting ξ = (H∞

WA
{q}

W
)z = λ(H∞

WB
{q + û}

W
)z, the linear interpolation of the projection of

ω into both cameras is

(1 − σ)
1

ξ
H∞

WA
{q}

W
+ σ

λ

ξ
H∞

WB
{q + û}

W
(7.10)

Now define a virtual camera V by the matrix

H∞

WV

def
= (1 − σ)H∞

WA
+ σλH∞

WB
(7.11)

Then the linear interpolation (7.10) is equal to the projection of scene point q(σ) onto the image

plane of camera V (i.e., H∞

WV
{q(σ)}

W
in homogeneous coordinates), where

q(σ)
def
= q + û(σ) (7.12)

{û(σ)}
V

def
= σλ{û}

B
(7.13)

Notice that û(σ) depends only on û and the camera matrices and not on the starting location q.

Thus linear interpolation of conjugate projected object points by a factor σ creates a physically-

valid view (through camera V) of the entire object translated by û(σ).

Note that in Eq. 7.13, û(σ) is represented in basis V . Since V changes with σ it is difficult in

general to characterize the trajectory û(σ) in world coordinates. To have greater control over the

interpolation process, we now prove that straight-line motion is achieved when {û}
A
∼= {û}

B
and

constant-velocity straight-line motion (i.e., linear motion) is achieved when {û}
A

= λ{û}
B

(Fig.

7.9). Assume {û}
A

= η{û}
B

for some scalar η. Multiplying both sides of Eq. 7.11 on the right by

H∞

BW
yields

H∞

BV
= (1 − σ)H∞

BA
+ σλI (7.14)

By multiplying both sides of Eq. 7.14 on the right by {û}
B

and on the left by H∞

V B
the following

can be derived:

H∞

V B
{û}

B
=

1

(1 − σ)η + σλ
{û}

B

163

image planes parallel

...and conjugate directions
 equal up to a scalar

...and the scalar is λ

physically correct

...and depicts straight−line
 motion

...and the motion is
 constant−velocity

if prewarps make... then interpolation is...

Figure 7.9 How the interpolation sequence is related to different preconditions on the reference
views. Stricter preconditions lead to increased control over the output.

Multiplying both sides of Eq. 7.13 by H∞

V B
now yields:

{û(σ)}
B

=
σλ

(1 − σ)η + σλ
{û}

B

The basis V no longer plays a role and the virtual trajectory, given by {û(σ)}
B

, is a straight-line

in basis B. If η = λ then {û(σ)}
B

= σ{û}
B

and the virtual object moves at constant velocity. The

results are in basis B, but multiplying by H∞

BW
or H∞

BA
indicates that the results also hold in world

coordinates and camera A’s coordinates, thus completing the proof. Keep in mind that the world

coordinate system used in this context has its origin at the shared optical center of the reference

cameras.

If H∞

BA
is known then the camera matrix for B can be transformed into the camera matrix for

A. This allows the view from camera B at time t = 1 to be transformed into the view from camera

A at time t = 1, thus producing two views of the scene from camera A at different times. For this

reason, we call H∞

BA
the “camera-to-camera transformation.” By applying the earlier results to this

special case, we derive the following corollary which forms the basis of the algorithm in Section

7.4.3.3:

If both camera matrices are equal and if (H∞

WA
û)z = 0, then the camera matrix for the virtual

camera V is just H∞

WA
and, because λ = 1 and {û}

A
= {û}

B
, the virtual object moves at constant

velocity along a straight-line path.

7.4.3.3 Linear motion dynamic view morphing algorithm

We now present a dynamic view interpolation algorithm that will portray linear motion. The

algorithm requires knowledge of H∞

AB
.

164

original view

layer 0 (background) layer 1 layer 2

transparent

Figure 7.10 A view divided into layers. Each layer corresponds to a moving object. The single
“background” object contains many different objects that all translate by the same amount.

(Step 1) Segment both views into layers, with each layer representing a different moving

object. Order the layers from nearest object to farthest object (Fig. 7.10).

(Step 2) Transform each layer of view B by H∞

BA
, thus creating a view from camera A.

(Step 3) Apply static view morphing to each layer separately.

(Step 4) Recombine the new, virtual layers in the correct depth order.

(Step 5) (Optional) Postwarp the new view.

In step (3), the virtual camera will be the same for each layer by the corollary of the previous

section. Furthermore, each layer will portray its corresponding object undergoing linear motion.

Consequently, step (4) produces the desired linear portrayal of the entire scene.

7.4.3.4 Special case: parallel motion

In this and the following section we examine some special-case scenarios for which dynamic

view interpolations can be produced without knowledge of H∞

AB
.

165

Assume a fixed-camera formulation and let uk denote the displacement between the position

of object k at time t = 0 and its position at time t = 1. We will say the scene consists of parallel

motion if all the uk are parallel in space.

Dynamic view morphing algorithm for parallel motion case: Segment each view into layers

corresponding to objects. Apply static view morphing to each layer and recomposite the results.

The algorithm works because the fundamental matrix with respect to each object is the same, so

the same prewarp works for each layer. The prewarp will make the direction of motion for each

object be parallel to the x-axis in both views; consequently, the virtual objects will follow straight-

line trajectories as measured in the camera frame. If we assume that the background object has no

motion in world coordinates, then the virtual camera moves parallel to the motion of all the objects

and hence the virtual object motion is straight-line in world coordinates.

7.4.3.5 Special case: planar parallel motion

We now consider the case in which all the uk are parallel to some fixed plane in space. Note

that this does not mean all the objects are translating in the same plane. Also note that this case

applies whenever there are two moving objects.

Recall that in Section 7.4.3.2 the only requirement for the virtual view to be a physically-

accurate portrayal of an object that translates by û is that the image planes of both reference views

be parallel to û and to each other. In the planar parallel motion case, it is possible to prewarp the

reference views so that their image planes are parallel to each other and to the displacements of all

the objects simultaneously.

Dynamic view morphing algorithm for planar parallel motion case: Segment each view into

layers corresponding to objects. For each reference view, find a single prewarp that sends the

z coordinate of the vanishing point of each object to 0. Using this prewarp, apply static view

morphing to each layer and recomposite the results.

166

The algorithm given above only guarantees physical correctness, not straight-line or linear

motion. The appearance of straight-line motion can be created by first making the conjugate

motion vectors parallel during the prewarp step [106, 109].

7.4.3.6 Dynamic scene hierarchy

This section interrelates the algorithms of the previous three sections. As always, we assume a

fixed-camera formulation, meaning we choose to interpret the two reference views as having been

captured by cameras that shared the same optical center.

Consider classifying each object in the scene based on the direction of its translation vector,

with two objects being placed in the same class if their translation vectors are parallel. A natural

hierarchy emerges based on the number of distinct parallel motion classes the scene contains.

First consider scenes that have only one motion class. If the class corresponds to the null di-

rection vector, then the scene is static and view interpolation reduces to mosaicing. If the direction

vector is non-null, view interpolations can be produced via the parallel motion algorithm (Section

7.4.3.4).

When the scene has two motion classes, the planar-parallel motion algorithm applies (Section

7.4.3.5). With four or more motion classes, H∞

AB
can be determined as described in Section 7.4.4

from the four directions associated with the classes, and the linear motion algorithm applies (Sec-

tion 7.4.3.3). For scenes with exactly three motion classes, either the planar-parallel algorithm

applies or else H∞

AB
can be approximated after making reasonable assumptions about the reference

cameras [106].

7.4.3.7 Affine cameras

The mathematical development for affine cameras, which includes orthographic cameras, is

similar to that for pinhole cameras. However, except in special cases, no camera-to-camera trans-

formation exists between the reference cameras. Hence it is typically impossible to guarantee

linear motion for the virtual objects. On the other hand, interpolation of conjugate points always

167

produces a physically-valid virtual view, without needing to make the image planes parallel. Pre-

warps can be applied to align conjugate directions and thus achieve straight-line motion. However,

in general it is only possible to align at most three conjugate directions. For a complete discussion,

see [106, 109].

7.4.4 Finding relative camera calibration

The problem of determining H∞

AB
is central to the linear motion algorithm of Section 7.4.3.3.

H∞

AB
can be determined from four conjugate directions by a well-known result used in mosaicing

[175] (because conjugate directions become conjugate points if we treat the reference cameras as

being co-centered).

If the fundamental matrix can be determined for two objects in the scene and if the objects are

not moving parallel to each other, then H∞

AB
can be determined directly from these two fundamental

matrices. The previous fact is proven in [106], which also gives a method for approximating H∞

AB

from two conjugate directions by making a reasonable assumption about the internal parameters

of typical cameras.

7.4.5 Applications

Dynamic view morphing has many potential applications; we list a few here: filling a missing

gap in a movie, creating a “hand-off” sequence to switch from one camera view to another, cre-

ating virtual views of a scene, removing obstructions or moving objects from a sequence, adding

synthetic moving objects to real scenes, projecting motion into the future or past, stabilizing and

compressing movie sequences, and creating movies from still images.

7.4.6 Experimental results

We have tested the concepts of this section on a variety of scenarios. Fig. 7.11 shows the results

of three tests, each as a series of still frames from a view interpolation sequence. The left-most and

right-most frames of each strip are the original reference views, while the center two frames are

virtual views created by the algorithm.

168

Figure 7.11 Experimental results.

To create each sequence, two preprocessing steps were performed manually. First, the two

reference views were divided into layers corresponding to the moving objects. Second, for each

corresponding layer a set of conjugate points between the two views was determined. Since our

implementation uses the Beier-Neely algorithm [14] for the morphing step, we actually determined

a series of line-segment correspondences instead of point correspondences. For each sequence,

between 30 and 50 line-segment correspondences were used (counting every layer).

For all the sequences, the camera calibration was completely unknown, the focal lengths were

different, and the cameras were at different locations.

The first sequence is from a test involving three moving objects (counting the background ob-

ject). Since H∞

AB
could only be approximated, the appearance of straight-line motion was achieved

by aligning the conjugate directions of motion for each object during the prewarp step [106]. An

object’s direction of motion is given by the epipoles of the object’s fundamental matrix. Instead

169

of calculating the objects’ fundamental matrices, we determined the epipoles directly from the

vanishing points of the tape “roads.”

The second sequence involves two moving objects (counting the background object) and a

dramatic change in focal length. The third sequence demonstrates the parallel motion algorithm

(Section 7.4.3.4). The scene is actually static, but the pillar in the foreground and the remaining

background elements are treated as two separate objects that are moving parallel to each other.

7.4.7 Conclusion

This section presented a method for interpolating between two views of a dynamic scene. The

method requires that, for each object in the scene, the movement that occurs between the first

and second views must be equivalent to a rigid translation. The algorithm produces virtual views

that portray one version of what might have occurred in the scene. It is only necessary that the

image planes of the reference cameras be parallel to each other and to the motion of an object

for the interpolated view of the object to be physically correct. With more conditions on the

reference cameras, the object can be portrayed moving along a straight-line path and even moving

at constant velocity along a straight-line path. Interpolated views of a complete dynamic scene can

be synthesized by separately creating interpolated views of the scene’s component objects and then

combining the results.

By choosing to interpret the views as coming from the same position in space, a single theory

has been created that applies to many different possible situations. In particular, the same theory

applies whether or not the original reference cameras were actually co-centered. Since it is im-

possible to know from the reference views themselves how the original reference cameras were

positioned relative to each other, the fixed-camera formulation is a natural default assumption. The

virtual camera can be chosen to move along any trajectory; the choice simply alters the interpre-

tation of the virtual views. The fixed-camera formulation also allows for a simple and intuitive

development of the underlying mathematics of the theory.

The topics of this section, as well as many additional topics and observations, are discussed in

much greater detail in [106].

170

7.5 View interpolation of turntable motion

In this section, view interpolation from two views of a dynamic scene containing purely rota-

tional motion is demonstrated. The method is analogous to the dynamic view morphing method

of Section 7.4.3 except (1) the virtual camera has constant internal parameters (thus avoiding un-

desirable distortion effects) and (2) the object motion is rotational rather than straight-line. The

result given here is similar to the result given by Fitzgibbon et al. [52] except that no explicit scene

reconstruction is performed; in the purest image-based-rendering sense, pixels are merely shifted

around the flat images to create new, physically-correct views. It is also unclear how the result

of Fitzgibbon et al. could be used to actually generate interpolation sequences, as their goal was

scene reconstruction. Without extra information metric scene reconstruction is impossible from

turntable reference views, meaning the scene cannot be simply reconstructed and rotated.

7.5.1 Turntable sequences

By Chasles’ Theorem, mentioned in Section 4.1, any series of rotations applied in sequence

will produce a transformation equivalent to a rotation around a single axis. Thus, when discussing

arbitrary rotational motion, it is only necessary to consider rotation around a single axis. Conse-

quently, any purely-rotational scene motion we might consider is equivalent to the turntable setup

depicted in Fig. 7.12. In this scenario, a single camera, which is mounted on a tripod and fixed

in orientation and internal parameters, views an object turning on an invisible turntable; this is the

“fixed-camera formulation” for rotational motion. While both reference views for this scenario

have the same internal parameters, the results we will derive under this assumption will also apply

to scenarios in which the cameras are different but are internally calibrated.

The scenario in Fig. 7.13(b), equivalent to the turntable scenario, is more recognizable to vision

researchers. It consists of two cameras in different locations viewing a static scene and thus there

is obviously a fundamental matrix F between the reference views. Since the fundamental matrix

is derived solely from correspondences in the reference views (without regard to how the reference

171

���	������	������	������	������	������	������	������	���

Figure 7.12 Turntable scenario.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

φ

A, B

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

t=0

t=1

�
�
�
�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

φ

A

B

(a) (b)

Figure 7.13 (a) The original turntable setup. (b) An alternative but equivalent interpretation of the
reference views, using the principle of relativism.

172

1
1

2

2

3
3

eA

eB

axis of rotationB

A

A B

Figure 7.14 Each view in the left column shows the view’s epipole and some conjugate scene
points with their associated epipolar lines. On the right the two views have been superimposed;
the axis of rotation is found by fitting a line to the intersection of corresponding epipolar lines.

views were captured), this fundamental matrix F can also be associated with the turntable scenario

depicted in Fig. 7.13(a).

Now consider the view through the fixed camera in Fig. 7.13(a) as the turntable rotates, and let

A and B denote the camera at time t = 0 and t = 1, respectively. Any point that lies on the axis

of rotation will appear to stay in exactly the same location throughout the rotation. Thus if q is a

point on the rotation axis then {q}
A
∼= {q}

B
. By Eq. 3.13

{q}>
B
F{q}

A
= 0 (7.15)

and thus

{q}>
A
F{q}

A
= 0 (7.16)

The latter equation is sufficient for finding the axis of rotation, at least when the fundamental

matrix is near perfect. Unfortunately, fundamental matrices are notoriously difficult to compute

accurately, and we have found that another approach works better with real data.

First, let p be an arbitrary position in space. Thinking about the scenario as in Fig. 7.13(b),

notice that the two camera’s optical centers and the position p define the epipolar plane for p.

This plane intersects the rotation axis at some position q, and q projects into the same position in

173

each view; i.e., {q}
A
∼= {q}

B
. Switching back to the fixed-camera formulation in Fig. 7.13(a),

consider the epipolar lines through {p}
A

and {p}
B

, respectively, both drawn in the one fixed view.

These epipolar lines will intersect at the point {q}
A

, which lies on the rotation axis. Thus, since

p was arbitrary, by finding the intersection points of conjugate epipolar lines we locate points on

the rotation axis. The axis of rotation can be determined by first intersecting all conjugate epipolar

lines (from any conjugate point pairs that have been provided to find F) and then using linear

regression to fit a line to these intersection points (Fig. 7.14). Notice that the conjugate point pairs

are first used to find F and then reused in combination with F to find the axis of rotation. This

provides numerical stability to the algorithm: the axis could have been found solely from F, but

when the data has noise the original conjugate point set contains more information than F alone.

Points on the rotation axis are not the only ones that satisfy Eq. 7.16. Let the term biepipolar

plane denote the unique plane that is perpendicular to rotation axis (in world coordinates) and

contains the optical center of the camera (under the fixed-camera formulation in Fig. 7.13(a)). The

term refers to the fact that both epipoles are contained in the line defined by this plane intersecting

the image plane. This line, termed the biepipolar line, can be found by plotting both epipoles in a

single view and drawing a line through them. Note that for any point p on the biepipolar plane,

{p}>
B
F{p}

A
= 0

because the biepipolar line is the epipolar line for both {p}
A

and {p}
B

. Thus the set {p :

{p}>
B
F{p}

A
= 0}, when projected into either camera view, consists of both the axis of rota-

tion and the biepipolar plane as seen in that view. The biepipolar plane will be important in the

interpolation process.

It is interesting to note that, even if the internal calibration of the cameras is unknown, the rota-

tion axis for a turntable sequence can be determined from two views by using the same conjugate

points that might be used more typically to find the fundamental matrix. In fact, much more can

be determined from this minimal amount of input data. The next section discusses how to create a

synthetic interpolation sequence from two views showing the object undergoing a complete cycle

on the turntable.

174

7.5.1.1 Turntable view synthesis algorithm

An overview of the algorithm is given below, followed by a detailed explanation of each step.

The algorithm assumes a fixed-camera formulation like in Fig. 7.13(a); for example, it makes

reference to a single view.

(Step 1) Find the epipoles (e.g., from the fundamental matrix between the reference

views) and the axis of rotation.

(Step 2) Transform the reference view so that the epipoles are in the z = 0 plane and

the axis of rotation (as a line in the views) is parallel to the y-axis.

(Step 3) Find and apply (to the 2D view) the 2× 2 affine transformation that makes the

orbit of each feature point a circle. This process includes finding the center of

rotation for each conjugate point pair.

(Step 4) Rotate feature points around their respective centers of rotation to produce a

new synthetic view of the scene.

(Step 5) Postwarp the synthetic view by applying the inverse of the transformations ap-

plied in steps 3, 2, and 1.

Step 1 has already been discussed and step 2 is a straight-forward transformation that can be

accomplished in many ways. Step 3 is the most complicated part of the algorithm. After steps 1

and 2, the camera view is looking down on the biepipolar plane. We do not know what the internal

calibration of the camera was to begin with nor what changes our transformations have introduced,

but we know that in the correct Euclidean frame the following must hold:

• each conjugate-point pair lies on a circle whose center is on the axis of rotation

• the arc length between each conjugate pair (measured in radians along the circle) is the same

for each pair; this amount is how much the turntable rotated

What is needed is an affine transformation of the biepipolar plane that makes the above conditions

true.

175

axis of rotation

a1

a2

a3

a4

b2

b2

b3

b4

c1

c2

c3

c4

Θ

path of rotation

Figure 7.15 Overhead view of biepipolar
plane after step 3.

a1

a2

b2

b2

c1

c2

φ

φ

Figure 7.16 New views are created by rotat-
ing each point by φ along its appropriate cir-
cular path.

Fig. 7.15 shows the view looking down on the biepipolar plane after the correct affine transform

has been applied; ai and bi are conjugate pairs (seen in view A and view B, respectively). The

center of rotation for each pair is ci and θ is the angle of rotation, which is the same for every pair.

Note that ai, bi, and ci are 2D positions in the camera view: ai,bi, ci ∈
� 2 . Writing down the

Euclidean conditions directly:

M(ai − ci) = RθM(bi − ci) (7.17)

Here, M is a 2× 2 matrix representing the sought-after affine transform and Rθ is a 2× 2 rotation

matrix corresponding to θ.

Let ai = [u, v]′ and bi = [x, y]′. In step 2 the view was transformed so that the axis of rotation

was parallel to the y-axis. Hence we can set ci = [b, T]′ where T ∈ �
is unknown and b is the

x-coordinate of the axis of rotation. Note we will use underlined capital letters for all unknowns.

176

In summary:

ai =


 u

v


 , bi =


 x

y


 , ci =


 b

T


 (7.18)

A key insight is to realize that there are many 2 × 2 matrices M that will meet the desired

conditions. For instance, if M works then so does RφM for any rotation matrix Rφ. This is

because the sought-after geometric relationships are preserved by rotations. The relationships are

also preserved by scaling. Since M is entirely defined by how it transforms the basis vectors [1, 0]′

and [0, 1]′, if M̃ is a satisfactory solution for M we can always modify M̃ by a rotation and scaling

so that M̃[0, 1]′ = [0, 1]′. That is, we can assume the affine transform M preserves the y-basis

vector:

M =


 A 0

C 1


 (7.19)

The final insight is to simply fix θ and solve for the remaining unknowns. We can fix θ to be

the true θ (if we happen to know it). Alternatively, since the unknowns can be found for any choice

of θ, any θ is satisfactory (that is, there is some scene for which that choice of θ is correct).

Setting α = cos θ and β = sin θ and using Eq. 7.18 and Eq. 7.19 with Eq. 7.17 gives:

 Au − Ab

Cu + v − Cb − T


 =


 α −β

β α





 Ax − Ab

Cx + y − Cb − T




This can be rewritten as a linear system to allow solving for the unknowns:


 u − b − αx + αb βx − βb −β

−βx + βb u − b − αx + αb α − 1







A

C

T


 =


 −βy

−v + αy


 (7.20)

Of course, there is an equation like this for each conjugate pair. A and C are the same for each

conjugate pair, but T differs. Thus we get a large 2n × (2 + n) linear system. If n is large, a

small sample of conjugate point pairs can be used to find A and C using Eq. 7.20, and then the n

unknowns T (from each conjugate pair) can be determined separately using a single closed-form

equation for each.

177

Step 4 is illustrated in Fig. 7.16. After step 3, both views are looking straight down on the

biepipolar plane and the plane is viewed correctly in Euclidean coordinates up to the accuracy of

θ. Furthermore, the center of rotation for each conjugate pair is known. Thus it is straight forward

to rotate each point in A by a fixed amount φ around its corresponding center of rotation.

Step 5 is a postwarp step for making the synthetic view look like the original views. It is easy to

achieve by simply undoing all the transformations that were applied to the view. The final synthetic

image will show the turntable scene rotated by φ (in a Euclidean sense) around the turntable axis.

This rotation is relative to the starting position in view A.

Of course, only the chosen conjugate points will appear in the synthetic view. If a dense cor-

respondence between the reference views is known, which is reasonable to acquire if the views

are closely spaced, then the synthetic view will also be dense and realistic. If a sparse correspon-

dence can be determined, techniques like image morphing might be used to reasonably complete

the synthetic view. If the scene is polyhedral, other techniques can be used to create the dense

correspondence.

In a real turntable sequence, there is likely to be a stationary background along with the rotating

turntable. In such cases, layering can be used to create realistic synthetic views: Simply place the

background and turntable on separate layers, leave the background unchanged, and recomposite

the synthetic turntable image onto the stable background.

It is also possible to have arbitrary numbers of turntables visible in the views; again, layering

can be used to create each synthetic view separately before recompositing for the final result. This

works because each synthetic view will be through the same camera, that is, the original camera

A. The separate turntables can even be rotated by different amounts. When multiple turntables

are visible in the scene and their rotation axes are not parallel in space, then it may be possible to

extract full Euclidean calibration; this is left for future work.

Sample results from applying the algorithm to two real reference views are given in Fig. 7.17.

Errors visible in the output are due to incorrect point correspondences, or in some cases, missing

information due to occlusions. Nonetheless, the overall shape of the house model is evident even

at the most extreme rotation angles.

178

Figure 7.17 Experimental results. Top row is original two reference views.

7.5.2 Conclusion

In this section, a method for view interpolation between two views of a rotating object was

presented. The interpolation sequence will show the object rotating at constant velocity and the

virtual camera will have fixed internal parameters throughout the sequence. Thus the interpolation

sequence will not have the distortions evident in “view morphing” techniques [153, 108] where the

internal calibration of the virtual camera can change during the sequence.

The two reference views must be captured by cameras with the same internal parameters. How-

ever, it is not necessary to calculate the fundamental matrix between the reference views, which

is notoriously difficult to determine correctly, as long as the epipoles or at least the biepipolar line

can be determined in another way (e.g., from conjugate points). Notably, the axis of rotation can

be determined directly from point correspondences.

The interpolation algorithm given here represents IBR in its purest form: the virtual views are

created entirely by moving pixels around without scene reconstruction.

179

Chapter 8

Summary

8.1 Accomplishments

This dissertation has achieved the following:

• The concept and underlying theory of screw-transform manifolds has been presented. Al-

though formal mathematical proofs for Conjectures 1 and 2 are lacking, the logical derivation

of the screw-transform manifold algorithms (i.e., the algorithms used to define ΦF and ΛF)

along with ample experimental evidence from synthetic and real data suggests the truth of the

conjectures. Detailed formal proofs of the steps of the screw-transform manifold algorithms

have been provided.

• Three general-purpose algorithms for finding the mutual-intersection point(s) of a series of

manifolds have been presented. Such algorithms have a variety of uses; here they are used

for camera self calibration since self calibration can be achieved by finding the mutual in-

tersection point of three or more screw-transform manifolds. The voting algorithm (Section

5.2) was first presented in [103] and later used in [104]. The other two algorithms were

presented in [112].

• Extensive experiments (Section 6.1 and Section 6.2) have demonstrated the efficacy and

performance characteristics of the SURFIT and MCMC-based algorithms. A detailed metric

scene reconstruction using only three closely-spaced views of a real scene was demonstrated

with the SURFIT algorithm (Section 6.1.6 and Fig. 6.11).

180

• Experiments have shown that self calibration can be reliably achieved from as few as three

camera views. This was established by experiments with the SURFIT algorithm that showed

most trials performed with three camera views and 0 noise yielded only 1 or 2 possible

calibrations and the correct calibration was usually one of these; see Section 6.1.5 for a more

detailed discussion. Furthermore, a successful reconstruction from three real camera views

(Section 6.1.6) was demonstrated.

• The mathematics of screw-transform manifolds for specialized motions (i.e., non-general

motions) has been presented (Section 4.4). The case of turntable motion was first presented

in [104]; the case of transfocal motion was presented in [112]. The case of general motion

was first presented in [103].

• An important theorem partitioning all pairwise monocular camera motions into 6 categories

(Theorem 1 of Section 4.4.4; also see Table 4.1 and Table 4.2) has been presented. A simple

test has also been provided for each category. To the best of my knowledge, the case called

“transfocal motion” has never been formally labeled or studied before Manning and Dyer

[112]. The test for turntable motion was first presented in [104]; a minor flaw in the proof of

the test was corrected in Manning and Dyer [112].

• Important details needed for implementing the algorithms have been presented.

• A detailed tutorial on multiview geometry has been provided that assumes only knowledge

of linear algebra. This tutorial may prove friendlier than existing texts to early graduate

students and advanced undergraduates interested in the topic.

• An brief history and survey of image-based rendering and camera self calibration has been

presented.

• A linear algorithm [106, 111] for the affine self calibration of a stereo rig from dynamic

scenes has been presented. The algorithm requires apparent linear motion in the scene. This

algorithm was one of the first published uses of dynamic scenes for camera self calibration.

181

• A second, nonlinear algorithm for affine self calibration of stereo rigs directly from funda-

mental matrices has been presented here for the first time. Two views of a static scene are

required; alternatively, the rig could view a rigid object undergoing general motion.

• An IBR method [107, 108] for generating physically-valid interpolation sequences between

two views of a dynamic scene with apparent linear motion has been presented. This method

was probably the first to perform physically-valid view synthesis of dynamic scenes from

novel viewpoints.

• An IBR method for generating physically-valid interpolation sequences between two views

of a dynamic scene with turntable motion has been presented here for the first time.

8.2 Conclusions

In my time as a graduate student studying image-based rendering, I have come to the following

broad conclusions. First, image-based rendering is part of a larger trend in engineering in which

sampling is a better, more efficient way to solve certain problems (e.g., speech synthesis). Sec-

ond, most useful IBR techniques require camera calibration. In particular, IBR for dynamic scenes

without camera calibration is highly restrictive in terms of what classes of motion can be portrayed

and what kinds of virtual views can be created. This echoes the sentiment expressed by Werner in

his doctoral thesis [189]. Third, the self calibration of a general pinhole camera is possible pro-

vided the given data (e.g., point correspondences) has sufficiently-low noise. Completely-accurate

internal calibration may not be necessary to produce usable scene reconstructions and ego-motion

estimates. Finally, the mutual-intersection points of a collection of manifolds can be determined

quickly and reliably by direct intersection, at least for low-dimensional manifolds. This represents

an ideal alternative to nonlinear optimization when performing camera self calibration.

182

BIBLIOGRAPHY

[1] Adelson and Bergen. The Plenoptic Function and the Elements of Early Vision, pages 3–20.
MIT Press, Cambridge, MA, 1991.

[2] Aloimonos. Low Level Visual Computations. PhD thesis, University of Rochester, 1986.

[3] Appel. Some techniques for shading machine renderings of solids. In AFIPS 1968 Spring
Joint Computer Conf., volume 32, pages 37–45, 1968.

[4] Armstrong, Zisserman, and Beardsley. Euclidean structure from uncalibrated images. In
Proc. British Machine Vision Conference, pages 509–518, 1994.

[5] Armstrong, Zisserman, and Hartley. Self-calibration from image triplets. In Proc. European
Conference on Computer Vision, LNCS 1064/5, pages 3–16. Springer-Verlag, 1996.

[6] Avidan and Shashua. Novel view synthesis in tensor space. In Proc. Computer Vision and
Pattern Recognition Conf., pages 1034–1040, 1997.

[7] Avidan and Shashua. Non-rigid parallax for 3D linear motion. In Proc. Image Understand-
ing Workshop, pages 199–201, 1998.

[8] Ayache and Lustman. Trinocular stereo vision for robotics. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 13(1):73–85, 1991.

[9] Bajura and Neumann. Dynamic registration correction in video-based augmented reality
systems. IEEE Computer Graphics and Applications, 15(5):52–60, 1995.

[10] Baker and Kanade. Limits on super-resolution and how to break them. In Proc. Computer
Vision and Pattern Recognition Conf., pages 372–379, 2000.

[11] Baker and Kanade. Hallucinating faces. In Fourth International Conference on Automatic
Face and Gesture Recognition, March 2000.

[12] Beardsley and Zisserman. Affine calibration of mobile vehicles. In Mohr and Chengke,
editors, Europe-China workshop on Geometrical Modelling and Invariants for Computer
Vision, pages 214–221. Xidan University Press, Xi’an, China, 1995.

183

[13] Beardsley, Torr, and Zisserman. 3D model aquisition from extended image sequence. In
Proc. European Conference on Computer Vision, pages 683–695, 1996.

[14] Beier and Neely. Feature-based image metamorphosis. In Proc. SIGGRAPH 92, pages
35–42, 1992.

[15] Blanz and Vetter. A morphable model for the synthesis of 3d faces. In Proc. SIGGRAPH
99, pages 187–194, 1999.

[16] Blinn and Newell. Texture and reflection in computer generated images. Communications
of the ACM, 19(10):542–547, October 1976.

[17] Bottema. Theoretical Kinematics. North-Holland Publishing Company, New York, 1979.

[18] Breasted. A History of Egypt. Charles Scribner’s Sons, New York, 1905.

[19] Bregler, Covell, and Slaney. Video rewrite: Driving visual speech with audio. In Proc.
SIGGRAPH 97, pages 353–360, 1997.

[20] Brodsky, Fermller, and Aloimonos. Shape from video. In Proc. Computer Vision and
Pattern Recognition Conf., volume 2, pages 146–151, 1999.

[21] Burt and Adelson. The laplacian pyramid as a compact image code. IEEE Trans. Commu-
nications, 31:532–540, 1983.

[22] Carlos. Switched-On Bach. Audio recording, 1968.

[23] Caspi and Irani. Alignment of Non-Overlapping sequences. In Proc. Int. Conf. on Computer
Vision, volume 2, pages 76–83, 2001.

[24] Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD thesis,
University of Utah, Salt Lake City, UT, 1974.

[25] Chai, Chan, Shum, and Tong. Plenoptic sampling. In Proc. SIGGRAPH 00, pages 307–318,
2000.

[26] Chen and Williams. View interpolation for image synthesis. In Proc. SIGGRAPH 93, pages
279–288, 1993.

[27] Cootes, Edwards, and Taylor. Active appearance models. In Proc. European Conference on
Computer Vision, volume 2, pages 484–498, 1998.

[28] Davis. Mosaics of scenes with moving objects. In Proc. Computer Vision and Pattern
Recognition Conf., pages 354–360, 1998.

[29] Debevec. Rendering synthetic objects into real scenes: Bridging traditional and image-
based graphics with global illumination and high dynamic range photography. In Proc.
SIGGRAPH 98, pages 189–198, 1998.

184

[30] Debevec, Wenger, Tchou, Gardner, Waese, and Hawkins. A lighting reproduction approach
to live-action compositing. ACM Transactions on Graphics, 21(3):547–556, July 2002.

[31] Debevec, Taylor, and Malik. Modeling and rendering architecture from photographs: A
hybrid geometry- and image-based approach. In Proc. SIGGRAPH 96, pages 11–20, 1996.

[32] Dellaert, Seitz, Thorpe, and Thrun. Structure from motion without correspondence. In
Proc. Computer Vision and Pattern Recognition Conf., pages 557–564, 2000.

[33] Demey, Zisserman, and Beardsley. Affine and projective structure from motion. In Hogg
and Boyle, editors, Proc. 3rd British Machine Vision Conference, Leeds, pages 49–58.
Springer-Verlag, September 1992.

[34] Deriche, Zhang, Luong, and Faugeras. Robust recovery of the epipolar geometry for an
uncalibrated stereo rig. In Proc. European Conference on Computer Vision, pages 567–576,
1994.

[35] Devernay and Faugeras. From projective to euclidean reconstruction. In Proc. Computer
Vision and Pattern Recognition Conf., pages 264–269, 1996.

[36] Dudley. Parallel bandpass vocoder. A machine for synthesizing the human voice, 1939.

[37] E. Trucco and Verri. Introductory Techniques for 3-D Computer Vision. Prentice-Hall,
Upper Saddle River, N. J., 1998.

[38] Edwards, Taylor, and Cootes. Learning to identify and track faces in image sequences. In
Proc. Sixth Int. Conf. Computer Vision, pages 317–322, 1998.

[39] Efros and Leung. Texture synthesis by non-parametric sampling. In Proc. Int. Conf. on
Computer Vision, pages 1033–1038, 1999.

[40] Farid and Popescu. Blind removal of image non-linearities. In Proc. Int. Conf. on Computer
Vision, pages 76–81, 2001.

[41] Faugeras, Luong, and Maybank. Camera self-calibration: Theory and experiments. In Proc.
European Conference on Computer Vision, pages 321–334, 1992.

[42] Faugeras and Luong. The Geometry of Multiple Images. The MIT Press, Cambridge, Mas-
sachusetts, 2001.

[43] Faugeras. Three-Dimensional Computer Vision, A Geometric Viewpoint. MIT Press, Cam-
bridge, MA, 1993.

[44] Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig. In Proc.
European Conference on Computer Vision, pages 563–578, 1992.

185

[45] Faugeras. Stratification of 3-dimensional vision: Projective, affine, and metric representa-
tions. Journal of the Optical Society of America, 12(3):465–484, 1995.

[46] Faugeras, Quan, and Sturm. Self-calibration of a 1D projective camera and its application to
the self-calibration of a 2d projective camera. In Proc. European Conference on Computer
Vision, pages I:36–52. Springer-Verlag, June 1998.

[47] Feiner, MacIntyre, Hollerer, and Webster. A touring machine: Prototyping 3D mobile aug-
mented reality systems for exploring the urban environment. In Int. Symp. on Wearable
Computers, October 1997.

[48] Feynman. Surely You’re Joking, Mr. Feynman!: Adventures of a Curious Character. W.W.
Norton, New York, 1985.

[49] Feynman. QED: The strange theory of light and matter. Princeton University Press, Prince-
ton, N. J., 1985.

[50] Finsterwalder. Die geometrischen grundlagen der photogrametrie. Jahresbericht Deutscher
Mathematik, pages 1–35, 1899.

[51] Fischler and Bolles. Random sample consensus: A paradigm for model fitting with ap-
plications to image analysis and automated cartography. Communications of the ACM,
24(6):381–395, June 1981.

[52] Fitzgibbon, Cross, and Zisserman. Automatic 3D model construction for turn-table se-
quences. In Koch and Van Gool, editors, Proc. Workshop on 3D Structure from Multiple
Images of Large-Scale Environments (SMILE ’98), pages 155–170. Springer, 1998.

[53] Fitzgibbon and Zisserman. Multibody structure and motion: 3-D reconstruction of indepen-
dently moving objects. In Proc. European Conference on Computer Vision, pages 891–906.
Springer-Verlag, June 2000.

[54] Forsyth and Ponce. Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle
River, N. J., 2003.

[55] Friedman. U.S. Submarines Through 1945: An Illustrated Design History. United States
Naval Institute, 1995.

[56] Gap, Inc. Khakis swing. Television Commercial, 1998.

[57] Geyer and Daniilidis. Catadioptric camera calibration. In Proc. Seventh Int. Conf. Com-
puter Vision, pages I:398–404, 1999.

[58] Gleicher. Projective registration with difference decomposition. In Proc. Computer Vision
and Pattern Recognition Conf., pages 331–337, 1997.

186

[59] Golub and Loan. Matrix Computations. 2nd ed. Johns Hopkins Press, Baltimore, MD,
1989.

[60] Golub and Reinsch. Singular value decomposition and least squares solutions. Numerische
Mathematik, 28(14):403–420, 1970.

[61] Gondry and Buffin. Like a rolling stone. Music Video, 1995.

[62] Goral, Torrance, Greenburg, and Battaile. Modelling the interaction of light between diffuse
surfaces. Computer Graphics, 18-3:213–222, July 1984.

[63] Gortler, Grzeszczuk, Szeliski, and Cohen. The lumigraph. In Proc. SIGGRAPH 96, pages
43–54, 1996.

[64] Greene. Environment mapping and other applications of world projections. IEEE Computer
Graphics and Applications, 6(11):21–29, November 1986.

[65] Harris and Stephens. A combined corner and edge detector. In Proc. 4th Alvey Vision Conf.,
pages 189–192, 1988.

[66] Hartley. Camera calibration using line correspondences. In Proc. Image Understanding
Workshop, pages 361–366, 1993.

[67] Hartley. Projective reconstruction from line correspondences. In Proc. Computer Vision
and Pattern Recognition Conf., pages 903–907, 1994.

[68] Hartley. Self-calibration from multiple views with a rotating camera. In Proc. European
Conference on Computer Vision, pages 471–478, 1994.

[69] Hartley. A linear method for reconstruction from lines and points. In Proc. Fifth Int. Conf.
Computer Vision, pages 882–887, 1995.

[70] Hartley and Zisserman. Multiple View Geometry. Cambridge University Press, New York,
2000.

[71] Hartley. Euclidean reconstruction from uncalibrated views. In Zisserman and Forsyth, edi-
tors, Applications of Invariance in Computer Vision, LNCS 825, pages 237–256. Springer-
Verlag, 1994.

[72] Hartley. Projective reconstruction and invariants from multiple images. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 16(10):1036–1041, 1994.

[73] Hartley. In defence of the 8-point algorithm. In Proc. Fifth Int. Conf. Computer Vision,
pages 1064–1070, 1995.

[74] Hauck. Neue konstruktionen der perspektive und photogrammetrie. Crelle J. f. Math., pages
1–35, 1883.

187

[75] Heigl, Koch, Pollefeys, Denzler, and Van Gool. Plenoptic modeling and rendering from
image sequences taken by hand-held camera. In Proc. DAGM’99, pages 94–101, 1999.

[76] Heyden. Geometry and Algebra of Multiple Projective Transformations. PhD thesis, Lund
Institute of Technology, Lund, Sweden, 1995.

[77] Heyden and Astrom. Euclidean reconstruction from constant intrinsic parameters. In Proc.
Int. Conf. on Pattern Recognition, pages 339–343, 1996.

[78] Horaud and Csurka. Self-calibration and Euclidean reconstruction using motions of a stereo
rig. In Proc. Sixth Int. Conf. Computer Vision, pages 96–103, 1998.

[79] Horn. Relative orientation. Int. J. Computer Vision, 4:59–78, January 1990.

[80] Horn. Projective geometry considered harmful. Self published on Internet, 1999.

[81] Horn. Relative orientation revisited. Journal of the Optical Society of America A,
8(10):1630–1638, 1991.

[82] Hough. Machine analysis of bubble chamber pictures. In International Conference on High
Energy Accelerators and Instrumentation, 1959.

[83] Irani, Anandan, and Hsu. Mosaic based representations of video sequences and their appli-
cations. In Proc. Fifth Int. Conf. Computer Vision, pages 605–611, 1995.

[84] Irani, Hassner, and Anandan. What does the scene look like from a scene point? In Proc.
European Conference on Computer Vision, pages 883–897, 2002.

[85] Irani and Peleg. Improving resolution by image registration. CVGIP: Graphical Models
and Image Processing, 53:231–239, 1991.

[86] Isard and Miller. Diphone synthesis techniques. In Proceedings of IEE International Con-
ference on Speech Input/Output, pages 77–82, 1986.

[87] Jain, Kasturi, and Schunck. Machine Vision. McGraw-Hill, St. Louis, 1995.

[88] Kanade, Rander, and Narayanan. Virtualized reality: Constructing virtual worlds from real
scenes. IEEE Multimedia, 4(1):34–46, 1997.

[89] Koch. Automatische Oberflaechenmodellierung starrer dreidimensionaler Objekte aus
stereoskopischen Rundum-Ansichten. PhD thesis, Hannover, 1996.

[90] Koch and Van Gool, editors. Proc. Workshop on 3D Structure from Multiple Images of
Large-Scale Environments (SMILE ’98). Springer, 1998.

[91] Koenderink and van Doorn. Affine structure from motion. J. Opt. Soc. Am. A, 8:377–385,
1991.

188

[92] Kruppa. Zur ermittlung eines objektes aus zwei perspektiven mit innerer orientierung. Sitz.-
Ber. Akad. Wiss., Wien, math. naturw. Kl., Abt. IIa., 122:1939–1948, 1913.

[93] Kutulakos and Seitz. A theory of shape by space carving. In Proc. Seventh Int. Conf.
Computer Vision, pages 307–314, 1999.

[94] Kutulakos and Vallino. Calibration-free augmented reality. IEEE Trans. Visualization and
Computer Graphics, 4(1):1–20, 1998.

[95] Laveau and Faugeras. 3-D scene representation as a collection of images. In Proc. Int.
Conf. on Pattern Recognition, pages 689–691, 1994.

[96] Levoy and Hanrahan. Light field rendering. In Proc. SIGGRAPH 96, 1996.

[97] Lhuillier and Quan. Image interpolation by joint view triangulation. In Proc. Computer
Vision and Pattern Recognition Conf., volume 2, pages 139–145, 1999.

[98] Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections.
Nature, 293:133–135, 1981.

[99] Lourakis and Deriche. Camera self-calibration using the Kruppa equations and the SVD of
the fundamental matrix: The case of varying intrinsic parameters. Technical Report 3911,
INRIA, March 2000.

[100] Lucas and Kanade. An iterative image registration technique with an application to stereo
vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence,
pages 674–679, 1981.

[101] Lucasfilm Ltd. Willow. Film, 1988.

[102] MacCurdy, editor. The Notebooks of Leonardo da Vinci, page 343. George Braziller, New
York, 1954.

[103] Manning and Dyer. Metric self calibration from screw-transform manifolds. In Proc. Com-
puter Vision and Pattern Recognition Conf., pages 590–597, 2001.

[104] Manning and Dyer. Stratified self calibration from screw-transform manifolds. In Proc.
European Conference on Computer Vision, volume 4, pages 131–145, 2002.

[105] Manning and Dyer. Research on self calibration without minimization. Technical Report
1490, Computer Sciences Department, University of Wisconsin-Madison, 2003.

[106] Manning and Dyer. Dynamic view morphing. Technical Report 1387, Computer Sciences
Department, University of Wisconsin-Madison, 1998.

[107] Manning and Dyer. Interpolating view and scene motion by dynamic view morphing. In
Proc. Image Understanding Workshop, pages 323–330, 1998.

189

[108] Manning and Dyer. Interpolating view and scene motion by dynamic view morphing. In
Proc. Computer Vision and Pattern Recognition Conf., volume 1, pages 388–394, 1999.

[109] Manning and Dyer. Dynamic view interpolation without affine reconstruction. In
Leonardis, Solina, and Bajcsy, editors, Confluence of Computer Vision and Computer
Graphics, pages 123–142. Kluwer, Dordrecht, The Netherlands, 2000.

[110] Manning and Dyer. Environment map morphing. Technical Report 1423, Computer Sci-
ences Department, University of Wisconsin-Madison, 2000.

[111] Manning and Dyer. Affine calibration from moving objects. In Proc. Eighth Int. Conf.
Computer Vision, volume 1, pages 494–500, 2001.

[112] Manning and Dyer. On screw-transform manifolds. Technical Report 1482, Computer
Sciences Department, University of Wisconsin-Madison, 2003.

[113] Marr. Vision. W. H. Freeman Co., San Francisco, CA, 1982.

[114] McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics. PhD
thesis, University of North Carolina at Chapel Hill, Chapel Hill, 1997.

[115] McMillan and Bishop. Head-tracked stereoscopic display using image warping. In Proc.
SPIE Vol. 2409A, pages 21–30, 1995.

[116] McMillan and Bishop. Plenoptic modeling. In Proc. SIGGRAPH 95, pages 39–46, 1995.

[117] Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller. Equation of state calculations by
fast computing machines. J. of Chemical Physics, 21:1087–1092, 1953.

[118] Miller and Hoffman. Illumination and reflection maps: Simulated objects in simulated and
real environments. In Course Notes for Advanced Computer Graphics Animation, SIG-
GRAPH 84, 1984.

[119] Mohr, Buschmann, Falkenhagen, Gool, and Koch. CUMULI, PANORAMA, and VAN-
GUARD project overview. In Koch and Van Gool, editors, Proc. Workshop on 3D Struc-
ture from Multiple Images of Large-Scale Environments (SMILE ’98), pages 1–13. Springer,
1998.

[120] Moons, Van Gool, Proesmans, and Pauwels. Affine reconstruction from perspective image
pairs with a relative object-camera translation in between. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 18(1):77–83, January 1996.

[121] Narayanan, Rander, and Kanade. Constructing virtual worlds using dense stereo. In Proc.
Sixth Int. Conf. Computer Vision, pages 3–10, 1998.

[122] Nayar. Catadioptric omnidirectional camera. In Proc. Computer Vision and Pattern Recog-
nition Conf., pages 482–488, 1997.

190

[123] Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report
CRG-TR-93-1, University of Toronto, 1993.

[124] New York Institute of Technology. Interface. Film, 1985.

[125] Okutomi and Kanade. A multiple-baseline stereo. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 15(4):353–363, 1985.

[126] Oskarsson, Zisserman, and Astrom. Minimal projective reconstruction for combinations of
points and lines in three views. In Proc. British Machine Vision Conference, pages 63–72,
2002.

[127] Pacific Title / Mirage Studio. The Jester. Short film, 1999.

[128] Pacific Western. Terminator 2: Judgment Day. Film, 1991.

[129] Peleg and Herman. Panoramic mosaicing with videobrush. In Proc. Image Understanding
Workshop, pages 261–264, 1997.

[130] Pollefeys. Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Se-
quences. PhD thesis, Katholieke Universiteit Leuven, Belgium, 1999.

[131] Pollefeys, Koch, and Van Gool. Self-calibration and metric reconstruction in spite of vary-
ing and unknown internal camera parameters. In Proc. Sixth Int. Conf. Computer Vision,
pages 90–95, 1998.

[132] Pollefeys and Van Gool. A stratified approach to metric self-calibration. In Proc. Computer
Vision and Pattern Recognition Conf., pages 407–412, 1997.

[133] Pollefeys and Van Gool. A stratified approach to metric self-calibration with the modulus
constraint. Technical Report 9702, K. U. Leuven – ESAT-MI2, 1997.

[134] Pollefeys and Van Gool. Stratified self-calibration with the modulus constraint. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 21(8):707–724, August 1999.

[135] Pollefeys and Van Gool, editors. Proc. Second Workshop on 3D Structure from Multiple
Images of Large-Scale Environments (SMILE ’00). Springer, 2000.

[136] Pollefeys, Van Gool, and Oosterlinck. The modulus constraint: A new constraint for self-
calibration. In Proc. Int. Conf. on Pattern Recognition, pages 349–353, 1996.

[137] Pryor, Furness, and Viirre. The virtual retinal display: A new display technology using
scanned laser light. In Proc. Human Factors and Ergonomics Society, 42nd Annual Meeting,
pages 1570–1574, 1998.

[138] Quan. Affine stereo calibration for relative affine shape reconstruction. In Proc. 4th British
Machine Vision Conference, Surrey, England, pages 659–668, 1993.

191

[139] Quan. Invariants of six points and projective reconstruction from three uncalibrated images.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(1):34–46, 1995.

[140] Quan. Uncalibrated 1D projective camera and 3d affine reconstruction of lines. In Proc.
Computer Vision and Pattern Recognition Conf., pages 60–65, 1997.

[141] Quan and Kanade. A factorization method for affine structure from line correspondences.
In Proc. Computer Vision and Pattern Recognition Conf., pages 803–808, 1996.

[142] Rademacher and Bishop. Multiple-center-of-projection images. In Proc. SIGGRAPH 98,
pages 199–206, 1998.

[143] Rose, Cohen, and Bodenheimer. Verbs and adverbs: Multidimensional motion interpola-
tion. IEEE Computer Graphics and Applications, 18(5):32–40, 1998.

[144] Rothwell, Csurka, and Faugeras. A comparison of projective reconstruction methods for
pairs of views. In Proc. Fifth Int. Conf. Computer Vision, 1995.

[145] Rousso, Peleg, Finci, and Rav-Acha. Universal mosaicing using pipe projection. In Proc.
Sixth Int. Conf. Computer Vision, pages 945–952, 1998.

[146] Roy, Meunier, and Cox. Cylindrical rectification to minimize epipolar distortion. In Proc.
Computer Vision and Pattern Recognition Conf., pages 393–399, 1997.

[147] Sawhney and Kumar. True multi-image alignment and its application to mosaicing and
lens distortion correction. IEEE Trans. on Pattern Analysis and Machine Intelligence,
21(3):235–243, 1999.

[148] Sawhney, Hsu, and Kumar. Robust video mosaicing through topology inference and local
to global alignment. In Proc. European Conference on Computer Vision, Vol. II, pages
103–122, 1998.

[149] Sawnhey and Kumar. True multi-image alignment and its application to mosaicing and
lens distortion correction. In Proc. Computer Vision and Pattern Recognition Conf., pages
450–456, 1997.

[150] Schaffalitzky. Direct solution of modulus constraints. In Proceedings of the Indian Con-
ference on Computer Vision, Graphics and Image Processing, Bangalore, pages 314–321,
2000.

[151] Schmid, Mohr, and Bauckhage. Comparing and evaluating interest points. In Proc. Int.
Conf. on Computer Vision, pages 230–235, 1998.

[152] Seitz and Anandan. Implicit scene reconstruction from probability density functions. In
Proc. Computer Vision and Pattern Recognition Conf., pages 28–34, 1999.

[153] Seitz and Dyer. View morphing. In Proc. SIGGRAPH 96, pages 21–30, 1996.

192

[154] Seitz and Dyer. Photorealistic scene reconstruction by voxel coloring. In Proc. Computer
Vision and Pattern Recognition Conf., pages 1067–1073, 1997.

[155] Seitz and Dyer. View Morphing: Uniquely predicting scene appearance from basis images.
In Proc. Image Understanding Workshop, pages 881–887, 1997.

[156] Shade, Gortler, He, and Szeliski. Layered depth images. In Proc. SIGGRAPH 98, pages
231–242, 1998.

[157] Shapiro. Affine Analysis of Image Sequences. Cambridge University Press, Cambridge,
England, 1995.

[158] Shashua. Algebraic functions for recognition. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 17(8):779–789, 1995.

[159] Shashua. Projective structure from uncalibrated images: Structure from motion and recog-
nition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(8):778–790, 1994.

[160] Shashua and Wolf. Homography tensors: On algebraic entities that represent three views of
static or moving planar points. In Proc. European Conference on Computer Vision, pages
507–521. Springer-Verlag, June 2000.

[161] Shechtman, Caspi, and Irani. Increasing space-time resolution in video. In Proc. European
Conference on Computer Vision, pages 753–768, 2002.

[162] Shum and He. Rendering with concentric mosaics. In Proc. SIGGRAPH 99, pages 299–
306, 1999.

[163] Silberman. Matrix 2. Wired Magazine, May 2003.

[164] Sinha. Perceiving and Recognizing Three-Dimensional Forms. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1995.

[165] Slama, Theurer, and Henriksen, editors. Manual of Photogrammetry, Fourth Edition.
American Society of Photogrammetry and Remote Sensing, Falls Church, Virginia, 1980.

[166] Spetsakis and Aloimonos. Structure from motion using line correspondences. Int. J. Com-
puter Vision, 4(3):171–183, 1990.

[167] Spetsakis and Aloimonos. A unified theory of structure from motion. In Proc. Image Un-
derstanding Workshop, pages 271–283, 1990.

[168] Stein. Lens distortion calibration using point correspondences. In Proc. Computer Vision
and Pattern Recognition Conf., pages 602–608, 1997.

[169] Stein. Model based brightness constraints: On direct estimation of structure and motion. In
Proc. Computer Vision and Pattern Recognition Conf., pages 400–406, 1997.

193

[170] Stein. Geometric and Photometric Constraints and Structure from Three Views. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, June 1998.

[171] Stein. Tracking from multiple view points: Self-calibration of space and time. In Proc.
Computer Vision and Pattern Recognition Conf., pages I:521–527, 1999.

[172] Sturm. Critical motion sequences for monocular self-calibration and uncalibrated euclidean
reconstruction. In Proc. Computer Vision and Pattern Recognition Conf., pages 1100–1105,
1997.

[173] Sturm and Quan. Affine stereo calibration. In Proc. 6th International Conference CAIP
’95, Prague, Czech Republic, pages 838–843, September 1995.

[174] Szeliski. Image mosaicing for tele-reality applications. In Proc. Workshop Applications of
Computer Vision, pages 44–53, 1994.

[175] Szeliski. Video mosaics for virtual environments. IEEE Computer Graphics and Applica-
tions, 16(2):22–30, 1996.

[176] Szeliski and Shum. Creating full view panoramic image mosaics and environment maps. In
Proc. SIGGRAPH 97, pages 251–258, 1997.

[177] The Revolution Company. EyeVision, 2001.

[178] Tomasi and Kanade. Shape and motion from image streams under orthography: A factor-
ization method. Int. J. Computer Vision, 9(2):137–154, 1992.

[179] Torr and Zisserman. Robust parameterization and computation of the trifocal tensor. Image
and Vision Computing, 15:591–605, 1997.

[180] Triggs. Autocalibration and the absolute quadric. In Proc. Computer Vision and Pattern
Recognition Conf., pages 609–614, 1997.

[181] Ullman. The Interpretation of Visual Motion. MIT Press, Cambridge, MA, 1979.

[182] Universal Pictures. Jurassic Park. Film, 1993.

[183] Van Gool, Moons, Proesmans, and Van Diest. Affine reconstruction from perspective image
pairs obtained by a translating camera. In Proc. Int. Conf. on Pattern Recognition, pages
A:290–294, 1994.

[184] Vieville, Faugeras, and Luong. Motion of points and lines in the uncalibrated case. Int. J.
Computer Vision, 17(1):7–41, January 1996.

[185] Village Roadshow Productions. The Matrix. Film, 1999.

[186] Walt Disney Pictures. Flight of the Navigator. Film, 1986.

194

[187] Walt Disney Pictures. Dinosaur. Film, 2000.

[188] Weng, Huang, and Ahuja. Motion and structure from line correspondences: Closed form
solution, uniqueness and optimization. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 14(3):318–336, 1992.

[189] Werner. Image-Based Visualization of Real 3D Scenes. PhD thesis, Czech Technical Uni-
versity, Prague, Czech Republic, 1998.

[190] Werner, Hersch, and Hlavac. Rendering real-world objects using view interpolation. In
Proc. Fifth Int. Conf. Computer Vision, pages 957–962, 1995.

[191] Whitted. An improved illumination model for shaded display. Computer Graphics (Special
SIGGRAPH ’79 Issue), 13(3):1–14, August 1979.

[192] Wiley and Hahn. Interpolation synthesis of articulated figure motion. IEEE Computer
Graphics and Applications, 17(6):39–45, 1997.

[193] Williams. Pyramidal parametrics. In Proc. SIGGRAPH 83, pages 1–11, July 1983.

[194] Wolberg. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[195] Wolf and Shashua. On projection matrices P k → P 2, k = 3, . . . , 6, and their applications
in computer vision. In Proc. Int. Conf. on Computer Vision, volume 1, pages 53–67, 2002.

[196] Wolf. Elements of Photogrammetry. McGraw-Hill, 1974.

[197] Yang, Boyer, and Kak. Range data extraction and interpretation by structural light. In Proc.
1st IEEE Conf. Artificial Intelligence Appl., pages 199–205, 1984.

[198] Yu, Debevec, Malik, and Hawkins. Inverse global illumination: Recovering reflectance
models of real scenes from photographs from. In Proc. SIGGRAPH 99, pages 215–224,
1999.

[199] Zhang, Deriche, Faugeras, and Luong. A robust technique for matching two uncalibrated
images through the recovery of the unknown epipolar geometry. Artificial Intelligence,
78:87–119, 1995.

[200] Zisserman, Beardsley, and Reid. Metric calibration of a stereo rig. In IEEE Workshop on
Representation of Visual Scenes, pages 93–100, 1995.

[201] Zongker, Werner, Curless, and Salesin. Environment matting and compositing. In Proc.
SIGGRAPH 99, pages 205–214, 1999.

195

Appendix A: Mathematical Details

A.1 Derivation of the fundamental matrix

In this section we show in detail how the rising-turntable formulation of the fundamental matrix

(Eq. 4.1) can be derived in a purely mechanical way, using straight-forward properties of matrix

arithmetic. We also provide a list of mathematical equalities stemming from the rising-turntable

formulation.

A.1.1 Useful matrix properties

We begin by stating some general matrix properties that are used in Appendix A.1.2 and Ap-

pendix A.2.

Property 1 (Matrix inverse). Let M = [m1 m2 m3], with mi ∈
� 3 , be an invertible 3×3 matrix.

Observe that det(M) = m1 ·m2 × m3 = m1 × m2 ·m3 and



(m2 × m3)
>

(m3 × m1)
>

(m1 × m2)
>


 [m1 m2 m3] = det(M)




1 0 0

0 1 0

0 0 1




Since the inverse of a matrix is unique, it must be that

M−1 =
1

det(M)




(m2 × m3)
>

(m3 × m1)
>

(m1 × m2)
>




Property 2 (Cross-product matrix and cross-product operator). For a,b,u ∈ � 3 :

(a + b) × u = [a + b]×u = [a]×u + [b]×u = a × u + b × u

Property 3 (Matrix multiplication). For a,b, c,d, e, f ∈ � 3 :

[
a b c

]



d>

e>

f>


 = ad> + be> + cf>

196

Property 4 (An alternative cross-product expression). Here we consider a complicated expression

for the cross-product operation which is used in Appendix A.1.2. In what follows, lij = hi × hj

and u ∈ � 3 . Since h1, h2, and h3 form a basis that spans
� 3 , u can be uniquely expressed as

u = σ1h1 + σ2h2 + σ3h3 for some σ1, σ2, σ3 ∈
�

.

(−l13l
>

23 + l23l
>

13)u = (−l13l
>

23 + l23l
>

13)(σ1h1 + σ2h2 + σ3h3)

= −σ1l13 det(H) − σ2l23 det(H)

= det(H)[h3]×(σ1h1 + σ2h2 + σ3h3)

= det(H)[h3]×u

Thus

[h3]× =
1

det(H)
(−l13l

>

23 + l23l
>

13)

Similarly, (l23l
>
12 − l12l

>
23) = det(H)[h2]×.

Property 5 (Intersection of two lines). Let h1,h2,h3 ∈
� 3 be arbitrary, nonzero, linearly indepen-

dent vectors. Then (h1 × h2)× (h1 × h3) is a vector u ∈ � 3 that is simultaneously perpendicular

to (h1 × h2) and (h1 × h3). Thus u is in the intersection of the plane with normal (h1 × h2) and

the plane with normal (h1 × h3). Since (h1 × h2) and (h1 × h3) are linearly independent, this

intersection is a line. Note that h1 lies on this line. Thus

(h1 × h2) × (h1 × h3) ∼= h1

In projective geometry terms, this identity indicates that the line through h1 and h2 intersects the

line through h1 and h3 at the point h1; the identity is used in Appendix A.2 but not in the derivation

below.

A.1.2 Direct derivation of fundamental matrix

We can now derive the fundamental matrix formula. The fundamental matrix F can be written

F = [−eB]×(H∞) = [−eB]×GH−1

197

where H and G are the left-most 3×3 matrices of ΠA and ΠB , respectively. H is simply [h1 h2 h3]

and ΠB has the form:

ΠB = ΠAS(−γ,−θ)

= [h1 h2 h3 h4]




cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 1 −γ

0 0 0 1




= [cos θh1 − sin θh2, sin θh1 + cos θh2,h3,−γh3 + h4]

Thus

G = [g1 g2 g3] = [cos θh1 − sin θh2, sin θh1 + cos θh2,h3]

Evaluating F is straight forward but involves many terms. Working in stages, we first multiply

[−eB]× with G (where eB, the left epipole of F, is given by Eq. A.11):

[−eB]×G = [(1 − cos θ)h1 + sin θh2 + γh3]×[g1 g2 g3]

= [(1 − cos θ)h1 × g1 + sin θh2 × g1 + γh3 × g1,

(1 − cos θ)h1 × g2 + sin θh2 × g2 + γh3 × g2,

(1 − cos θ)h1 × g3 + sin θh2 × g3 + γh3 × g3]

= [− sin θ(1 − cos θ)h1 × h2 + sin θ cos θh2 × h1 + γ cos θh3 × h1

− γ sin θh3 × h2, cos θ(1 − cos θ)h1 × h2 + sin θ sin θh2 × (h1)

+ γ sin θh3 × (h1) + γ cos θh3 × (h2),

(1 − cos θ)h1 × h3 + sin θh2 × h3]

= [− sin θ(1 − cos θ)l12 − sin θ cos θl12 − γ cos θl13 + γ sin θl23,

cos θ(1 − cos θ)l12 − sin θ sin θl12 − γ sin θl13 − γ cos θl23,

(1 − cos θ)l13 + sin θl23]

= [− sin θl12 − γ cos θl13 + γ sin θl23,

− (1 − cos θ)l12 − γ sin θl13 − γ cos θl23,

198

(1 − cos θ)l13 + sin θl23] (A.1)

The calculation is now finished by multiplying by H−1.

det(H){[−eB]×GH−1} = (− sin θl12 − γ cos θl13 + γ sin θl23)(h2 × h3)
> +

(−(1 − cos θ)l12 − γ sin θl13 − γ cos θl23)(h3 × h1)
> +

((1 − cos θ)l13 + sin θl23)(h1 × h2)
>

= − sin θl12l
>

23 − γ cos θl13l
>

23 + γ sin θl23l
>

23 +

(1 − cos θ)l12l
>

13 + γ sin θl13l
>

13 + γ cos θl23l
>

13 +

(1 − cos θ)l13l
>

12 + sin θl23l
>

12

= (1 − cos θ)(l12l
>

13 + l13l
>

12) + γ sin θ(l13l
>

13 + l23l
>

23) +

sin θ(l23l
>

12 − l12l
>

23) + γ cos θ(l23l
>

13 − l13l
>

23)

= (1 − cos θ)(l12l
>

13 + l13l
>

12) + γ sin θ(l13l
>

13 + l23l
>

23) +

[sin θh2 + γ cos θh3]× (A.2)

A.1.3 Useful properties of the screw-transform decomposition of the funda-
mental matrix

The following identities can all be derived from Eqs. 4.2–4.3 by straight-forward multiplica-

tion:

FAh1 = sin θh2 × h1 + γ cos θh3 × h1 (A.3)

FAh2 = γ cos θh3 × h2 (A.4)

FAh3 = sin θh2 × h3 (A.5)

FSh1 = γ sin θh2 × h3 (A.6)

FSh2 = (1 − cos θ)h2 × h1 + γ sin θh3 × h1 (A.7)

FSh3 = (1 − cos θ)h1 × h3 (A.8)

Letting m = sin θh2 + γ cos θh3 so that FA = [m]×, we have

FSm = sin θ(1 − cos θ)h2 × h1 + γ sin2 θh3 × h1 + γ cos θ(1 − cos θ)h1 × h3

199

= sin θ(1 − cos θ)h2 × h1 + γ sin2 θh3 × h1 + γ cos θh1 × h3 − γ cos2 θh1 × h3

= sin θ(1 − cos θ)h2 × h1 + γ cos θh1 × h3 − γh1 × h3

= −(1 − cos θ)(sin θh1 × h2 + γh1 × h3) (A.9)

Finally, the two epipoles of F are given by:

eA
∼= ΠA

(
S(γ, θ)[1, 0, 0, 1]>

)

= ΠA[cos θ, sin θ, γ, 1]>

= [h1,h2,h3][(cos θ − 1), sin θ, γ]>

= (cos θ − 1)h1 + sin θh2 + γh3 (A.10)

eB
∼= ΠB[1, 0, 0, 1]> = (ΠAS(−γ,−θ)) [1, 0, 0, 1]>

= (cos θ − 1)h1 − sin θh2 − γh3 (A.11)

A.2 Derivation of the parameterization algorithms

This section shows in detail how algorithms A–D are derived. Note the fundamental matrix

F between views A and B is found directly from the images themselves by identifying point

correspondences or by other means. FS and FA can be determined from F because

FS =
1

2
(F + F>) and FA =

1

2
(F − F>)

A.2.1 Derivation of Algorithm A–1

Step A–1.1. Define M by

M = [[e]×F|e] a>

where a ∈ � 4 and e is the left epipole of F. It is easy to verify (by direct multiplication) that

any choice of a ∈ � 4 produces an M that satisfies F ∼= [e]×M (note that [e]3×
∼= [e]×). It is

well-known that all M that satisfy the equation have the form given above (e.g., [72]). Thus it is

easy to find a matrix M for step (1).

Step A–1.2. Note that h3 · FSh3 = 0; this property allows the image of h3 to be parameterized by

a single real variable κ. One way to do this is by expanding the equation h3 · FSh3 = 0 and then

200

using the quadratic equation. A more elegant parameterization is given by the following derivation:

(H∞)h3
∼= h3

(M + ea>)h3
∼= h3

(M + ea>)h3 = k1h3

ea>h3 = (k1I− M)h3

k2e = (k1I− M)h3

(k1I − M)−1e ∼= h3 (A.12)

The fact that h3 lies on the cone FS (since h>
3 FSh3 = 0) suggests that, as κ varies over all real

numbers, Eq. A.12 will trace out the cone FS; experiments also suggest this is the case.

Step A–1.3. Using Property 5 (Appendix A.1.1), Eq. A.8, and Eq. A.9

(FSm) × (FSh3) = (FSm) × (s3F
Sh3)

= −s3(1 − cos θ)2(sin θl12 + γl13) × l13

= −s3(1 − cos θ)2(sin θh1)

∼= h1

Step A–1.4. Since FSh1 = γ sin θ(h2 × h3) and FAh3 = sin θ(h2 × h3) (see Eq. A.6 and Eq. A.5

in Section A.1.3), the given vector φ(1/s1, γ/s3)
> is in the null space of the given matrix:

φ

s1
FSh1 −

φγ

s3
FAh3 = φFSh1 − φγFAh3 = φγ sin θh2 × h3 − φγ sin θh2 × h3 = 0

Since the matrix is nonzero, its rank is at least 1; since the matrix has at least one null eigenvector,

its nullity is at least 1. The array has dimensionality 3 × 2 and the rank plus nullity add up to the

minimum dimension, which is 2. Hence the nullity is 1 and the given vector generates the null

space. The scalar φ is determined in the next step.

Step A–1.5. Use Eq. A.8. Note that θ, h1, h3, FS, and σ1 are known by this stage of the algorithm.

Step A–1.6. Straight-forward multiplication using the definition of m:

(φm − σ2 cos θh3)/(φ sin θ) = (φ sin θh2 + φγ cos θh3 −
φγ

σ3
cos θh3)/(φ sin θ) = h2

201

In summary, h1, h2, and h3, which are the vanishing points of the x, y, and z axes, respectively,

as seen in the first camera view, can be determined directly from F provided two real parameters κ

and θ are known. Furthermore, by the method just described, H can be determined up to a single

unknown real parameter: the scale of h3, which is γ. Once H is determined, the metric internal

calibration of the camera can be found and metric scene reconstruction is possible.

Naively, since K is an upper triangular matrix and we are only interested in K up to a scale

factor, we know K has at most 5 degrees of freedom. Our analysis shows that K can be parame-

terized by three real numbers κ, θ, and γ. The fact that K has only three degrees of freedom once

F is known has been shown before (e.g., [130]). Here we have demonstrated a specific parameter-

ization, one which has a great deal of intuitive meaning: θ is the rotation angle between the views,

κ corresponds to the vanishing point of the rotation axis, and γ is the amount of translation (as a

multiple of the distance between the optical center and the axis of rotation) along the screw axis

during the screw transformation.

A.2.2 Derivation of Algorithm A–2

Note that γ = 0 in the case of turntable motion.

Step A–2.1. This step simply defines the quantity m.

Step A–2.2. When γ = 0, Eq. 4.2 becomes FA = [sin θh2]×. Notice that we are fixing the scale of

h2 to be whatever the scale of F happens to be. The scale of h1 and h3 must be determined in later

steps so as to be consistent with the scale of h2 and F.

Step A–2.3. When γ = 0, Eq. A.9 becomes FSm = −(1 − cos θ)(sin θ)h1 × h2. Recall that lij is

shorthand notation for hi × hj.

Step A–2.4. It must be shown that FS has a 1-dimensional null space and that h1 is in the null space.

From Eqs. A.6–A.8 with γ = 0 we have FSh1 = 0, FSh2
∼= h2×h1 6= 0, and FSh3

∼= h1×h3 6= 0.

This proves both conditions since h1, h2, and h3 form a spanning basis for
� 3 . In practice, h1 is

found by finding a null eigenvector of FS; this eigenvector has an indeterminate scale factor and

step (5) is needed to find the scale that makes h1 consistent with F.

202

Step A–2.5. Since l12 = h1 × h2 found in step (3) is already scaled correctly to be consistent with

F, ‖h1 × h2‖ / ‖h1 × h2‖ gives the proper scale factor for converting h1 to h1.

Step A–2.6. Any vector u ∈ � 3 can be represented as u = ah1 + bh2 + ch3 for some scalars

a, b, c ∈ �
. Observe:

(FS − (1 − cos θ)[h1]×)>u

= (FS + (1 − cos θ)[h1]×)u

= (FS + (1 − cos θ)[h1]×)(ah1 + bh2 + ch3)

= b(1 − cos θ)l21 + c(1 − cos θ)l13 + b(1 − cos θ)l12 + c(1 − cos θ)l13

= 2c(1 − cos θ)l13

∼= l13

Since this relationship is true for every u ∈ � 3 with c 6= 0, it must hold for u = (1, 0, 0)>,

u = (0, 1, 0)>, and u = (0, 0, 1)>, thus proving (FS − (1 − cos θ)[h1]×)> = [l13 l13 l13] up to

unknown scale factors on the columns. Of course, if (1, 0, 0)> = ah1 + bh2 for some a, b ∈ �
then

the scale factor is 0 for column 1, and similarly for the other columns. The scale factor cannot be

0 for every column since (1, 0, 0)>, (0, 1, 0)>, and (0, 0, 1)> form a basis for
� 3 , and thus l13 can

be determined from at least one column.

Step A–2.7. h1 and h3 both lie in the plane perpendicular to l13
∼= h1 × h3 and l13 was determined

in the previous step. The vector R(l13, κ)h1 also lies in this plane for every choice of κ; this vector

is just h1 rotated within the plane l13. The procedure given in this step allows h3 to point in any

direction in the plane l13. Thus for every scenario S there is some κ that produces the correct

direction for h3, which is sufficient for the purposes of this paper. Empirical evidence suggests

that, for every choice of κ that produces an h3 that is not collinear with h1, there is some scenario

S that is consistent with this h3.

Step A–2.8. γ is used as an arbitrary scale factor for converting h3 to h3. In this case, γ does not

have its normal physical interpretation as the amount of screw translation. Note that the scale of

h1 and h2 is decoupled from the scale of h3 in the case of turntable motion.

203

A.2.3 Derivation of Algorithm A–3

Step A–3.1. Clear from Eq. 4.15.

Step A–3.2. Because the optical center lies on the axis of rotation, which serves as the z-axis, there

is no clear choice for the direction of the x-axis as there was in earlier cases. So an arbitrary line

through h3 is chosen for the xz-plane, which is used to determine h1 in the next step. For a given

fundamental matrix F, the same line must always be chosen.

Step A–3.3. The given parameterization allows h1 to be any point on the line l13. It also restricts

κ1 to the range (0, 1), which can help reduce the search space. Although not specified in order to

make the algorithm description easier, κ1 must be selected so that h1 is not collinear with h3.

Step A–3.4. This follows from Eq. 4.16.

Step A–3.5. As in step (3), this parameterization allows h2 to be any point on the line l23.

Step A–3.6. From Eq. 4.15. Makes h3 and F have the same scale.

Step A–3.7. If s1h1 = h1 and s2h2 = h2 then we can define u1 = h2 × h3 = s2h2 × h3 and

u2 = FSh1 = s1h2 × h3, where the latter formula comes from Eq. 4.16. Note that u2 was already

computed in step (4). We can now find φ = s1/s2 using u1φ = u2:

φ = u>

1 u2/ ‖u1‖2

Step A–3.8. γ ′ serves as the unknown scale factor that makes h1 consistent with F. γ ′ = 1/s1.

Step A–3.9. γ ′φ = (1/s1)(s1/s2) = 1/s2.

A.2.4 Derivation of Algorithm C

Only the linear system in step (3) is of interest. We know that conhin(F) has at least one

element, say H∞, and that at least one a ∈ � 3 satisfies Eq. 4.4. The linear system arises from

placing constraints on a using properties that we know H∞ must satisfy. We will not attempt

to prove that this system has a unique null eigenvector or determine under what conditions the

204

eigenvector is unique; we can only cite our experimental results as evidence that this approach

leads to a unique and correct H∞.

The properties of H∞ that we use are (1) the angle θ of the underlying screw rotation is encoded

in H∞, (2) H∞ (when scaled correctly) is conjugate to a rotation matrix and fixes all points on the

rotation axis (i.e., H∞h3 = h3), and (3) the vanishing line of all planes that are perpendicular to

the rotation axis is fixed in all views (i.e., (H∞)>l12 ∼= l12).

Assume H∞ is scaled so that det (H∞) = 1, making H∞ conjugate to a rotation matrix, and let

λ ∈ �
be the scale factor that makes Eq. 4.4 an equality:

H∞ = λ(M + ea>)

Then by the second property listed above,

h3 = H∞h3 = λMh3 + λea>h3

leading to rows 2-4 of the linear system. Rows 5-6 come from the third property:

l12 ∼= (H∞)>l12 ∼= M>l12 + ae>l12 = q + ξa

and so

(l12)x(qy + ξay) = (l12)y(qx + ξax) (A.13)

(l12)x(qz + ξaz) = (l12)z(qx + ξax) (A.14)

The first row uses the angle of rotation that is encoded in H∞: Because H∞ is conjugate to a

rotation matrix, it has eigenvalues 1, exp (θi), and exp (−θi), and since the trace of a matrix is the

sum of its eigenvalues,

1 + 2 cos(θ) = 1 + exp(−θi) + exp(−θi) = Tr(H∞)

= λ
(
M(11) + M(22) + M(33) + exax + eyay + ezaz

)
.

205

A.2.5 Derivation of Algorithm D

Step D.1. By assumption, i = 1. The goal is to find a such that the following holds:

H∞

1j
∼= Hj + eja

> (A.15)

This equation comes from Eq. 4.7; we only want equality up to a scale factor because we want the

coefficient of Hj to be 1. We will also meet this coefficient condition in steps D.3–D.5 when i 6= 1,

ensuring that all the resulting screw-transform manifolds will be at the same overall scale (because

the same set of Hj matrices and ej vectors will be used throughout the self-calibration process).

Let −σ be the scale factor that makes the left-hand side of Eq. A.15 equal to the right. We get

−σH∞

1j = Hj + eja
> = Hj + axE1 + ayE2 + azE3

which is the linear system to be solved in this step. Since the null eigenvector will only be found

up to a scale factor, it is necessary to divide by the second component of the eigenvector (corre-

sponding to Hj) to recover a at the correct scale.

Steps D.3–D.5. Using Eq. A.15 twice (following the pattern of Eq. 4.8), we get

H∞

ij
∼= (Hj + eja

>)(Hi + eia
>)−1 (A.16)

Let −φ be the scale factor that makes the right-hand side of Eq. A.16 equal to the left. We will

work in stages, first solving for φ then recovering a.

Rearranging Eq. A.16 leads to:

H∞

ij (Hi + eia
>) = −φ(Hj + eja

>) (A.17)

H∞

ijHi + φHj = −(H∞

ijei + φej)a
> (A.18)

The right-hand side of Eq. A.18 is a rank 1 matrix with columns in the same 1-dimensional space.

Thus so is the left-hand side, and the cross-product of any two columns on the left-hand side must

vanish. Hence, defining [q1 q2 q3] = H∞

ijHi and [m1 m2 m3] = Hj we get

0 = (q1 + φm1) × (q2 + φm2) = q1 × q2 + φ(q1 × m2 + m1 × q2) + φ2m1 × m2 (A.19)

206

which can be solved for φ. This covers steps D.3–D.4.

An alternative solution for φ to the one given in step (4) of Fig. 4.5 arises from multiplying

Eq. A.19 by v>
1 , leading to φ2v>

1 v1 + φv>
1 v2 + v>

1 v3 = 0 which can be solved with the quadratic

equation. Two solutions for φ will arise; use either one that satisfies Eq. A.19.

Once φ has been determined, step (5) follows directly from Eq. A.17 using the logic of step

(1). The vector a will have the correct scale because Eq. A.16 was derived from Eq. A.15 and the

missing scale factor φ was determined as a separate step. In other words, the derivation ensures

that the coefficient on each Hi is 1.

207

Appendix B: Implementation Details

B.1 Voting algorithm details

This section discusses some important implementation details for the voting-based manifold-

intersection algorithm (Section 5.2). Part of the reason we are presenting these details is that

the underlying ideas may have uses beyond the voting algorithm and screw-transform manifolds.

The conditioning of Section B.2 is always needed when using screw-transform manifolds with the

parameterization of h3 given by Eq. A.12; this conditioning is not specific to the voting algorithm.

B.1.1 Forced-spread sampling

The voting scheme for determining manifold intersection points (Section 5.2) is simple in prin-

ciple but care must be taken to sample the manifolds efficiently. If samples are generated in a

completely random manner, after several “zoom-in” steps very few randomly-generated samples

will lie within the current (smaller) search volume and the algorithm will converge more and more

slowly. Samples must be generated so that they (1) have a high probability of lying in the current

search range and (2) cover the search range uniformly so that all possible areas of convergence are

accounted for. In this section, we present an approach to sampling termed the forced-spread algo-

rithm that meets the goals just described; in practice, the algorithm leads to convergence quickly

provided the given fundamental matrices are close to the true fundamental matrices.

Recall that each sample point on a manifold is generated from some underlying parameters,

which can be thought of as the coordinates of the sample. The forced-spread algorithm generates

new sample points by slightly altering the coordinates of existing (previously generated) samples.

To ensure a uniform spread of samples across a manifold, only one sample in a given region is

allowed to create new samples; such a sample point is termed fecund and the samples it generates

are thought of as its offspring. Furthermore, to ensure the fast spread of sample points across a

manifold, only the most-recently generated samples are allowed to be fecund (i.e., allowed to have

offspring). This encourages exploration of the newly populated (and thus less filled out) areas of

the manifold.

208

Also recall from the general description of the voting algorithm in Section 5.2 that the search

volume Vi is subdivided into voting voxels. Since Vi is a hypercube, it is subdivided equally with

nVoteVoxelsPerSide per side. Let η denote the dimensionality of the search space, so η = 5 in the

case of direct self calibration in K-space and η = 3 in the case of stratified self calibration in a-

space. Thus (nVoteVoxelsPerSide)η voting voxels are needed: one η-dimensional array1 of integers

is needed to tally the votes cast for each voxel and one η-dimensional array of Booleans is needed

for each manifold to keep track of whether a manifold has cast a vote yet for any particular voting

voxel (since each manifold is allowed to cast at most one vote for any particular voting voxel).

Keeping track of the fecund samples requires a similar mechanism: the current search region

Vi is subdivided into fecund voxels (like voting voxels) and at most one fecund sample is allowed

per fecund voxel. This can be handled with a η-dimensional array of Booleans. Let nFecundPer-

Side denote the number of fecund voxels per side of Vi; thus the necessary array stores (nFecund-

PerSide)η Boolean variables, and one such array is needed per manifold. It should be true that

nFecundPerSide = k(nVoteVoxelsPerSide) for some integer k to achieve a uniform spread of fecund

samples over the voting voxels. Typically a value of k = 1 or k = 2 is used; larger than this

defeats the purpose of using the fecund-sample mechanism to force samples to spread quickly

over the manifold.

The forced-spread algorithm can now be stated; see the comments after the algorithm for fur-

ther explanation about the variables:

(1) Choose an initial search volume V0 that contains the mutual intersection point (see Section

5.2).

(2) Initialize arrays: There is a η-dimensional array of small integers used to keep track of votes

cast for each voxel, and for each manifold i there are two η-dimensional arrays of Booleans:

one for tracking whether or not manifold i has voted for a particular voxel yet, and one for

marking a region of the search space as having a fecund sample associated with manifold

1Here an η-dimensional array is an array with η indices. This does not specify the size of the array; each dimension
of the array may have its own size.

209

i. Only one fecund sample is allowed per fecund voxel (although other non-reproducing

samples are allowed to lie within a fecund voxel).

(3) Seed the manifolds: For each screw-transform manifold, generate random points on the

manifold (by choosing random (κ, θ, γ) triplets or (κ, θ) doublets, depending on η) until one

lies in the initial search region V0.

(4) Clear lists and set variables: For each manifold i, initialize two empty lists Si and Fi. The

list Si will hold all samples so far generated for manifold i that lie within current search

volume Vj. The list Fi will hold fecund samples. Add the seed sample points from step (3)

to both lists. Mark all manifolds as “active.”

(5) Generate samples: Let |L| denote the size of list L. For each manifold i marked “active”

with |Fi| < minimumFecundCount:

(5.1) Allow the nAllowedToReproduce (about 20 is good) most recently created fecund sam-

ples on manifold i to produce offspring. Use the range dithering approach described in

Appendix B.1.2 when generating the offspring.

(5.2) Add all offspring to the samples list Si. If an offspring lies in a voting voxel that

manifold i has not yet voted for, cast a vote for the voxel and mark the voxel so that

manifold i cannot vote again for it.

(5.3) If an offspring lies in a fecund voxel that has no fecund samples yet from manifold i,

add the offspring to the list Fi and mark the fecund voxel so that manifold i will have

no more fecund samples within it (this will not affect how other manifolds use that

fecund voxel).

(5.4) If a manifold i seems unable to generate any more fecund samples within a reasonable

amount of tries, mark the manifold as “not active” (the manifold is not keeping pace

with the other manifolds and is being thrown out).

(6) If some manifold i marked “active” has |Fi| < minimumFecundCount, return to step (5).

210

(7) If minimumFecundCount < sufficientFecundCount, increase minimumFecundCount by mini-

mumFecundCountIncrement and return to step (5).

(8) Determine if voting has proceeded long enough: Determine the voxel v that has the most

votes. If v has less votes than the threshold needed for “zooming in” then increase min-

imumFecundCount by minimumFecundCountIncrement and return to step (5). If, over time,

minimumFecundCount continues to be incremented without a mutual intersection point being

found, signal failure and exit the algorithm. Alternatively, the algorithm could backtrack to

a previous, larger search region and the voxel that led to the current failure could be barred

from receiving votes in the future.

(9) Check for linear solution: Check the “linearity” of all manifolds marked “active.” If

enough are sufficiently linear, find the point of intersection of the linear manifolds and return

this as the answer; see Eq. 5.1 and accompanying text.

(10) Zoom-in step: If no linear solution exists, perform the zoom-in process by following the

steps below, then reset minimumFecundCount to its initial value and return to step (5).

(10.1) Determine the new, smaller search region V ′ as follows:

(10.1.1) Determine the center of V ′. Typically, the voting voxels near the max voxel v (from

step (8)) will also have a large number of votes and may well contain the sought-

after point of mutual intersection. Thus find the center of mass of all voting voxels

in a volume centered on v and use this as the center of the new search region. For

instance, find the center of mass of all voting voxels within 2 voxels of v. The

“mass” of a voting voxels is the number of votes it received.

(10.1.2) The width of the new search region is taken to be, for example, half the width of

the old search region.

(10.3) Reset (clear) the arrays used to keep track of votes. These are the arrays described in

step (2). The array sizes remain the same, so there is no need to reallocate memory.

However, the entries will correspond to voxels in the new, smaller search region V ′.

211

(10.4) For each manifold i marked “active,” create an initial samples list Si
′ for the new search

region V ′ by keeping only those samples from Si that lie in V ′.

(10.5) Treating the members of Si
′ as newly generated samples, follow the procedure of step

(5.2) to cast votes in the new search region and follow the procedure of step (5.3) to

create an initial fecund samples list Fi
′and mark fecund voxels.

(10.6) Replace V with V ′, Si with Si
′, and Fi with Fi

′.

At first, all manifolds are considered “active.” Over time however, some manifolds (e.g., out-

liers) will no longer have a presence in the current search region. These manifolds are marked as

“not active” and will thenceforth not be considered. Manifolds that are having difficulty generating

samples in the current search region (e.g., due to a bad parameterization) will also get marked “not

active.”

The variable minimumFecundCount is used to keep the number of fecund samples on each man-

ifold about equal. This mechanism is necessary because each manifold has a different shape and

parameterization, and on some manifolds fecund samples will be easy to generate while on others

they will arise slowly. Once a manifold reaches its quota of fecund samples (set by the variable

minimumFecundCount), it will not generate new samples until the other manifolds catch up. We

typically initialize both the variable minimumFecundCount and the constant minimumFecundCount-

Increment to 50.

The constant sufficientFecundCount in step (7) is used to prevent voting decisions from being

made until a sufficient number of votes have been cast by each manifold.

Now consider how the forced-spread algorithm meets the goals of efficient sampling. First, the

fecund samples are spread out from each other helping to ensure uniform coverage of the manifold

in the current search region. Next, since only the fecund samples can reproduce, new samples

are generated evenly over the manifold. Finally, since only the most recently-generated fecund

samples reproduce, the “unexplored” areas on the frontiers of expansion receive the new samples.

If older fecund samples had been allowed to continue producing offspring, lots of new samples

212

would be generated in areas of the manifold that had already been sampled, wasting computational

effort.

B.1.2 Range dithering

When points on a screw-transform manifold are near each other, they will have similar underly-

ing manifold coordinates; i.e., similar values of κ, θ, and γ. The closer the points are, the closer the

manifold coordinates are. After several zoom-in steps, all samples on a particular manifold will be

near each other and thus will have similar manifold coordinates. The key to efficiently generating

new samples on the manifold is to only use coordinates that are in the range of existing samples in

the current search region. Thus after step (10) but before returning to step (5) the following can be

done: For each manifold i, find the maximum and minimum values of κ, θ, and γ for all samples

in the list Si; call these κmin, κmax, and so on for θ and γ. Let ∆i,κ = (κmax − κmin)/10, and so

on for θ and γ. Now in step (5), whenever a fecund sample is used to generate a child on manifold

i, the coordinates of the new offspring sample are chosen by slightly altering (i.e., “dithering”)

the parent’s coordinates, using ∆i,κ, ∆i,θ, and ∆i,γ as a guide for what “slightly altering” means.

The specific method used by our implementation is given in the pseudocode below, which is for

modulus-constraint manifolds and thus does not involve coordinate γ. In the code, dKa and dTh

denote ∆i,κ and ∆i,θ.

// Goal: produce a manifold sample point near a given
// sample point, using range dithering
// Input: coordinates (Ka, Th) of given manifold point;
// dKa and dTh (see discussion)
// Output: coordinates (newKa, newTh) of new sample point
// Notes: rand01() returns a random number in range [0,1]
// randNP() returns a random number in range [-1,1]
r=rand01();
if (r>0.80) then begin

newKa=Ka+randNP()*dKa*0.1;
newTh=Th+randNP()*dTh*0.1;

end else
if (r>0.30) then begin

newKa=Ka+randNP()*dKa;
newTh=Th+randNP()*dTh;

end else

213

if (r>0.05) then begin
newKa=Ka+randNP()*dKa*10;
newTh=Th+randNP()*dTh*10;

end else begin
newKa=Ka+randNP();
newTh=randNP()*3.1415926535;

end
return manifold point with coordinates (newKa, newTh)

B.2 Conditioning the parameterization of h3

It is important to realize that the equation h3 = (κI − M)−1e used to find h3 in step (2) of

Fig. 4.2 can represent an ill-conditioned system. This means that, under the right conditions, small

changes in κ will lead to large changes in h3. We now discuss how to condition the system.

Note that h3 is the image of the vanishing point of the screw axis. If one considers the viewing

sphere around a camera’s optical center, then the possible locations of h3 form a 1-dimensional

manifold on the surface of the sphere. As κ goes towards infinity, h3 approaches e from one

direction along this manifold (e is also on the manifold) and as κ goes towards negative infinity,

h3 approaches e from the other direction. Once κ gets large enough (e.g., |κ| > 10), h3 is very

close to e and stops changing in any meaningful way. Thus we can assume κ ∈ [−µ, µ] for some

fixed, sufficiently-large µ. This means we can treat κ as being a real number in [0, 1], which then

gets mapped into [−µ, µ].

The observation that κ has a finite range provides a way to condition the equation for h3:

establish a map from [0, 1] to [−µ, µ] that produces h3 at approximately regularly-spaced intervals

along the 1-dimensional manifold on the viewing sphere. A very approximate estimate of internal

calibration should be used to stretch the viewing sphere so that “regularly-spaced intervals” is

meaningful; that is, the Euclidean distance between each sample h3 (normalized to unit length)

should be roughly equal in metric space (hence the need for approximating the internal camera

calibration).

The conditioning map in our implementation sends 50 equally-spaced “guide” numbers in [0, 1]

to 50 numbers in [−µ, µ] that yield evenly-spaced h3 in approximate metric space. The remaining

214

members of [0, 1] are mapped by linearly interpolating the image of the nearest two guides. Fig.

B.1 shows our conditioning algorithm. Despite its simplicity, this method conditions the samples

very effectively using ideas similar to bisection methods; in particular, it is immune to problems

that might arise from trying to calculate derivatives for this unstable system. Our implementation

uses a = −µ, b = µ, and N = 50. Furthermore, f(k) = (kI − M)−1e/ ‖(kI − M)−1e‖. For

N = 50 we use 10000 iterations of the loop (steps 2-5); for N = 100 we use 100000 iterations.

It is possible that the best way to condition the parameterization of h3 is to use a completely

different parameterization. Recall that h>

3 FSh3 = 0 by Eq. A.8 and thus h3 lies on the cone FS.

Hence κ could be used to simply parameterize all points on the intersection of cone FS with the

unit sphere (after the camera space has been normalized using an estimate of internal calibration, as

described above). We have not experimented with this parameterization so can say nothing further

about how well it might work.

215

ALGORITHM (CONDITIONING)

Goal: Find N real numbers ki ∈ [a, b] with k1 = a and kN = b such that ‖f(ki) − f(ki+1)‖
is approximately the same for all i. Note the range space of f is

� n .

Comment: Since only kj changes during each iteration, it can be efficient to precompute

the value of f(ki) for each i and store these values in an array, changing only the entry

corresponding to kj during the loop.

(1) Initialize ki to be equally spread across [a, b]; i.e., ki = a + (b − a)(i − 1)/(N − 1)

(2) Pick one of the samples kj at random, avoiding the two endpoints; i.e., let j equal a

random number between 2 and N − 1.

(3) Find the distance between the image of kj and the images of its two neighbors; i.e., let

d0 = ‖f(kj) − f(kj−1)‖ and d1 = ‖f(kj) − f(kj+1)‖.

(4) Change kj so that the image of kj is more equally-spaced between the images of its

neighbors. We do this as follows: If d0 < d1 then let kj = kj +(kj+1−kj)/10; otherwise,

let kj = kj + (kj−1 − kj)/10.

(5) Repeat from step (2) a fixed number of times dependent on N ; experiments can be per-

formed ahead of time to determine a good, general-purpose number of iterations.

Figure B.1 Algorithm for conditioning the coordinate system of a 1D manifold.

INDEX

a-space, 80
absolute quadric, 59–61
abstract feature points, 86
affine calibration, 69, 141
affine matrix, 53
affine reconstruction, 53
affine transformation, 53
apparent linear motion, 142

biepipolar line, 173
biepipolar plane, 173

calibration, 1, 31
calibration space, 5
camera, 35

coordinates, 34
matrix, 32
obscura, 35
projection function of, 31
triplet, 31
view, 31

camera matrix
derivation, 35
Platonic form of, 32
specific to a basis, 32

camera relativism, 68
camera-to-camera transformation, 163
conjugate points, 50
coordinate system of a manifold, 74
coordinates

grid, 36
homogeneous

direction, 41
image position, 40
world position, 39

image, 36

of camera, 34
transforming

for directions, 47
for planes, 45
world to camera, 39

critical motion sequences, 77, 82
cross-product matrix, 48

direct self calibration, 73
direction vectors, 40
displacements, 81
dual Htensor, 144
duality

of lines and planes, 43
of points and lines, 43

dynamic scene, 138
dynamic view morphing, 158

ego motion, 4
environment mapping, 10
epipolar constraint, 5
epipolar geometry, 2, 46–52
epipolar lines, 49
epipolar planes, 49
epipole, 46

calculating, 51
right and left, 52

equality, scalar, 40
essential matrix, 19
Euclidean reconstruction, 55
Euclidean transformation, 55
external calibration, 32

fecund sample, 207
fecund voxel, 208
field-of-view, 45
fixed-camera formulation, 144, 160

216

217

for rotational motion, 170
focal length, 38
forced-spread algorithm, 207
fundamental matrix, 5, 19, 48–52

calculating, 50, 63–65
definition, 48
equivalence with epipolar geometry, 52
for an object, 146, 161
monocular, 69
not invertible, 49
physical interpretation, 48
transpose of, 51

general motion, 70
goodness of solution, 124–126
granularity, 117

H-infinity matrix, 43
homogeneous

direction representation, 41
image coordinates, 40
intersection of two lines, 44
line representation, 44
plane representation, 42
world coordinates, 39

homography induced by the plane at infinity,
43, 47, 68

IBR, see image-based rendering
IBRM, see image-based rendering and mod-

eling
image coordinates, 32
image of a point, 34
image plane, 34
image sphere, 46
image-based rendering, 4, 9
image-based rendering and modeling, 15
internal calibration, 32

K, 31
in coordinate system w, 32
upper-triangular matrix, 36

interpolation sequences, 9
iris, 34

K, see internal calibration
Kruppa-constraint manifold, 74

lattice position, 103
line on the plane at infinity, 45
linear motion, 159

manifold, 74
metric calibration, 69
metric reconstruction, 55
model, 15
modulus constraint, 77
modulus-constraint manifold, 80
monocular fundamental matrix, 69
mosaics, 4

object, 142, 159
background, 164

object width, 112
offspring, 207
optical center, 31

pairwise camera motion, 81
parallel motion, 165
pencil of planes, 49
photogrammes, 18
photogrammetry, 3, 18
physically correct, 10
pinhole camera, 1, 31

basic
projection algorithm of, 33, 36–37

history, 34–35
physical interpretation, 34–39
projection function of, 32

plane at infinity, 41–42
Platonic

concept, 28
direction, 40
equations, 45
label, 28
matrix, 32, 43
vector, 28

plenoptic modeling, 4

218

point correspondence
dense, 62
finding, 61–63
individual, 50, 62
sparse, 62

point on the plane at infinity, 41
point-on-line test, 44
prewarping, 162
principal point, 38
projection function, 31
projection of a point, 34
projective geometry, 39–46
projective reconstruction, 19, 53, 76

from fundamental matrix, 58–59
projective transformation, 53

R, 31
range dithering, 100, 209
reconstruction, 56

affine, 53
Euclidean, 55
hierachy of, 57
hierarchy of, 52
metric, 55
projective, see projective reconstruction

reference views, 9
reflection mapping, 10
relative calibration, 68
rising turntable, 68
rising-turntable formulation, 68

sampling, 11
scene, 31
scene reconstruction, 52–61
screw axis, 66
screw transformation, 66
search region, 98
self calibration, 2, 20
sketching a manifold, 97
static scenes, 138
static view morphing, 158
stereo rig, 25
stratified self calibration, 75

structure from motion, 138
sub-lattice position, 103
surface fitting, 5
synthetic views, 9

T, 31
texture, 63
texture mapping, 9
tilt of camera, 67
torpedo data computer, 5
transfocal motion, 81, 84, 180
triangulation, 3, 57–58
turntable motion, 82

unifocal motion, 81

view interpolation, 9
view morphing, 157, 178
view-dependent texture, 16
virtual views, 9
voting voxels, 98

weak calibration, 69
weakly calibrated, 22
wire grid, 1, 2
world camera, 47
world coordinates, 31

zoom-in step, 98, 99, 105

