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ABSTRACT

Stalkerware enables individuals to conduct covert surveillance on a
targeted person’s device. Android devices are a particularly fertile
ground for stalkerware, most of which spy on a single communi-
cation channel, sensor, or category of private data, though 27% of
stalkerware surveil multiple of private data sources. We present
Dosmelt, a system that enables stalkerware warnings that precisely
characterize the types of surveillance conducted by Android stalker-
ware so that surveiled individuals can take appropriate mitigating
action. Our methodology uses active learning in a semi-supervised
learning setting to tackle this task at scale, which would otherwise
require expert labeling of significant number of stalkerware apps.
Dosmelt leverages the observation that stalkerware differs from
other categories of spyware in its open advertising of its surveil-
lance capabilities, which we detect on the basis of the titles and
self-descriptions of stalkerware apps that are posted onAndroid app
stores. Dosmelt achieves up to 96% AUC for stalkerware detection
with a 91%Macro-F1 score of surveillance capability attribution for
stalkerware apps. Dosmelt has detected hundreds of new stalker-
ware apps that we have added to the Stalkerware Threat List.
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1 INTRODUCTION

Intimate Partner Violence (IPV) is a widespread societal problem
that results in negative long-term consequences for many of its tar-
gets [2, 29, 37]. A 2018 survey conducted in eight Eastern European
countries found that 23% of all women experienced physical or
sexual IPV and 60% of them experienced psychological IPV [39]. In
the U.S., 15.8% of women and 5.3% of men reported being subjected
to stalking violence “in which they felt very fearful or believed that
they or someone close to them would be harmed or killed” [9]. IPV
survivors have shed light on the many ways in which technology
plays a role in inter-personal attacks [9, 22, 42, 45, 51], of which
tech-enabled stalking and spying by current or former romantic
partners are especially common and pernicious [26, 36]. In a recent
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(a) Representative warning (b) Dosmelt’s precise warning

Figure 1: The imprecision of warnings issued by security

companies for dual-use apps that can be used for unwanted

surveillance may lead to concerns that the precise warnings

enabled by our solution Dosmelt would avoid.

survey, 10% of the U.S. adult respondents admitted to using a mobile
phone app to spy on an intimate partner [52].

While spying apps exist for many kinds of devices, mobile de-
vices are an especially tempting target for attackers, as they ac-
company individuals nearly everywhere they go, are used for most
inter-personal communication, and contain a multitude of sensors.
Mobile apps and other software that can be used by an attacker to
covertly spy on a targeted individual are typically referred to as
stalkerware [38]. Studies of stalkerware formobile phones have iden-
tified a variety of mobile spying apps and havemanually categorized
them into taxonomies that represent different classes of stalkerware
apps and distinct stalkerware functionalities [14, 40, 42].

Though these prior studies provided the first set of solutions to
this important problem, there are still gaps to fill. First, existing
work [14, 40, 42] focuses on the high-level problem of detecting
stalkerware, but does not contribute to automatically inferring the
individual surveillance capabilities possessed by a stalkerware app.
Many vendors of mobile security products that detect stalkerware
exhibit similar limitations in that they tend to lump the varied forms
of surveillance apps together under a single generic “surveillance",
“stalkerware”, or “privacy” warning [3]. An example of one such
warning is provided in Figure 1a. Generic warnings of this nature
are problematic because many of the mobile apps that can be used
as stalkerware may have been installed for a legitimate benign
purpose. For instance, an app that provides backups of SMS apps
and contacts can also be used to spy on a target’s text messages.
Similarly, an anti-theft app can be used to track a target person’s
whereabouts. In both cases, the apps are used legitimately when
installed on one’s own device, but illegitimately when installed

1

https://doi.org/10.1145/3485832.3485901
https://doi.org/10.1145/3485832.3485901


ACSAC ’21, December 6–10, 2021, Virtual Event, USA Han, Roundy, Tamersoy

covertly on another person’s device or on a shared device. The
second gap revolves around being limited to a small set of known
stalkerware samples. Stalkerware is still a new phenomenon and
existing work either performs a focused analysis on a very small
number of stalkerware apps [40], or starts off with a small seed set
(of IPV-related keywords to search for on app stores or of known
stalkerware apps) to identify many candidates in an automated
manner, from which false positives are then eliminated through
manual validation. The latter is achieved by assuming either a su-
pervised [14] or a graph-based weakly-supervised [42] learning
settings. Semi-supervised learning methods like active learning are
designed to leverage limited or imprecise sources to provide super-
vision signal for labeling large amounts of training samples [47],
but they are yet to be explored in the stalkerware detection setting.

Taking inspiration from the common phrase, “DOn’t Scare ME
Like That,” we propose Dosmelt, the first stalkerware detection
and warning system capable of precisely identifying the individual
surveillance methods performed by stalkerware apps. Precise stalk-
erware notifications are beneficial in two important ways. First,
when a stalkerware app is being used for spying by an abusive
intimate partner, a precise notification clearly outlines which data
has and has not been exposed to the attacker, which is not possible
when the security product provides a generic warning such as that
of Figure 1a. Precise notifications enable survivors to quickly take
appropriate mitigating actions and are less likely to be ignored than
a generic warning to which customers can quickly become inured.
Second, precise warnings are far less irksome to users who may
install an app that monitors sensors or communications for a legiti-
mate, non-abusive purpose. For instance a plumber whose phone
routinely sustains water damagemaywish to backup SMSmessages
and contact lists. A precise warning like that of Figure 1b would
confirm to the user that the app behaves as expected, whereas the
generic warning of Figure 1a raises false alarm bells, leading to
unnecessary concern and frustration.

Dosmelt is designed around two important observations about
stalkerware. First, stalkerware explicitly advertises its functionality,
as it is deliberately intended to collect data from a device for the
purpose of making it available for examination, typically by sending
it to the cloud or to another device. Second, stalkerware is a diverse
term encompassing many kinds of apps. We found that 73% of
stalkerware surveils a single sensor (e.g., the microphone or GPS
sensor), communication channel (e.g., SMS messages, a social media
app’s communications), or on-device data (e.g., media, contacts,
or browsing history). Warnings that precisely characterize their
functionality are more fair to app developers and avoid most of the
problems associated with alert fatigue that would arise otherwise.

To provide stalkerware detection that can support nuanced warn-
ings, we formulate a multi-label machine learning problem and
build up a labeled dataset using an active learning paradigm to re-
duce the overhead of stalkerware annotation [57, 60]. Our machine
learning task sets each individual surveillance feature as a label
to be predicted. Stalkerware apps that implement more than one
type of surveillance will have multiple positive labels. This makes
the nuanced stalkerware classification task intrinsically a multi-
label classification problem [12, 55, 61, 62]. For a practical solution
with a small false positive rate, we also classify apps generally as
stalkerware vs. non-stalkerware. Our contributions include:

• We present Dosmelt, a system that detects stalkerware with
far greater nuance than any existing algorithm. Our system
supports the creation of precise warnings that enumerate the
exact types of surveillance conducted by an app as opposed to
imprecise stalkerware warnings that may lead to false alarms
unnecessarily for apps with legitimate uses. It demonstrates
that an app’s self description is sufficient to make headway on
this detection task.
• We establish an active learning methodology to promote ef-
fective learning with a modest set of hand-annotated Android
apps. This is necessary because nuanced stalkerware warning
systems do not as yet exist and we are unaware of any large
dataset of stalkerware apps for which individual surveillance
features had been labeled. Our system integrates a learning-by-
prediction strategy that presents human labelers with samples
likely to improve the classifier. It then recursively retrains the
classifier using the updated training dataset.
• To contribute to the further development of improved stalker-
ware algorithms, we submitted our manually labeled dataset of
stalkerware apps as well as the 246 apps detected by Dosmelt
that we also verified to the Coalition Against Stalkerware’s [18]
Stalkerware Threat List, to which interested researchers and
security vendors can gain access with a free membership.
We proceed by providing background information and review-

ing related work in Section 2. We then describe our data collection
and labeling efforts (Section 3), and present Dosmelt’s architecture
and its learning strategy in Sections 4 and 5, respectively. Next, we
evaluate our solution’s ability to detect stalkerware apps and their
surveillance features (Section 6). We discuss deployment and oppor-
tunities for improvement in Section 7, and conclude in Section 8.

2 BACKGROUND AND RELATEDWORK

In building Dosmelt and using it to provide nuanced stalkerware
detection, we seek to contribute to a rich multi-disciplinary body
of research in intimate partner violence (IPV), spyware and stalker-
ware detection, and machine learning.

Technology-Enabled IPV. IPV produces damaging long-term ef-
fects for its targets, including severe physical violence [39] and
homicide [50]. Physical violence is typically accompanied by emo-
tional abuse, which may result in mental health disorders of many
kinds [29, 44], such as depression [2], post-traumatic stress disor-
der [37], low self-esteem [44], and suicidal ideation [21].

Technology-enabled IPV is a troubling phenomenon that fits into
the broader ecosystem of online hate, harassment, and abuse [51].
Its manifestations include many forms of harassment [7, 25, 41],
character assassination through faked revenge porn [45], imper-
sonation attacks that damage the targeted individual’s relation-
ships [27, 42], and above all, spying on an intimate partner through
stalkerware and other means, such as knowledge of the survivor’s
account credentials [26, 27]. The need for stalkerware detection
and mitigation strategies is highlighted by a recent survey of the
U.S. adults, in which 10% admitted to using an app on a mobile
device to spy on an intimate partner [52].

Spyware and Stalkerware. Spyware refers to software that col-
lects privacy-sensitive data from its users and the devices on which
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it is installed [46]. In most cases, the private data collected by spy-
ware goes to corporate entities who monetize it by targeting ads
and by selling the data to other entities, though private data may
also be gathered by criminals for identity theft and financial fraud.
Stalkerware, also known as “intimate partner spyware” [14], is a
special case of spyware in which the software collects private data
to enable an attacker to secretly spy on a targeted individual and
weaponize that data to perpetrate further abuse [14, 26]. Stalker-
ware also differs from non-stalking spyware in that its extraction of
private information from a device is a key feature of the software
that it advertises openly. Thus, while non-stalking spyware col-
lects information in secret and silently monetizes it, stalkerware’s
functionality is only secret and silent when installed on the tar-
geted individual’s device, but not in its online advertising or in its
self-description on app stores and other websites. As we shall see,
this property of stalkerware was used profitably by Chatterjee et
al. [14] in their study of stalkerware.

Despite its clear potential for abuse, the stalkerware phenome-
non has largely proven resistant to eradication thus far. One key
problem from the legal perspective is that the United States’ Federal
Wiretapping Law and state laws only make it illegal to sell apps
that are “primarily” designed to secretly tap phones, record private
conversations or steal emails [17, 32]. As the implications of these
laws have become more clear, a definite change came about in stalk-
erware marketing in the 2018 timeframe, with very few apps since
then brazenly advertising under such titles as “Catch My Cheating
Girlfriend,” and instead touting other use cases while retaining the
same functionality [32, 42]. Indeed, many apps that abusers recom-
mend in online forums for use as stalkerware describe themselves
as tools for socially acceptable tasks other than spying, such as
anti-theft, child online safety, data backups, and the recording of
calls, audio, the device’s screen, and typed keystrokes [14, 53]. This
tactic enables the developers to make claims to plausibly deny that
their apps are being used to spy on intimate partners, and thereby
to avoid legal responsibility when their apps are used for this pur-
pose. Unfortunately, prominent Android app stores still contain
an abundance of location sharing apps, automatic call recording
and forwarding apps, SMS backup apps, and even keylogging apps
(apps that record all keystrokes) [42].

While we acknowledge that many apps used as stalkerware do
also fulfill legitimate use cases, these apps are irresponsible if they
fail to notify all users of the device that their private data is being
extracted from the device. Prominent, repeated notifications differ
truly well-intentioned applications from apps with surveillance
potential that profit from the stalkerware use case. This key distinc-
tion is recognized by the Coalition Against Stalkerware [18] and
the Developer Policy for the Google Play app store [30]. Unfortu-
nately, policies about adequate notifications are not well enforced.
For example, in June 2021 we reviewed apps on the Google Play
app store and found more than 100 “automated” call recording apps
advertising the functionality to record all phone calls automatically
with no interaction from the device owner. Many of these apps au-
tomatically forward call recordings to a pre-specified email address
and describe themselves as “hidden.”

Spyware andStalkerwareDetection Strategies. Most spyware
detection methods rely on dynamic taint tracking of private data,

which enables the flow of specific elements of private data to be
tracked as it flows through a program until it is exfiltrated over the
network [23]. This technique was adopted by commercial software
on many platforms where it is used to this day [48], often facili-
tated by use of the TaintDroid taint tracking tool [24]. Additional
spyware detection methods have also emerged, using such methods
as static analysis [33] and network traffic analysis [56].

In the realm of stalkerware detection, taint tracking remains
useful but insufficient. This is because most spyware starts to
silently steal private data in the background as soon as it is in-
stalled, whereas stalkerware apps are much more likely to require
an initial configuration step as the app needs to know to whom the
extracted data should be forwarded. Thus, dynamic analysis is far
less likely to succeed on stalkerware, for which automated analysis
is unlikely to get past this configuration step.

Chatterjee et al. [14] provided the first published solution de-
signed specifically to detect stalkerware. Their solution issues
keyword-based searches like “catch my cheating girlfriend” on the
web and app marketplaces to identify candidate stalkerware apps
and then uses machine learning to filter out false positives. Taking
a different approach, CreepRank [42] uncovered a broad ecosystem
of apps used in IPV, which includes stalkerware, but also apps that
enable harassment, impersonation, fraud, information theft, and
defense against such threats. It constructs a bipartite graph of apps
and devices on which they appeared, and it propagates information
from a seed set of stalkerware apps to other apps to establish guilt
by association. Though both of these algorithms are successful
and complementary methods for detecting stalkerware, neither ad-
dresses the problem of detecting how stalkerware compromises the
privacy of an individual to enable the creation of more informative
warnings. To accomplish this goal, we build on the taxonomies de-
veloped by prior work [40, 42] to create a taxonomy of stalkerware
capabilities, and we turn to machine learning methods that can
assign an app to multiple categories, each of which represents a
distinct stalkerware surveillance capability (e.g., extraction of call
logs, web browsing history, and social media messages).

Multi-label Learning andSemi-supervisedLearning. We treat
the nuanced attribution of surveillance capabilities to stalkerware
apps as a multi-label learning problem [8, 54, 63]. A common ap-
proach in multi-label learning is to decompose the problem into
multiple independent binary classification problems, one for each
category. The final set of labels for each instance can then be deter-
mined by combining the classification results from all the binary
classifiers. This approach is flexible in its ability to use different
binary classifiers to build a multi-label learning system. However,
it also ignores the underlying mutual correlations among differ-
ent categories, which can contribute to the classification perfor-
mance [15, 65]. In our study, we follow the spirit of [49] and use
tree structures for this task. Specifically, we use extreme random
trees [28] and random forests [10].

Our work also adopts semi-supervised learning. In this setting,
only a fraction of the training examples are labeled. The goal is to re-
fine the decision boundary using the statistical characteristics of the
data distribution conveyed by the unlabelled data instances. Label
propagation is one style of semi-supervised learning [58, 64, 66] that
has been applied to stalkerware detection [42]. Our study adopts
active learning [19, 43, 47], a different branch of semi-supervised
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learning, which interactively queries an external oracle (such as a
human annotator) to label new data instances. It is especially suit-
able for the scenario where unlabeled data is abundant but labeling
data manually is expensive. Dosmelt uses a learning-by-prediction
based active learning mechanism to incrementally update the nu-
anced stalkerware classifier. While most variants of active learning
choose to submit low-confidence instances to an expert overseer
for manual ground-truthing, as in the cases of uncertainty sampling
and margin sampling, this process can still leave the human anno-
tators with a significant workload checking questionable samples.
Alahmari et al. [1] pioneered an alternative active learning process
designed to minimize the annotation workload. It uses an ensem-
ble of highly diversified classifiers that vote, issuing a confidence
score that depends on the ensemble’s level of agreement. Only the
data instances with the highest confidence scores are submitted
to human experts for further review. We adopt this active learn-
ing mechanism combined with ensemble tree-based classifiers in
our framework. The instances our method selects for review help
minimize the annotation effort contributed by human experts.

3 DATA COLLECTION AND LABELING

In this section, we discuss our data collection efforts and the process
we used to create a labeled dataset of apps categorized according
to a taxonomy of stalkerware capabilities.

For this study, we partnered with a large security vendor and
obtained two anonymized reports that solely consisted of Android
application identifiers (app id for short) that the vendor observed
on customer devices between 2019 and 2020. An Android app id
uniquely identifies an app on a device and in app stores. In line with
prior work [14, 42] that also examined Android apps in a similar
context, our focus on the Android platform is due to its large market
share [5] and to the comparatively large number of stalkerware
apps that have been developed for Android devices [31]. Using the
vendor’s data to indicate apps that were in use on mobile devices,
we then queried two app stores with the app ids we possessed,
namely APKPure1 and Google Play Store2, to retrieve the titles
and descriptions of the apps. In total, we obtained information for
1.02 million apps3. The app titles and app descriptions are the main
pieces of information we rely on in this work.

We then developed a taxonomy of stalkerware capabilities to
support nuanced detections as follows. We first queried the app
titles and app descriptions we had obtained in the previous step
using search terms such as “spy” and “track” to identify apps that
were likely to be stalkerware. Then, two researchers from our team
independently reviewed the app descriptions of a random set of 200
apps identified via this process to examine their capabilities in detail
and iteratively refine the taxonomy using inductive coding [35]. We
then compared our taxonomy to that of Parsons et al. [40], which
also identified different capabilities of a small set of seven overt
stalkerware apps, finding that they matched each other well. The
final version of our taxonomy of stalkerware capabilities along with
their descriptions is shown in Table 1. Themain differences between
1https://apkpure.com/
2https://play.google.com/store/apps
3For the majority of the apps, the two app stores contained identical information.
When they differed, we retained the longer of the two app descriptions. In the rare
case that neither store contained information for a particular app, we attempted to
determine if it had a dedicated webpage using search engine queries.

Capability Description

Browsing-History Remote access to internet browsing history
Call-Logs Access to call history
Call-Recordings Recording of calls in a hidden and automated manner
Camera Remote viewing of device’s camera
Contacts Remote access to phone’s list of contacts
Email Remote access to emails sent to an app on the device
GPS-Tracking Tracking the GPS location of the victim
Installed-Apps Listing of apps installed on the device
Keylogging Tracking of typing input
Media-Extraction Remote access to photos, videos, and other media
Microphone Remote listening to device’s microphone
Screen Recording of the device’s screen
SMS Exports SMS/text messages
Social-Media Access to social media accounts (including chat and

messaging) normally tied to a single device
Table 1: Taxonomy of stalkerware capabilities. Our stalk-

erware detection approach assigns these capabilities to sus-

pected apps by assuming a multi-label classification setting.
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Figure 2: (Outer) Distribution of stalkerware capabilities

among the apps manually labeled for this work according

to our taxonomy. The numbers next to the bars pertain to

the actual counts. Surveillance of social media accounts and

locations of victims are the major capabilities. (Inner) Cu-

mulative distribution function (CDF) of fraction of labeled

surveillance apps that have a particular number of capabili-

ties. Most surveillance apps have only one capability.

our taxonomy and that of Parsons et al. [40] are that our taxonomy
combines surveillance of social media and chat apps into a single
category (which we call Social-Media) since our coders observed
that a significant majority of the apps advertised the surveillance of
both sources. Our taxonomy also omits the calendar-surveillance
capability as it was not prevalent in the apps we coded, and we omit
the ability to block phone calls as it does not pertain to surveillance.

After finalizing the taxonomy, the same two researchers partic-
ipated in a formal coding process consisting of three rounds. In
each of the first two rounds, they independently coded 150 ran-
domly chosen apps. Specifically, for each stalkerware capability
in the taxonomy, the coders noted whether or not the app under
review possessed the capability, based on an examination of the
app title and app description. After each round, the researchers met
to discuss any apps they coded differently to better align with each
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other and improve the coding. In the third and final round, both
researchers coded another random set of 100 apps to test agree-
ment. Since our setting is such that each example can be assigned a
varying number of codes (each representing a stalkerware capabil-
ity), we used Krippendorff’s alpha, which is a statistical measure of
inter-rater reliability suitable for this setting [34]. Our two coders
achieved a Krippendorff’s alpha of 0.86 in this final round, which in-
dicates strong inter-rater reliability [34]. The team then continued
to code stalkerware apps independently. In total, this process led
to the labeling of 4,839 apps, where 1,462 of them are stalkerware
apps with at least one surveillance capability from the taxonomy
of surveillance capabilities. The rest are benign apps.

Figure 2 contains the distribution of stalkerware capabilities
among the 1,462 stalkerware apps. The most common forms of
surveillance are social media monitoring (Social-Media) and loca-
tion tracking (GPS-Tracking). Figure 2 also shows the cumulative
distribution function of labeled surveillance apps that have a partic-
ular number of capabilities. While 73% of stalkerware apps support
only one surveillance capability, there are many apps with multi-
ple capabilities. To examine the associations between surveillance
capabilities, we computed the pointwise mutual information (PMI)
values for every pair of capabilities, which is defined as follows. Let
𝑋 and 𝑌 be discrete random variables. Then, for a pair of outcomes
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , PMI(𝑥,𝑦) measures the discrepancy between the
probability of their coincidence given their joint distribution and
marginal distributions under the assumption of independence, and
is defined as PMI(x, y) = log 𝑝 (𝑥,𝑦)

𝑝 (𝑥)𝑝 (𝑦) . Higher PMI values indicate
greater association between 𝑥 and 𝑦. Figure 3 shows the PMI values
for every pair of surveillance capabilities, as captured by our dataset
of 4,839 labeled apps. The top-3 strongest associations involve Email,
and they are between Email and the surveillance capabilities of
Keylogging, Screen, and Browsing-History, respectively.

4 SYSTEM ARCHITECTURE

The architecture of Dosmelt is shown as a pipeline in Figure 4. As
described in Section 3, the input dataset is comprised of the titles
and descriptions of the apps. These text-based descriptors are then
fed into a feature extraction module. Here, we remove the stop
words and build a bag-of-words model where each word becomes
a token. The term frequency-inverse document frequency (TF-IDF )
value of each token is then computed, and for a particular app, the
combination of these values form the feature vector of the app.
Then, a stalkerware detector is applied over these feature vectors
to decide whether the app is stalkerware or benign. In the final
step, the nuanced classification module identifies the surveillance
capabilities carried out by the detected stalkerware apps.

For both the detection and nuanced classification modules, we
adopt a learning-by-prediction based active learning paradigm to
guide the training process. We use this approach because we only
have access to a tiny number of labeled examples to use in train-
ing. Furthermore, obtaining new labeled examples is costly, as it
requires a human annotator to examine app descriptions in detail.
Active learning is suitable for this setting; it requires the labeling
of a small fraction of the training dataset in the beginning [47].
After building an initial classifier, active learning helps Dosmelt to
iteratively select informative training data instances and retrieve
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Figure 4: Steps taken by Dosmelt to perform nuanced clas-

sification of stalkerware.

their labels from human experts. These judiciously selected data in-
stances enrich the training data and gradually refine the classifier’s
parameters. This active learning makes good use of the limited
budget we have for expert labeling of individual apps.

5 FEATURE ENCODING & ACTIVE LEARNING

In this section, we describe how the learning-by-prediction strategy
enables us to gradually build an accurate stalkerware classifier with
nuanced detections by starting with a small set of labelled apps,
each of which is represented with features extracted from their title
and description information.

5.1 Preprocessing and Feature Engineering

We leverage term frequency-inverse document frequency (TF-IDF )
features extracted from the titles and descriptions of the apps in
our dataset (see Section 3). We first use the NLTK [6] package to
remove stop words from the extracted texts, as these commonly
used stop words (such as “the”, “a”, “an”, or “in”) contain no infor-
mation related to stalkerware functionality. After that, we count
the frequency of occurrence of the remaining keywords and ex-
clude those that appear only once. These extremely unusual words
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cannot generate statistically stable TF-IDF features, and they in-
crease a classifier’s risk of overfitting to the training data. Next,
we construct a bag-of-word model and derive the TF-IDF feature
vectors for each training text instance as follows:

tf-idf (𝑤,𝑑) = 𝑇𝐹 (𝑤,𝑑) log(𝑁 /(𝑑 𝑓 + 1)) (1)

where𝑤 denotes each word considered in the feature extraction, 𝑑
represents a document that corresponds to an app’s self-description
in our case, and 𝑁 denotes the number of apps in the dataset. The
component 𝑑 𝑓 denotes the document frequency, which is defined as
the frequency of occurrence of word𝑤 in the training text instances,
while 𝑇𝐹 (𝑤,𝑑) represents the term frequency, which is defined as
the instance count of word𝑤 in the training document 𝑑 divided by
the number of words contained in document 𝑑 . In the computation
of term frequency, all words are considered equally important,
though clearly, certain words may appear many times and yet have
little importance. Therefore, the second part of the equation, which
represents inverse document frequency (IDF ), assigns low weights
to frequent terms while scaling up the importance of rare terms.

5.2 Detection with Learning-by-prediction

There are three important advantages of using active learning in
our work. Most fundamentally, no labeled dataset of stalkerware
surveillance capabilities is in existence, and constructing a big one
is time consuming. Second, stalkerware apps are sufficiently rare
that randomly sampling Android apps would be unlikely to turn
up any meaningful number of stalkerware apps to label. Indeed,
the Coalition Against Stalkerware’s [18] Stalkerware Threat List
contains fewer than ten thousand Android app ids, and security
vendors report observing 10 million or more app ids installed on
their customers’ devices in a year [42]. Finally, active learning not
only allows us to iteratively update our classifier’s parameters as
we process, but it also helps to adjust our threat detection pipeline
by incorporating additional data cleaning and/or improving feature
engineering. Our own experience provides examples of why this
helps. After the first few iterations of active learning with Dosmelt,
we made two realizations. First, among the highest ranking apps
were many apps in foreign languages that were not being suitably
categorized by Dosmelt because of overfitting due to insufficient
training data for languages other than English. This led us to adjust
our pipeline to improve its foreign-language filtering, limiting our
classifier to English. Second, as a result, we came to the determi-
nation that we should exclude keywords as features if they appear
only once. These two changes dramatically improved the classifier
in subsequent iterations of active learning.

In Algorithm 1, we provide Dosmelt’s active learning methodol-
ogy. In each iteration, we maintain a trained classifier 𝑓 consisting
of an ensemble of base decision models 𝑓𝑘 (𝑘 = 1, 2, 3, ..., 𝐿). Each
base model 𝑓𝑘 is trained to increase the diversity between each
other, e.g., by randomly sampling feature subsets in training in a
random forest model. Classifier 𝑓 then parses the set of the unla-
belled textual app descriptions. For each unlabeled instance, each
𝑓𝑘 produces a confidence score normalized between 0 and 1 via the
sigmoid function. For detection, a higher confidence score denotes
that it is more likely that the app is stalkerware. For classification,
the magnitude of the score measures the decision confidence of
tagging an app with a specific surveillance capability. The resultant

confidence scores are ranked in descending order. The unlabelled
instances with the top-𝐾 ranked confidence scores are then investi-
gated by human analysts. After confirming/correcting the labels of
these instances, they are added to the training dataset. Finally the
classifier 𝑓 is retrained with the updated training set. The number
𝐾 of selected instances for manual verification decides the sampling
coverage of the active learning method.

Let us denote the textual feature of an unlabelled app as 𝑥𝑖 ,
(𝑖 = 1, 2, 3, ..., |U|). Assume𝑦𝑖 = +1 if the app is stalkerware (for de-
tection) or has a specific stalkerware capability, and vice versa. The
ensemble vote score produced on the unlabelled textual instance can
be represented as 𝑆 (𝑥𝑖 ) =

∑𝑀
𝑘=1 𝑓𝑘 (𝑥𝑖 ). The learning-by-prediction

method [1] augments the training dataset by hand-labeling the
unlabelled data instances for which the current detection/classifier
outputs the highest 𝑆 (𝑥𝑖 ). If the true class label of 𝑥𝑖 is 𝑦𝑖 , the classi-
fication margin of 𝑥𝑖 with respect to the current detection/classifier
model 𝑓 is given as𝑚𝑓 (𝑥𝑖 , 𝑦𝑖 ) = 𝑦𝑖 (2∗𝑆 (𝑥𝑖 ) −1). The data instance
selection criterion applied in [1] has a two-fold goal. For the cor-
rectly detected/classified instances, the human annotator confirms
the prediction output from the ensemble model. The corresponding
instances usually contain very indicative keywords/terms denoting
the suspicious surveillance capabilities, which clearly differentiate
stalkerware and non-stalkerwre apps. For the misclassified instances,
where𝑚𝑓 (𝑥𝑖 , 𝑦𝑖 ) is negative yet with a large magnitude, the hu-
man annotator identifies the misclassification error and provides
their true labels. In this sense, the learning-by-prediction step in
[1] converges to the well known principle of misclassification loss
reduction in active learning [47]:

𝑥∗ = argmax
𝑥𝑖

𝑃𝜃 (�̂�𝑖 = 1 |𝑥𝑖 )ℓ𝑓 (𝑥𝑖 , 𝑦𝑖 ) (2)

where 𝑦𝑖 is the predicted label by 𝑓 , 𝑃𝜃 (𝑦𝑖 = 1|𝑥) denotes the prob-
abilistic decision confidence of the classifier 𝑓 , and ℓ𝑓 (𝑥𝑖 , 𝑦𝑖 ) is the
misclassification loss of the current 𝑓 over the data instance (𝑥𝑖 , 𝑦𝑖 ),
which is a monotonically decreasing function of the classification
margin. For the nuanced classification, since 𝑓 produces multiple
outputs simultaneously, one per surveillance capability, Equation 2
can be instantiated to the multi-label learning scenario:

𝑥∗ = argmax
𝑥𝑖

𝑚∑
𝑗=1

𝑃𝜃 (�̂�𝑖,𝑗 = +1 |𝑥𝑖 )ℓ𝑓 (𝑥𝑖 , 𝑦𝑖,𝑗 ) (3)

where 𝑚 denotes the number of the surveillance capabilities in-
volved in the nuanced classification, and 𝑦𝑖, 𝑗 and 𝑦𝑖, 𝑗 are the pre-
dicted label of 𝑥𝑖 with respect to the surveillance capability 𝑗

( 𝑗 = 1, 2, 3, ...,𝑚). The inconsistency between the predicted class
labels and the ground truth labels denotes the incapability of the
current model in capturing the underlying decision boundaries.
Adding these instances for retraining can thus help correct the bias
in 𝑓 causing large misclassification loss. Note that the dataset we
collected is heavily skewed towards benign apps due to the rare
existence of stalkerware apps. Therefore, the learn-by-prediction
process for building the stalkerware detector examines the apps
that are confidently classified to be malicious. In the first iterations
of the training process, we can find many false alarms in these
top-ranked apps. Correcting the mislassification errors then helps
the detector in terms of refining the boundary in the textual feature
space between the stalkerware and benign apps.

6



Towards Stalkerware Detection with Precise Warnings ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Algorithm 1: Learning-by-prediction Active Learning Framework
Input: Initial training dataset D, untagged textual training

instancesM, a training paradigm A for the ensemble
classifier, the training rounds𝑚

Output: Learned stalkerware detector/classifier f
D0←D;
M0←M;
for 𝑡 = 1 to𝑚 do

{f𝑡1 , f𝑡2 , ..., f𝑡𝐿 } ← A(D
𝑡−1) ;

Generate voted confidence scores
y = {𝑦𝑖 }(𝑖 = 1, 2, 3, ..., |M𝑡−1 |) ← ∑𝐿

𝑖=1 f
𝑡
𝑖
(M𝑡−1) ;

Select top-𝐾 text instances (denoted as 𝑆𝑡 ) with the largest 𝑦𝑖
fromM;

Let human analysts verify the true labels of the text samples in 𝑆 ;
Update the training text sample set D: D𝑡 ← D𝑡−1 + 𝑆𝑡 , with
the manually verified labels for 𝑆 ;
M𝑡 ← M𝑡−1 − 𝑆𝑡 ;

end

return the ensemble classifier {f𝑚1 , f𝑚2 , ..., f𝑚𝐿 };

6 EXPERIMENTAL EVALUATION

We evaluate the performance of our method with a dataset com-
posed of textual features for Android apps (see Section 3). Next, we
describe our experimental setup, cover the stalkerware detection
results, review the nuanced stalkerware capability detection results,
and provide insights into the classifier.

6.1 Experimental Setup

Our experimental setup consists of two components.
• Stalkerware detection: Detecting whether an app is an in-
stance of stalkerware is a classic binary classification task that
we approach with active learning because of the high cost of
labeling data for this purpose. When our detection module pro-
duces a positive label, it indicates that an input app contains
stalkerware functionality.
• Stalkerware capability detection: We further identify the
surveillance capabilities possessed by each stalkerware app
based on its textual features. In this classification task, the pres-
ence of a specific surveillance capability is indicated by a posi-
tive label. Note that some stalkerware apps might implement
multiple surveillance capabilities. This nuanced classification
task is thus an instance of multi-label classification, i.e., each
data instance can carry multiple labels.

To detect stalkerware, we experiment both with Random Forests
(RF ) of 500 trees and Gradient Boosted Trees (GBDT ) with 150
cascade layers as our ensemble detection model. Empirically, this
setting provides a stable detection accuracy. For the stalkerware
capability detection task, we use RF and Extremely Randomized
Trees (Extra-Tree) to build the ensemble classifier. Similar to RF,
Extra-Tree picks a random subset of candidate features for each tree.
Instead of looking for the most discriminative thresholds for a tree
split, the thresholds are drawn at random for each candidate feature
and the best of them is used as the splitting rule. This reduces the
variance of the model, at the expense of a slight increase in bias.

Accuracy AUC

Round RF GBDT RF GBDT Number of labeled instances

0 0.763 0.735 0.760 0.740 200/400 (stalkerware/benign apps)
1 0.900 0.880 0.897 0.865 400/470 (stalkerware/benign apps)
2 0.960 0.940 0.960 0.932 600/520 (stalkerware/benign apps)
Baseline 0.975 0.960 0.970 0.942 All labeled instances
Table 2: Stalkerware detection results of different training

rounds in Dosmelt using Random Forest (RF ) and Gradient

Boosted Trees (GBDT ).

Both of these the tree-ensemble based methods are easy to tune
and generalize well across many data mining scenarios [10]. Fur-
thermore, RF and GBDT model training and feature importance
ranking (via measuring out-of-bag error) are easily parallelized. Fea-
ture importance evaluations measure the informativeness of each
keyword in the textual feature space. Though deep neural network
architectures might be able to improve classification performance,
we leave such experiments for future work.

6.2 Stalkerware Detection with Active Learning

We conduct studies to evaluate the overall performance of the Dos-
melt pipeline at the stalkerware prediction task and its ability to
learn quickly through active learning. First, we present a careful
measurement of Dosmelt’s performance in a cross-validation ex-
periment. Second, we present a more practical application of our
active learning methodology in which we use active learning to
improve Dosmelt’s ability to generalize to stalkerware detection
beyond our carefully curated dataset of labeled stalkerware apps.

Across-validation study of Dosmelt’s stalkerware detection

using active learning. To measure Dosmelt’s stalkerware detec-
tion accuracy, we set aside 30% of the labeled dataset of Android
apps as an independent testing set and use the remaining 70% of
the labeled data for training. We repeat this training-testing split 5
times. The derived detection and classification performance metrics
are averaged and reported in Table 2. In particular, Table 2 shows
the result of a series of experiments we conducted to evaluate Dos-
melt’s active learning methodology. Each of the three rounds of
active learning use increasing amounts of labeled data during train-
ing. In the first iteration we allow the classifier access to only a
small amount of labeled stalkerware and non-stalkerware apps,
with the remaining training samples are hidden from the classifier
and are considered as unlabelled instances. At the end of each round,
Dosmelt selects the unlabelled instances with confidence score
larger than 0.9 as the next apps to be labeled by human analysts,
which are added to the training set in the subsequent round. Thus,
we expect to see improved classification accuracy in subsequent
rounds as the number of labeled apps increases.

In Table 2, the detection performance is indicated by ACC and
AUC, which denote the accuracy score and the AUC-ROC score
of the detection model, respectively. “Baseline” is the performance
derived by using all the training instances. We introduce this base-
line as a reference to verify the effectiveness of the learning-by-
prediction active learning technique. The initial detection perfor-
mance of training round 0 is relatively low (both ACC and AUC
are lower than 0.8) due to its limited training data set. The detec-
tion accuracy increases consistently and significantly in training
rounds 1 and 2, producing ACC and AUC scores higher than 0.95,
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Round Stalkerware Total Accuracy

1 24 198 11%
2 124 200 62%
3 48 116 41%

Table 3: Accuracy results for 3 rounds of active learning

conducted to improve Dosmelt’s ability to generalize. We

applied Dosmelt to 1.56 million unlabeled apps and hand-

labeled its most confident detections in each round. Accu-

racy improved until the third round, whenDosmelt seemed

to run out of stalkerware apps to detect.

which confirms the merits of the active learning method. Dosmelt
avoids exhaustive labeling efforts in favor of a focus on the most
informative data instances to correct the bias in the estimate of the
decision boundary. It thus minimizes the overhead of labelling the
training samples. As seen in Table 2, the model’s detection accuracy
is already comparable to that of the baseline when trained on only
60% of the training instances.

Subsequent training rounds based on the learning-by-prediction
method select 200 stalkerware apps for manual labeling in round
1 and round 2, but only 70 and 50 non-stalkerware apps in these
rounds, respectively. This discrepancy arises from the method’s
decision to label confidently detected apps, but it has the advantage
of enabling us to eliminate serious false alarms among benign apps
that erroneously labeled as malicious with a decision confidence
score larger than 0.9, thus correcting the classifier’s most serious
mistakes. A possible explanation for these false alarms is that rec-
ognizing the stalkerware with the TF-IDF based features depends
on the occurrence of the keywords or phrases relevant with the
surveillance functions. For example, “keystroke” is indicative of po-
tential surveillance use in the RF and GBDT based detection models.
This word could be an indication of keystroke logging functionality
in surveillance apps that monitor all keystrokes, but it could also
appear in the describe of an educational app designed to improve
typing speed. With limited labelled training samples, the detection
model is prone to overfit and to overestimate the importance of
words like this one. It is also prone to incorrectly attach importance
to any word that happens by chance to appear in the description
of a stalkerware app but not elsewhere even if this word does not
relate to surveillance. This issue arises despite our practice of not
assigning TF-IDF weights to words that occur only once in our
dataset. Adding additional labeled data through active learning
helps us to reduce overfitting of this kind. In Section 6.4, we will
discuss the keywords that are considered by the RF-based detector
as the most informative features for stalkerware detection.

ImprovingDosmelt’s ability to generalize. Once we had man-
aged to achieve good classification results with Dosmelt on our
labeled dataset, we again turned to active learning to improve its
ability to generalize to as-yet undetected Android stalkerware. To
this end, we trained a Random Forest classifier on our full labeled
dataset of Android apps and performed three rounds of a learning-
by-prediction exercise against more than 1 million apps that were
not labeled, but for which we had app title and description infor-
mation (see Section 3). At the time of this experiment, Dosmelt’s
accuracy in the binary stalkerware classification task was already

Macro-F1 Micro-F1

Round RF Extra-Tree RF Extra-Tree Number of labeled instances

0 0.732 0.735 0.716 0.723 409
1 0.840 0.838 0.837 0.842 615
2 0.914 0.910 0.910 0.910 830
Baseline 0.925 0.925 0.907 0.905 All labeled instances

Table 4: Multi-label stalkerware capability classification re-

sults across different training rounds using Random Forest

(RF ) and Extremely Randomized Trees (Extra-Tree).

above 97%. Even so, its generalization ability left much to be de-
sired. As seen in Table 3, we achieved much improved results in
the model’s ability to detect undiscovered stalkerware over three
iterations of active learning, thanks both to the improved labels,
and to an obvious need for improvements to the Dosmelt pipeline
that became apparent after the first round of active learning.

In the first round of hand-labeling apps identified through active-
learning, we noticed that our dataset contained many benign for-
eign language apps that Dosmelt was mistakenly classifying as
stalkerware. This was particularly problematic because the training
dataset consisted of hand-coded apps from which foreign-language
apps had been excluded, resulting in the model attaching high
importance to certain foreign-language words that were not rele-
vant to stalkerware. Accordingly, we added an improved foreign-
language filter, which dramatically improved Dosmelt’s ability to
generalize in the second round. In the third round, Dosmelt per-
formed well but seemed to run out of stalkerware apps to classify
after a certain point. It correctly identified 19 stalkerware apps
among its top 20 most confident predictions, but only identified 3
stalkerware apps among the 20 least confident predictions that we
hand-labeled. Though Dosmelt seemed to have approached a limit
in its ability to identify new stalkerware apps, the high turnover
rate among such apps [42] suggest that further runs on newer sets
of app descriptions would continue to produce new stalkerware
detections. When we uploaded all of these manually verified detec-
tions to the Coalition Against Stalkerware’s [18] Stalkerware Threat
List, we found less than a 3% overlap with the coalition’s set of
previously detected apps, which suggests that mining app titles and
descriptions to detect stalkerware with Dosmelt is complementary
to existing commercialized methods for detecting stalkerware.

6.3 Stalkerware Capability Classification

We now turn to the novel and challenging task of identifying the
surveillance capabilities of stalkerware apps using limited amounts
of labeled data in an active learning framework. For this classifi-
cation task, we use 438 stalkerware apps (30% of the stalkerware
apps) as our testing set, leaving 1,024 labeled stalkerware apps
for training. However, as before, we evaluate our active learning
capabilities by initially training with the description texts of only
40% of these labeled apps (i.e., 409 stalkerware apps). Note that
we use more labelled training instances at the initial step of the
training process for the multi-label nuanced classification task as
compared to the binary stalkerware detection task because we wish
to ensure that each of the 14 surveillance functions appears at least
three times in the labelled training instances. In each round of the
learning-by-prediction process, more stalkerware apps with their
surveillance capabilities confirmed by human annotators are added
to update the surveillance capability classifier.
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Capability ACC AUC Positive label fraction

Browsing-History 0.905 0.882 0.019
Call-Logs 0.967 0.937 0.051
Call-Recordings 0.890 0.877 0.027
Camera 0.961 0.935 0.022
Contacts 0.882 0.850 0.039
Email 0.909 0.879 0.009
GPS-Tracking 0.971 0.937 0.099
Installed-Apps 0.857 0.820 0.016
Keylogging 0.968 0.940 0.009
Media-Extraction 0.981 0.942 0.024
Microphone 0.934 0.907 0.030
Screen 0.966 0.935 0.012
SMS 0.988 0.960 0.055
Social-Media 0.983 0.942 0.124

Table 5: Nuanced stalkerware classification results for each

surveillance capability using Random Forest (RF ).

We report the results of active learning in Table 4, however this
time we use Macro-F1 and Micro-F1 scores to measure the accuracy
of our multi-label classifier on the testing instances. Again, we
divide the dataset into testing and training data five times at random
and report the averaged results. The table shows that classification
effectiveness consistently increases with each training round as
more training instances are added. The accuracy stabilizes once 52%
of the training instances are selected for model training, regardless
of the classifier’s architecture.

Compared to the results of binary stalkerware detection in Ta-
ble 2, surveillance-capability classification requires more labelled
training instances at the initial training step due to the nature of
multi-label learning, in which success depends on the ability to cap-
ture the correlation between different labels [12, 55, 61, 62]. In our
case, the classifier must learn the relationships and co-occurrences
of different surveillance capabilities in the training set. Therefore,
it requires more labeled training instances so that it can identify
the statistical correlations between surveillance capability labels.

In Table 5, we also show the ACC and AUC scores per surveil-
lance capability achieved after the second round of active learning.
For each surveillance capability label, we also give the fraction of
stalkerware in our dataset with this surveillance capability, pro-
vided under the Positive label fraction column. A lower value denotes
that the corresponding surveillance capability appears less.

As shown in Table 5, the sparsity level of the surveillance label
is associated with the classification accuracy with respect to the
corresponding surveillance function. The surveillance labels with
the positive label ratio higher than 0.02 in general have ACC and
AUC scores higher than 0.93. With more label occurrences, the
classifier can capture more stable correlations between the TF-IDF
text features and the labels it attempts to predict. The two accuracy
metric values of Call-Recordings and Contacts are exceptionally low,
under 0.9. One likely explanation for this observation is that the
keywords describing the function of recording incoming calls and
remote access to the contacts (like “dialing”, “memo” and “chat-
ting”) can be also found in the text descriptions of apps attributed
to the other surveillance types, such as Screen and Social-Media.
These keywords do not provide enough confidence to enable accu-
rate detection of these surveillance capabilities. Inversely, the ACC
score of Keylogging is higher than 0.96. Texts of the stalkerware

Counts

Keyword Stalk. Non-stalk.

keymonitor 12 0
whatweb 11 0
biometrics 7 0
calendar 30 8
clone 20 3
database restore 6 0
whatsmessage 6 0
phonefind 6 0
spy 6 0
espiar 5 0
read_phone_state 5 0
stealer 3 0
monitored display 2 0

Counts

Keyword Stalk. Non-stalk.

intercept 5 1
transcript 5 1
memos 2 1
infrared 2 1
keystrokes 2 1
hider 2 1
dialing 12 5
chatting 24 13
gps 128 70
message 207 157
locate 39 37
email 6 4

Table 6: Top 25 ranked keywords for stalkerware detection

derived using Random Forest (RF ).

apps with keystroke logging functions contain the indicative key
words such as “keymonitor” and/or “keystrokes”. These keywords
are exclusively observed in the Keylogging type. It is thus easy to
attribute this surveillance type accurately.

6.4 Importance Ranking of the Keywords

To deepen our understanding of the nuanced classification mech-
anism, we evaluate the informativeness of each textual feature
dimension using a random forest classifier with the criterion of
mean decrease impurity [11]. Each feature adopted in the RF-based
detector is the TF-IDF value of a keyword. We rank the keywords
according to feature informativeness and provide the top-25 ranked
keywords in Table 6. Also, we count the frequency of occurrence
of each keyword in the stalkerware and non-stalkerware apps to
illustrate how the top-ranked keywords trigger detection.

In general, the top-ranked keywords are more indicative of the
text-based descriptions of stalkerware than of non-stalkerware apps.
For example, the following terms only exist in the titles and descrip-
tions of stalkerware apps: keymonitor, whatweb, clone, biometrics,
database restore, whatsmessage, phonefind, spyhuman, espiar, and
stealer. The keyword “keymonitor” is the name of a popular stalk-
erware that appears many times in the app stores under different
app identifiers, including ikeymonitor [4]. It stands out as one of
the most fully-featured stalkerware apps we have observed, cov-
ering messages from Facebook Messenger, Line, Hangouts, Viber,
WeChat, Kik and Skype, if these applications are installed. It also
enables access to call history logs, call recordings, calendar events,
screen captures, audio recordings, contact lists, GPS locations, on-
line browsing history, notes, pasteboard data and keystrokes. An-
other unsurprisingly prominent keyword is spy, which appears
very often in the title and descriptions of stalkerware, and even as a
substring in app titles such asmSpy and spyhuman. These two apps
conduct a broad spectrum of surveillance functions including copy-
ing call logs, tracking the app installation history, and copying text
messages. These stalkerware apps provide good examples showing
the multi-label nature of the nuanced stalkerware classification: a
stalkerware app is usually equipped with multiple surveillance activ-
ities at the same time. In contrast, other prominent keywords that
correspond to app titles are for apps that spy on a single commu-
nication channel, such as WhatsApp: whatsmessage, whatweb, and
whatweb cloner. Each of these apps enable an attacker to spy on an
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individual’sWhatsApp account on another device. A few other note-
worthy examples are the keywords clone, biometrics, phonefind,
and stealer, each of which indicate a surveillance modality or style
of privacy theft. It is interesting that some foreign language key-
words did appear in the list, including the keyword espiar, which
is the Spanish translation of “spy.”

It is important to note that Dosmelt also detects apps that do
not openly reference stalking functionality through words like
“spying”, on the basis of keywords that skew towards stalkerware
but appear both in stalkerware and non-stalkerware apps, such
as dialing, chatting, gps, and message. Consider for example, the
dual-use app 𝑐𝑜𝑚.𝑚𝑎ℎ𝑎.𝑜𝑟𝑔.𝑓 𝑖𝑛𝑑𝑚𝑦𝑙𝑜𝑠𝑡𝑝ℎ𝑜𝑛𝑒 , that was detected
as having a stalkerware use case with .946 probability, largely on
the basis of such keywords as “automatically”, “quick”, and “stolen.”
Such words could appear in the description of a benign or malicious
app, but taken together were correctly adjudged to be indicative of
location-tracking functionality. In the appendix, we provide 19 con-
crete examples of detected stalkerware apps by Dosmelt. We also
show the identified surveillance capabilities of these stalkerware
apps, which were verified manually by human experts.

7 DISCUSSION

We provide a brief discussion around the deployment plans of
Dosmelt, its limitations and a few pointers for future work.

Impact. Our experimental evaluation suggest that Dosmelt’s min-
ing of app titles and descriptions is a useful means of detecting
stalkerware apps and identifying their surveillance capabilities.
Though this method would be insufficient as a standalone method,
its ability to quickly detect new apps based on their advertised
functionality seems a good complement to existing static and dy-
namic analysis techniques [23, 33], and to reputation systems [42]
for detecting stalkerware, with the crucial benefit of being the first
system to detect individual stalkerware surveillance capabilities.

To help the survivors of intimate partner violence (IPV), we sub-
mitted the manually labeled dataset we constructed, which consists
of several hundred stalkerware apps that did not previously exist
in the the Coalition Against Stalkerware’s [18] Stalkerware Threat
List, which includes 246 apps directly detected by Dosmelt. The
coalition’s threat list is used as a source of detections by several
security vendors to protect their customers from stalkerware.

Dosmelt is notable because it enables the creation of precise
stalkerware warnings based on app capabilities, as shown in Fig-
ure 1. While we believe that this represents a substantial leap for-
ward, it only solves one of several challenges in providing well-
considered, usable stalkerware warnings. Consider, for instance,
that for a warning to be useful in intimate partner violence settings,
we must consider that it is the abuser who will be installing the
stalkerware app on the targeted individual’s device [26]. Thus, an
immediate warning by an installed security app could be counter-
productive. The goal should be to warn the all other users of the
device other than the person who installed the app, as this indi-
vidual is already aware of the app’s functionality and is likely to
uninstall the security application once aware of its detection capa-
bilities. Furthermore, the language used in the app itself should be
carefully considered, as it is designed to be seen by IPV survivors,
who may be suffering from post-traumatic stress [37] and other
mental health complications as a result of ongoing abuse [29]. As

important as these notification-related challenges are, we leave
them out of scope, and plan to address them in our future work.

Limitations. We designed Dosmelt to test the limits of an app’s
self-description as a way to detect new stalkerware apps. While this
method has clear advantages, it also comes with obvious limitations.
First, this method works best for apps that have at least at one point
been hosted on the Google Play app store. While we are able to
extract descriptions from stalkerware that hosts its self-descriptions
on its own website, the extraction of these descriptions for newly
detected stalkerwarewould be very difficult to automate. Additional,
complementary methods of stalkerware detection such as dynamic
analysis [23] and reputation-based systems [42] are needed to assist
in this case. Dynamic analysis methods could be used to identify
some of an app’s stalkerware capabilities, but these methods do not
distinguish between stalkerware and non-stalking spyware.

A second limitation of our approach is the possibility of adver-
sarial attacks. The most obvious attack to conduct against Dosmelt
or a similar approach based on an app’s self-description, would
be to avoid stalkerware-related keywords, though this approach is
disadvantageous to the developer because those same keywords
enable abusers to discover the app through internet and app store
searches. Alternatively, a stalkerware developer might gain access
to a list of keywords that Dosmelt associates with benign apps,
and inject benign keywords into the title or description of the app
to weaken the classifier’s confidence in its prediction. While this is
certainly a feasible attack, a more adversarially-resistant version
of Dosmelt could perhaps be based on recent work in adversari-
ally robust decision trees [13, 16] to form a resilient random forest
model. We intend to explore these directions in future work, though
ultimately, we recommend Dosmelt as a complement to existing
techniques like dynamic tracking of sensitive information flow
within the app [20, 24, 59] and not as a standalone solution.

Finally, we evaluated Dosmelt only on apps with titles and de-
scription in English (because the training data that we had access to
was English-centric). There is a clear need for extending the stalk-
erware detection methods like ours to be applied to non-English
apps. We will address this gap in our future work.

8 CONCLUSION

Stalkerware is a global phenomenon, having both security and pri-
vacy implications for an increasing number of individuals. Existing
work has not attempted to automatically identify the varied surveil-
lance capabilities of stalkerware apps, which results in confusing
stalkerware notifications, particularly for apps that can be used
as stalkerware but have legitimate benign uses. It was challeng-
ing to perform this task at scale however, as there were no large
datasets of stalkerware for which individual surveillance features
had been labeled. To this end, we developed Dosmelt, a multi-label
stalkerware detection system that identifies the various types of
surveillance that each app conducts. Our method leverages an ac-
tive learning methodology to promote effective learning with a
modest set of hand-annotated apps. We conducted an extensive
evaluation of Dosmelt to show its effectiveness, and we submitted
our manually labeled dataset of stalkerware apps and those detected
by Dosmelt to the Coalition Against Stalkerware’s Stalkerware
Threat List, to which interested researchers can apply for access.
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A APPENDIX: CONCRETE EXAMPLE OF

DOSMELT’S OUTPUT

We illustrate 19 stalkerware apps detected by Dosmelt in Table 7,
along with the identified surveillance capabilities of these apps.
These surveillance capabilities are verified and confirmed by two
researchers in our team. The results of the nuanced surveillance

type attribution provide a concrete example of the precise warn-
ing information that can be extracted from Dosmelt’s output. The
first two columns in Table 7 are the app ids and the titles of the
detected stalkerware apps. The remaining columns correspond to
each one of the 14 surveillance types listed in our taxonomy (see
Table 1). The “X” marks in each row denote whether a stalkerware
app is equipped with a specific surveillance capability or not. For
example, the app in the first row, with the app id com.celphtr.rodes
and the title Cell Phone Tracker, has five different surveillance func-
tions at the same time: Call-Logs, Contacts, GPS-Tracking, SMS, and
Social-Media. From the table, we can have an intuitive understand-
ing about the multi-label nature of the nuanced surveillance type
attribution problem tackled in our study. A stalkerware app can
spy on the targeted device of victim using a variety of surveillance
functionalities.
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com.celphtr.rodes Cell Phone Tracker X X X X X
child.monitor.app Couple Monitor -Mobile Tracker X X X X X
project.antitheft Telesom Antitheft X X X X
com.trphwhat.prob Call Tracker X X X X
com.viva.recoverymyfileprank Recover My Files PRO X X X X
com.calltracker.calltracker Cell Tracker X X X X
find.my.device.tracking find my phone tracking pro X X X
com.appmartspace.eazytracker Easy Tracker X X X
com.restore.backup.free.prov Watsup Recova X X X
com.track.lost.cell.phone.lite.lost.device.tracker.lite Track Lost Cell Phone: Lost Device Tracker Lite X X X
khabarizone.mobilenumberlocationtracker Mobile Number Location Tracker X X
com.dubaigamesstudio.voicecallrecorderfree Voice Call Recorder - Free X X
com.internaliagroup.seguridad360 Mobile Security 360 X X
com.picturesrecovery.restorefilesfree Recover All Deleted Photos:Files,Images X X
gbwhatsaap.aplijmz GBwhatsaap X
com.geotou.findmyfamily Find My Friends X
com.automaticcallrecorder2016free.callrecorderpro Automatic Call Recorder - Free X
com.octadata.videorecover Recover Video X
com.Mob123.Izen456 Recorder tips Screen Record Capture X

Table 7: The examples of stalkerware detection and nuanced surveillance capability attribution results of Dosmelt.
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