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ABSTRACT

The increasing sophistication of malicious software calls for
new defensive techniques that are harder to evade, and are
capable of protecting users against novel threats. We present
AESOP, a scalable algorithm that identifies malicious exe-
cutable files by applying Aesop’s moral that “a man is known
by the company he keeps.” We use a large dataset volun-
tarily contributed by the members of Norton Community
Watch, consisting of partial lists of the files that exist on
their machines, to identify close relationships between files
that often appear together on machines. AESOP leverages
locality-sensitive hashing to measure the strength of these
inter-file relationships to construct a graph, on which it per-
forms large scale inference by propagating information from
the labeled files (as benign or malicious) to the preponder-
ance of unlabeled files. AESOP attained early labeling of 99%
of benign files and 79% of malicious files, over a week before
they are labeled by the state-of-the-art techniques, with a
0.9961 true positive rate at flagging malware, at 0.0001 false
positive rate.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; D.4.6 [Security

and Protection]

Keywords

Malware detection; graph mining; file graph; belief propa-
gation; locality sensitive hashing

1. INTRODUCTION

Protection against novel malware attacks, also known as
0-day malware, is becoming increasingly important as the
cost of these attacks increases. For individuals, the dollars
and cents cost is rising due to the increasing prevalence of
financial fraud and the increasing viciousness of malware,
such as the CryptoLocker ransomware program that en-
crypts personal data files and holds them for a ransom of 300
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Figure 1: Left: 99% of the known good files and 79% of
known bad files detected by AESOP were labeled at least 1
week ahead of Symantec’s current technology. Right: AESOP
achieves almost perfect detection for malware, with few false
alarms (0.9961 TP rate at 0.0001 FP rate).

dollars [4]. Emotional and professional costs can be much
higher, as when attacks result in the loss of privacy. The
situation is arguably worse for governments and businesses,
which find themselves under siege by well-funded attackers
that routinely create devastating financial losses, and per-
haps even more impactful losses of intellectual property and
operational secrets [23].

Computer security providers recognize the need to re-
spond with better protection against novel threats. The goal
of these 0-day threat protections is to limit the malware’s
window of effectiveness, so that malicious files are detected
as soon as possible after their first appearance. Another crit-
ical measure of success is a vanishingly small false positive
rate, as labeling a benign file as malicious can have devas-
tating consequences, particularly if it is a popular file or one
that is essential to the stability of the system, as in the case
of operating system and driver files.

We present Aesop (Figure 2), a novel approach to detect-
ing malicious executable files by applying the well-known
aphorism that “a man is known by the company he keeps,”
and in our case, a file’s goodness may be judged by the other
files that often appear with it on users’ machines. More pre-
cisely, we infer unlabeled files’ reputation (or goodness) by
analyzing their relations with labeled peers.

AESOP is not the first attempt to detect malware by es-
tablishing file reputation scores. A representative work in
this space is Polonium [7], which leverages the insight that
some computer users have poor internet hygiene in that they
attract many more malicious files than users that follow se-
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Figure 2: Overview of the AESOP technology

curity best practices. Polonium constructs a bipartite graph
between files and machines, in which a file-machine edge
represents the existence of a particular file on a particular
machine. This approach proved to be successful, Syman-
tec has deployed Polonium; it has detected millions of ma-
licious files. However, Polonium misses many malicious files
as it can only observe malware’s file-to-file relationships in-
directly through the lens of low-hygiene machines. By con-
trast, AESOP directly captures file-to-file affinity and can
therefore identify malicious files that co-occur with one an-
other, even when they do not appear on heavily infected
machines. As we shall demonstrate, AESOP is able to detect
many malicious files over a week before they are labeled
by Symantec’s existing Polonium-based technology, with a
0.0001 false positive rate (see Figure 1).

Like Polonium, in this work we leverage Symantec’s Nor-
ton Community Watch data, the most important elements
of which are unique file and machine identifiers. File iden-
tifiers are SHA-256 or MD5 cryptographic hash values that
are computed over the file’s raw bytes. Symantec’s proxy
for a true machine identifier is based on the serial number of
Norton security products, which is an adequate but imper-
fect fit because product re-installation on a single machine
may result in a serial number change, and a single serial
number can be carried from one machine to another. The
scale of this dataset is impressive, comprising 119 million
machines and 10.1 billion files.

This paper makes the following contributions:

e We formulate the malware detection problem as a large-
scale graph mining and inference problem, where our
goal is to identify an unknown file’s relations with
other files so that we can establish guilt or innocence
by its association with files that are known to be be-
nign or malicious.

e We present the AESOP algorithm that leverages locality-
sensitive hashing to efficiently compute file similarity
values to construct a file-relation graph for inferring
file goodness based on belief propagation.

e AESOP achieved early detection of 99% of benign files
and 79% of malicious files that remained unlabeled by
Symantec for over a week before they were eventually
labeled, with exceptionally low error rates (see Fig-
ure 1).

The remainder of this paper proceeds as follows. We be-
gin by describing our dataset and the notation we will use
throughout this paper. We then proceed to a description of
AESOP and its various components, followed by the exper-
iments we conducted to demonstrate its effectiveness. Fi-
nally, we discuss our plans to deploy AESOP in support of
Symantec’s malware detection capabilities, and end by pre-
senting our conclusions.

2. NOTATION AND DATASET DESCRIPTION

In this section, we formally describe our dataset and the
central notion of file co-occurrence strength.

2.1 Dataset

Our dataset D consists of records of the form < f, My >,
where f is a file and My is the set of machines that file
f appears on (i.e., M being the set of all the machines,
My = {m1,me, ...} where m; € M). |My| denotes the preva-
lence of file f, i.e., the number of machines it appears on.
Each file is either labeled or unlabeled. The possible labels
for a labeled file are good and bad, indicating the nature of
the file, i.e., whether it is purely trusted or malicious, re-
spectively. We refer to a labeled file with the label good as a
good file and with the label bad as a bad file. The good and
bad files comprise the ground-truth set. Our informal high-
level problem statement can be stated as follows: Given a
dataset as defined above, assign a label (i.e., good or bad) to
unlabeled files based on their co-occurrence with labeled files.

2.2 Defining File Co-occurence Strength

We define the strength of co-occurrence between two files
fi and f; based on the overlap between sets My, and My,,
and employ the Jaccard similarity measure given by the for-

|My, MMy |
mula J(My,, My,) = mroar>

T3, 05,1
between 0 and 1 (inclusive); between files f; and f;, the for-
mer indicates no co-occurrence relationship and the latter
indicates a perfect co-occurrence relationship.

We assume that if J(My,, My;) < 67, this indicates a weak
(not strong) co-occurrence between files f; and f;. Addi-
tionally, if file f has a prevalence less than or equal to dar,
(i.e., |[My| < 0nr), we call file f an immature file since it
did not have time to establish presence, and we deem any
co-occurrence relationship it is involved in as weak. Both 6
and dp must be determined based on domain knowledge—
for our dataset, we set 6; = 0.5 and dpr = 4.1

AESOP leverages strong co-occurrence relationships be-
tween the files to label them. To achieve this, AESOP uses
Jaccard similarity because it can be efficiently computed
and well-approximated for our large scale dataset through
locality-sensitive hashing, which we will describe in the fol-
lowing sections.

Table 1 lists the symbols used throughout the paper.

This measure takes values

ISpecifically, we set dps based on our experience from Polo-
nium [7]. The study on the effects of varying d; is omitted
due to space constraints.



Symbol Meaning

f File (a.k.a. executable, software, application)

m Machine (or computer)

My The set of machines that file f appears on

D Input dataset; records consist of < f, My >

J(My;, Mg;)  Jaccard similarity between Mg, and My,

5, Jaccard similarity threshold for strong co-
occurrence, set to 0.5

(Y4 Prevalence threshold, set to 4

h Random permutation function in MinHashing

b Number of bands in locality-sensitive hashing

T Number of MinHash values each band
contains in locality-sensitive hashing

s Jaccard similarity between a pair of files

TP True positive; a malware instance correctly
identified as bad

FP False positive; a good file incorrectly

identified as bad

Table 1: Main symbols used throughout the paper

3. PROPOSED METHOD: THE AESOP AL-
GORITHM

In this section, we describe the techniques that we used
in designing AESOP so that it can scale to billions of files
and over a hundred million machines. Figure 2 provides an
overview of the AESOP approach. We begin by describing
our use of MinHashing, which allows us to approximate the
Jaccard similarity between two sets efficiently. Next, we
explain our application of locality-sensitive hashing to ef-
ficiently identify peer-groups of strongly co-occurring files.
Finally, we describe our use of belief propagation to propa-
gate information from labeled files to their unlabeled peers.

3.1 MinHashing for Co-occurence Strength Es-
timation

It is not tractable to compute the Jaccard similarity be-
tween large sets due to the expensive set intersection and
union operations it involves. MinHashing [5], which is short
for Minwise Independent Permutation Hashing, is a popular
technique to efficiently estimate the Jaccard similarity be-
tween two sets. MinHashing has been proven to work well for
large scale real-world applications, such as detecting dupli-
cate images [8] and clustering users on Google news [10]. We
will explain MinHashing using dataset D in Table 2 as a run-
ning example. MinHashing randomly reorders the machines
in M using a bijective function A that maps the machines in
M to the set {1,...,|M|} in a random fashion. We call func-
tion h a random permutation function. An example function
h for M = {m,...,ms} is given in Table 2. Notice that if
we rearrange the machines in My € D in ascending order of
the machines’ values retrieved from function h, we obtain a
random permutation of My, which we refer to as M J]} For in-
stance, My, in Table 2 is permuted as MJ]ZQ = {mz7,m3,ms}
since h(m7) = 1 < h(ms) = 2 < h(ms) = 8. The Min-
Hash value of My under function h, which we refer to as
hmin(My), is defined as Amin(My) = arg min,, h(ms).

Informally, Amin(My) is the first element of MJ}} For in-
stance, Rmin(My,) = my4 in Table 2.

File Set of machines containing the file

fi My, = {ma2,m4, m5,mg}
f2 My, = {m3,ms5, mr}
fs My, = {m1,m3, ms, mg,mr}

h(m1) =3 h(m2)=6 h(ms)=2
h(ms) =8 h(me)=7 h(m7)=1

h(mg) =4
h(mg) =5

Table 2: An example dataset D and random permutation
function h

The key property of MinHashing is that the probability
of the MinHash values of two sets being equal is equal to the
Jaccard similarity between the sets. Formally, Pr(Amin(My,)
hinin(My;)) = J(Mjy,, My,) (see Cohen et al. [9] or Rajara-
man and Ullman [22] for a proof). As an example, in Table
2, hmin(Mh) = Ma, hmi”(Mfz) = myz, and J(Mf17Mf2) =
0.17.

3.2 Clustering Files

Despite the use of MinHashing, the number of file pairs
to be considered for strong co-occurrence still remains very
large for big datasets. It is also possible that two sets may
not have the same MinHash value but in fact have a high
Jaccard similarity, or may receive the same MinHash value
but in fact have a low Jaccard similarity. Hence, a single
MinHash value is typically not sufficient to deduce whether
two sets have a high Jaccard similarity or, in our case,
whether two files strongly co-occur. Locality-sensitive hash-
ing (LSH), which we describe next, addresses these points.

LSH is a technique for approximate clustering and near-
neighbor search in high dimensional spaces [16, 14]. Its main
idea is to use multiple hash functions to map items into buck-
ets such that similar items are more likely to be hashed to
the same bucket. LSH uses locality-sensitive function fam-
ilies to achieve this goal.? At a high-level, each individ-
ual function in a locality-sensitive function family should
be able to provide lower and upper bounds on the proba-
bility of whether two items with a pairwise similarity (or
distance) in a particular interval will receive the same hash
value from the function. Therefore, locality-sensitive func-
tion families are defined for particular similarity or distance
measures, such as Hamming distance [14], L, norms [14,
11], and earth mover’s distance [6]. The random permuta-
tion functions used in MinHashing (see Section 3.1) form a
locality-sensitive function family for the Jaccard similarity
measure [9].

A nice property of the locality-sensitive function families
is that they can be amplified by combining values returned
from multiple functions via logical AND and/or OR [22]. In
our context, given dataset D, this means we can compute
n MinHash values—using n different random permutation
functions—for each My € D. Subsequently, these n Min-
Hash values can be combined in multiple ways. An effective
and generic way is to partition n MinHash values into b
bands, each consisting of r values, such that n =b x r.

As an example, consider Table 3, which lists six MinHash
values for My,, My, and My, obtained from six different

2A function family is a group of functions that share certain
characteristics.



hmin My, My, My, Buckets
h111un mi mi ma
Band 1 h?nZn ma mi ma [f47 fs] [fG]
h3m  ms ms ms3
Band 2 hfnzn ms ms ma [f47 f5] [fﬁ]
5
Band 3 [min ML M7 T ey g

Table 3: Hypothetical inputs and outputs for LSH. The in-
puts are MinHash values for each file. The outputs are buck-
ets containing files. This LSH scheme uses three bands, each
consisting of two MinHash values.

random permutation functions h',...,hS. These six Min-
Hash values are partitioned into three bands, each consisting
of two values. For instance, My,’s MinHash values for Band
2 are {ms,ms}. If we use a cryptographic hash function,
such as SHA-256, to assign files to buckets based on their
MinHash values in a band, then the files will appear in the
same bucket if all of their » MinHash values in that band are
the same. For instance, in Band 2 of Table 3, files f4 and f5
appear in the same bucket because their MinHash values for
Band 2, i.e., h3,;,, and hi,;,, are both {ms, ms}, whereas file
fe appears in a separate bucket because its MinHash values
are {ms, ms}. In this scheme, the files have b chances of
appearing in the same bucket. This type of amplification is
called an AND-construction with r rows followed by an OR-
construction with b bands. This is because files will hash to
the same bucket at least once if all of their »r MinHash values
(AND operation) in any of the b bands are the same (OR
operation).

Our goal with LSH is that files f; and f; will appear to-
gether in at least one bucket if they strongly co-occur. Based
on the scheme described above, we can derive the probability
that files f; and f; will appear in at least one bucket given
their true Jaccard similarity, J(My,, M) = s, by following
the derivation steps in Rajaraman and Ullman [22]. From
Section 3.1, we know that the probability that one MinHash
value of My, and My, being equal is s. Therefore, the proba-
bility of » MinHash values of My, and My, being the same is
s". Notice that s" is the probability that files f; and f; will
hash to the same bucket in a particular band. Therefore,
the probability that files f; and f; will not hash to the same
bucket in a particular band is 1 — s”. Then, the probability
that files f; and f; will not hash to the same bucket in all
of the b bands is (1 — s”)°. Finally, the probability that files
fi and f; will hash to the same bucket in at least one of the
bbands is 1 — (1 — s™)°.

3.2.1 Tuning Parameters of LSH

Figure 3 illustrates the effect of b and r on 1—(1—s")" for
various values of b, r, and s. Notice that increasing r allows
us to prune file pairs with low Jaccard similarity whereas
increasing b allows us to retain file pairs with high Jaccard
similarity. As an example, consider our Jaccard similarity
threshold for strong co-occurrence, 67 = 0.5. From the fig-
ure, we see that the probability that a pair of files with
s = 0.5 appearing in at least one bucket is 0.5 when b = 1
and r = 1. The same probability drops to almost 0 when

b =1 and r = 10. Now, consider s = 0.9 with which we
would deem a pair of files as strongly co-occurring. With
b =1 and r = 10, we see from the figure that the probabil-
ity that the files in the pair appearing in at least one bucket
is less than 0.4. The same probability increases to almost 1
when b = 10 and r = 10.

Given a 07 value, one approach to select b and r is to first
determine an r value that assigns to file pairs with s < §s
a very small probability of appearing in at least one bucket.
Then, we can select a b value that assigns to file pairs with
s > 67 a high probability of appearing in at least one bucket.
Due to the “S” shape of the function 1 — (1 — s")® [22], it
is not feasible to ensure that all the file pairs with s > d;
have a probability close to 1 while forcing any file pair with
s < §7 have a probability close to 0, similar to the ideal unit
step function. Another consideration is that while large b
and r values are advantageous, it also means that one needs
to compute a significant amount of MinHash values for LSH.
Given 07 = 0.5, we set b = 10 and r = 10 since these values
prune the majority of the weakly co-occurring file pairs with
s < 0.5 while retaining most of the strongly co-occurring file
pairs with s > 0.5.
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Figure 3: Effect of the number of bands, b, and MinHash
values in each band, r, on the probability that two files
with Jaccard similarity s will hash to the same bucket at
least once in LSH. Given our Jaccard similarity threshold
for strong co-occurrence d; = 0.5, we set b =10 and r = 10
(the blue curve with triangles) to prune the majority of the
weakly co-occurring file pairs with s < 0.5 while retaining
most of the strongly co-occurring file pairs with s > 0.5.

3.3 Labeling Files based on Co-occurrence

The outcome of LSH on dataset D is multiple bands, each
consisting of a varying number of buckets that contain la-
beled and unlabeled files. A file appears at most once in
a band, inside one of the buckets of the band. Notice that
across different bands, the file might appear with a different
set of files. For instance, in Table 3, file f5 appears with file
f4 in two bands and with file fs in one band. In this section,
we discuss how we combine the buckets from different bands
into a unified “structure” and assign labels to unlabeled files
using it.

Unipartite File Graph. Graphs provide a powerful repre-
sentation of relationships between objects, therefore one ap-
proach to combine the buckets is to construct an undirected



unipartite file graph by considering every pair of files in the
buckets. In this graph, the files appear as nodes and they
are connected with an edge if they indeed strongly co-occur.
This additional check is performed to mitigate the effect of
possible approximation errors incurred by LSH. The graph
can then be used in a way that goodness and badness infor-
mation is “sent” from the labeled files to the unlabeled files
in the graph.

Our preliminary analyses showed that constructing a uni-
partite file graph as described above is not feasible. The
reason is that a file inside a bucket typically strongly co-
occurs with the majority of the other files in the bucket.
This is most likely a property of the domain; there are in-
trinsic dependency relationships between files, e.g., the files
under the “\Windows\System32” folder in the Windows op-
erating systems. Therefore, large buckets contribute dense
subgraphs to the graph during construction. In turn, the
number of edges in the graph increases to billions, making
it infeasible to operate on the graph.

Bipartite File-Bucket Graph. Due to this reason, AESOP
instead operates on a undirected, unweighted bipartite file-
bucket graph, which we also refer to as a file-relation graph.
In this graph, there is an edge connecting a file node to
a bucket node if the file appears in that bucket. Notice
that the number of edges that would be included in the
bipartite graph from a bucket of N strongly co-occurring
files is O(N) in comparison to O(N?) for the unipartite file
graph. The bipartite graph is expected to contain more
nodes than the unipartite file graph, however this is less of
a concern for information propagation purposes as we will
discuss. The bipartite graph is useful to assign labels to the
unlabeled files; its difference with the unipartite file graph
is that the files are now indirectly connected through the
buckets, therefore goodness and badness information is first
propagated from the labeled files to the buckets and then
from the buckets to the unlabeled files.

Remarks. LSH ensures with high probability that if a file
appears in a bucket consisting of more than one file, the file
should strongly co-occur with at least one of the other files in
the bucket. We represent this relationship by establishing
an edge connecting the file to the bucket. It is, however,
possible that a file does not strongly co-occur with some
of the files in the bucket. In this case, the bipartite graph
cannot capture the absence of strong co-occurrence between
that set of files. In practice, this is a rare situation that does
not pose any limitation on the effectiveness of AESOP, as we
demonstrate in Section 4.

Benefits. A property of the bipartite graph is that it in-
trinsically captures the notion of a weight between the files.
To illustrate this, consider two strongly co-occurring files f;
and f;, and their Jaccard similarity J(My,, My,) = s. If
we use a LSH scheme with b bands and r MinHash values
as described in Section 3.2, the probability that files f; and
f; appear in the same bucket in a band is s". Then, the
number of bands files f; and f; appear together in a bucket
is a random variable X that follows the Binomial distribu-
tion with parameters b and s”, i.e., X ~ B(b,s"). Thus, the
larger the value of s, the more bands files in which f; and f;
will appear together inside a bucket. In the bipartite graph,
this results in a larger number of paths between files f; and
f; that go through the buckets, thereby allowing files f; and
f; to “influence” each other more than do the other files.
Pruning. After the bipartite graph is constructed, it is

possible that some of its connected components consist of
one file or only unlabeled files. These components do not
contribute to solving the problem of assigning labels to un-
labeled files, therefore AESOP discards them from the graph
to retain only the useful information in the graph.

Belief Propagation. Next, we describe our approach to as-
sign labels to unlabeled files using the bipartite graph. Our
goal is to label the nodes corresponding to unlabeled files as
good or bad, along with a measure of confidence. To achieve
this, we treat each file as a random variable X € {zg4,x},
where z4 is the good label and z; is the bad label. The la-
bels are simply the possible states for the random variable
X. The file’s goodness and badness can then be expressed
by the probabilities Pr(zy) and Pr(x:), respectively, such
that Pr(xzg) + Pr(xzp) = 1. Based on this formulation, our
goal is to determine the marginal probabilities Pr(Xy, = zg4)
and Pr(Xy, = x;) for unlabeled file f;. To achieve this, there
exists important background information that we can lever-
age. First, we know that some nodes in the graph correspond
to labeled files. Second, our intuition suggests homophilic
relationships between the files, i.e., good files are expected
to strongly co-occur with other good files and bad files are
expected to strongly co-occur with other bad files.

The above formulation converts the bipartite graph into a
pairwise Markov random field (MRF). The task of inferring
the marginal distribution of each node in a pairwise MRF is
NP-complete [25]. The Belief Propagation algorithm (BP) is
a successful approximation technique for solving this prob-
lem. BP has been adapted to various domains, such as image
restoration [13] and fraud detection [20]. The algorithm is
also scalable; it takes time linear in the number of edges
in the graph. For this reason, AESOP adapts BP to assign
labels to unlabeled files.

At a high level, BP infers the marginal distribution of a
node using some prior knowledge about the node and mes-
sages arriving from the node’s neighbors. The idea is to
iteratively pass messages between every pair of connected
nodes ¢ and j. Typically, m;j(xr) represents the message
sent from node ¢ to node j, which denotes node i’s belief
that node j is in state xx. The prior knowledge, or simply
the prior, for node i is denoted by the node potential func-
tion ¢; that specifies the prior probabilities of node i being
in the possible states. The message passing procedure stops
when the messages converge or a maximum number of iter-
ations is reached. The final, inferred marginal probabilities
are called the final beliefs. The symbol b;(z;) denotes the
final belief that node ¢ is in state z;.

The BP algorithm is carried out as follows in practice. An
edge between nodes ¢ and j passes a message towards each
direction for each possible state. The order of the transmis-
sion can be arbitrary if all the messages are passed in every
iteration. The set of beliefs that a node has for each of its
neighbors is kept normalized to sum to one. This prevents
any numerical underflow, i.e., a certain belief reaching 0 due
to limited precision. A message from node i to its neighbor
node j is generated based on node i’s neighbors’ messages
about node i. Formally, the message update equation is:

HpEN(i) mypi(Te)

mi(ze)

mij(ek) Y dilwe) Gij(we, o)

TpEX

where N (i) is the set of nodes neighboring node i, and
¥i; (xe,xk) 1s called the edge potential; intuitively, it is a



function that transforms a node’s incoming messages into
the node’s outgoing messages. Formally, ¥;; (z¢, zr) speci-
fies the probability of node i being in state x, and node j
being in state xy.

Although BP is not theoretically guaranteed to converge
in general graphs, in practice the algorithm usually con-
verges quickly. After the message passing procedure stops
and the algorithm ends, the final beliefs are computed as:

bi(z;) =k ¢i(z;) [] mpi(z))
PEN(4)

where k is a normalizing constant.

AESOP’s Adaptation of BP. Next, we describe how we
map our background information into BP’s context. Recall
that there are two types of nodes in the bipartite graph: files
and buckets. The nodes can be in either the good state or
the bad state. For simplicity of exposition, we only mention
the priors for the good state. For the buckets, we set their
priors to 0.5. This is because we want a bucket to be initially
neutral and influenced only by the files appearing in the
bucket (thus connected to the bucket). For the labeled files,
if the file is good we set its prior to 0.99 and if the file
bad we set its prior to 0.01. For the unlabeled files, we set
their priors to 0.5 so that they are initially neutral and their
final beliefs are indirectly determined by the labeled files
with which they strongly co-occur. We convert our intuition
about homophilic file relationships into the edge potentials
shown in Table 4, which indicate that a good (bad) file is
more likely to be associated with a bucket consisting of other
good (bad) files than a bucket consisting of bad (good) files.

wij (‘rlwrk) | Ty = gOOd Ty = bad
z = good 0.99 0.01
ox = bad 0.01 0.99

Table 4: Edge potentials reflecting our intuition that it is
more likely that good (bad) files strongly co-occur with other
good (bad) files.

3.4 Time Complexity of AESOP

AESOP has two main components: LSH and BP. Given
that the random permutation functions can be predeter-
mined, LSH can be performed with a single scan of dataset
D. At a high level, LSH considers each file in dataset D,
maintaining a MinHash value for each permutation function
while iterating over the set of machines it appears on. As-
sume that dataset D contains |D| files. Also, recall that
M denotes the set of all the machines. Then, |[M| is the
maximum number of machines a file can appear on. Hence,
the time complexity for LSH is O(|D| - [M]). The BP al-
gorithm iterates over each edge in the file-relation graph a
constant amount of times if the maximum number of itera-
tions parameter is set. Assume that the graph has F edges.
Then, the time complexity for BP is O(E). The overall time
complexity for AESOP is therefore O(|D| - |M| + E).

4. EXPERIMENTS

This section presents an experimental evaluation of AE-
sop. We measure its effectiveness at detecting labeled be-
nign and malicious files as well as discovering labels for un-
labeled benign and malicious files.

We conducted our experiments on a 64-bit Linux machine
(RedHat Enterprise Linux Server 5.7) with 8 Opteron 2350
quad core processors running at 2.0 GHz, 64GB of RAM,
and 100GB disk-quota per user.

4.1 Sampling Norton Community Watch

We leverage Symantec’s Norton Community Watch data,
the most important elements of which are unique file and
machine identifiers. This terabyte-scale dataset contains
more than 119 million machines and over 10.1 billion files.
Due to the limited disk space budget, we obtained a sample
of this dataset as follows.

Symantec’s Worldwide Intelligence Network Environment
(WINE) samples and aggregates datasets that Symantec
uses in its day-to-day operations to share them with the re-
search community [12]. The WINE sampling scheme selects
machines uniformly at random and retrieves any data for
the sampled machines from the production systems. Previ-
ous work showed that the uniform sampling of the machines
is effective in terms of estimating or extrapolating crucial
attributes of the original datasets from the samples [21].
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Figure 4: Distributions of the number of machines (vertical
axis) with a particular file count (horizontal axis) for the
full dataset (higher blue curve with circles) and the sample
(lower green curve with rectangles). Our sampling strategy
preserves the overall shape of the original distribution.

Motivated by this result, we employ a similar technique
to sample machines from the Norton Community Watch
dataset. The set of files appearing on each sampled machine
is retrieved completely. Figure 4 shows the distributions
of the number of machines containing a particular number
of files for the original dataset and a 10% sample. More
specifically, the number of machines in the sample is 10% of
the total number of machines in the dataset. The uniform
random sampling approach preserves the overall shape of
the original distribution; both distributions are heavy-tailed
with few machines containing a large number of files and a
large number of machines containing few files.

We obtained the sample on November 6, 2013. After dis-
carding the immature files with prevalence less than or equal
to dp = 4, the sample consists of 11,939, 429 machines and
43,353, 581 files, with labels for 7% of the files in the sample.
The final sample dataset occupies 120GB space on disk.

4.2 AESOP File-relation Graph

From the sample, AESOP generates a file-relation graph of
6,056, 802 nodes and 19, 103, 825 edges. The graph contains



1,663,506 good files, 47,956 bad files, and 1,085,937 unla-
beled files, and 3,259,403 nodes that correspond to buckets.
There are 40,556,182 files in the sample that do not appear
in the graph because they appeared in connected compo-
nents that consist of either only one file or only unlabeled
files. These files are pruned from the graph for efficiency
reasons as they provide no value. The number of buckets is
large because AESOP uses 10 bands during LSH; each band
contributes a similar set of files but a distinct set of buckets.

4.3 Sizes of Connected Components

Intuitively, AESOP’s accuracy will be better if the files
form small, disconnected clusters in the file-relation graph.
This is because large groups of files are likely to contain a
mix of good and bad files that are difficult to classify accu-
rately. The connected components of a graph are its largest
clusters, so in Figure 5 we show the graph’s distribution of
connected component sizes in terms of the number of files
they contain. Note that the distribution is heavy tailed, in-
dicating that most files appear in small-sized connected com-
ponents. The graph’s connected components that contain a
very large number of files justify our selection of operating
on a bipartite file-bucket graph instead of a unipartite file
graph (see Section 3.3).
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Figure 5: Distribution of the number of connected com-
ponents (vertical axis) containing a particular number of
files (horizontal axis) in AESOP’s file-relation graph. Smaller
components are less likely to contain a mix of good and bad
files. The distribution is heavy tailed, indicating that most
files appear in small-sized connected components.

4.4 Purity of Connected Components

It is also important that the file-relation graph’s connected
components are pure, i.e., they consist of files with identi-
cal labels. To test this, we turn to entropy, a widely used
measure for determining the uncertainty or irregularity of a
system [19]. We compute the entropy of a connected com-

€
ponent as (——=2 — —— log, - Efeb)7 where eg4
g9

egtep log, egejeb egtep
and e, are the number of good and bad files in the compo-
nent, respectively. Note that a smaller entropy denotes a
purer connected component. Figure 6 shows the average en-
tropy for the connected components containing a particular
number of files. The error bars correspond to one standard
deviation. We observe that a significant fraction of the con-
nected components have entropies close to 0, indicating that
they are pure regardless of their sizes.
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Figure 6: Average entropy for the connected components
(vertical axis) containing a particular number of files (hor-
izontal axis) in AESOP’s file-relation graph. The error bars
correspond to one standard deviation. A significant fraction
of the connected components have 0 entropy, indicating that
they consist of files with identical labels.

4.5 Performance Evaluation using Cross Val-
idation

Next, we evaluate the effectiveness of AESOP in detecting
benign and malicious files. Our evaluation scheme uses 10-
fold cross validation. We treat the files in the test set as un-
labeled files by setting their priors for the good state to 0.5.
The files in the training set are assigned priors as described
in Section 3.3. For each fold, we run the BP component of
AEsoP for 10 iterations and report the true positive (TP)
rate at a fixed 0.0001 false positive (FP) rate. Recall that
in our context a TP is a malware instance that is correctly
identified as malicious and an FP is a benign file incorrectly
identified as malicious.

The partitioning of the labeled files into disjoint sets may
result in all of the labeled files in a connected component
being assigned to the same set. When such a set is used as
the test set, the corresponding connected component turns
into a component consisting of only unlabeled files, which is
undesirable, as it leaves behind no information to propagate
in the component. For purposes of our evaluation, we prune
any such connected component from the graph, as we do all
the components that consist of only one file or only unlabeled
files (see Section 3.3). This situation affects approximately
2% of the labeled files in the sample.

Figure 7 shows the overall and zoomed-in receiver oper-
ating characteristic (ROC) curves for this experiment. To
obtain the ROC curve, we sort the final beliefs of all the files
in ascending order and consider each value as a threshold;
all files with final beliefs above that value are classified as
good, or bad otherwise. Then, the TP rate and FP rate
are computed using these classifications. We observe that
AESOP achieves an impressive 0.9983 TP rate at the 0.0001
FP rate while labeling over 1.6 million files.

4.6 Early Discovery of Unlabeled Benign and
Malicious Files

Next, we test the effectiveness of AESOP in assigning labels

to unlabeled files. Recall that we obtained the sample on

November 6, 2013. To determine to what extent AESOP

labels files ahead of Symantec’s current technology, which
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Figure 7: Left: ROC curve for the cross-validation experi-
ment. AESOP achieves 0.9983 true positive rate at detecting
malware, at 0.0001 false positive rate, while labeling over
1.6 million files. Right: Zoomed-in view.

includes the state-of-the-art Polonium approach [7], we also
retrieved the file label information for November 13, 2013
and February 1, 2014. Here, we first use the labels from
February 1 to obtain a list of files in AESOP’S’s file-relation
graph that were unlabeled by Symantec on November 6, but
are labeled as of February 1. There are 774 bad and 17,997
good such eventually-labeled files. For this experiment, we
run the BP component of AESOP for 10 iterations using only
the file label information available on November 6 with the
eventually-labeled files as the test set.
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Figure 8: Left: ROC curve for the early discovery experi-
ment. AESOP achieves 0.9961 true positive rate at detecting
malware, at 0.0001 false positive rate, while labeling over 18
thousand originally unlabeled files. Right: Zoomed-in view.

Figure 8 shows the overall and zoomed-in receiver oper-
ating characteristic (ROC) curves for this experiment. We
obtain the ROC curve as described in Section 4.5. We ob-
serve that AESOP achieves an impressive 0.9961 TP rate at
the 0.0001 FP rate while labeling over 18 thousand originally
unlabeled files.

To compare AESOP with the state-of-the-art Polonium
approach [7], Figure 9 considers the file label information
available on November 13 and shows the fractions of the
eventually-labeled good and bad files that were still unla-
beled on November 13. We observe that AESOP provides
Symantec with at least a week’s advantage in assigning la-
bels to 99% and 79% of the eventually-labeled good and bad
files, respectively, in comparison to Polonium.
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Figure 9: Fraction of unlabeled files that were and were not
assigned labels within a week of the sample generation date.
AESOP provides Symantec with at least a week’s advantage
in assigning labels to a significant amount of unlabeled files.

4.7 Running Times

Two main components of AESOP are LSH and BP. Figure
10 shows the average runtime of each component of AE-
SsopP on the sample over 3 executions, using 7 threads for
LSH and a single thread for BP. The LSH step is fairly ex-
pensive, but it can be parallelized and scales linearly with
the amount of input data. Also, recall that LSH processed
120GB data in this step. The BP step scales linearly with
the number of edges in the file-relation graph. It can be
scaled up even more through parallelization, e.g., using the
MapReduce framework [17].
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Figure 10: Average runtime for each component of AESOP
on the sample occupying 120GB on disk.

S. TOWARDS DEPLOYMENT

We provide a brief discussion of the scope and limitations
of our work, and then discuss our plans for integrating into
Symantec’s anti-malware solutions.

5.1 Scope and Limitations

It is important to describe two characteristics of this dataset
that result in a significant fraction of immature files with
weak co-occurrence that AESOP cannot label as benign or
malicious. There are significant numbers of files that are
either new or very rare, such as benign executable files cre-
ated by developers that are never shared with other users,
and malicious malware files that are entirely unique due to
malware polymorphism. An additional limitation arises be-
cause the Norton Community Watch data provides only a
partial view of the files that any given machine contains.
Unfortunately, there are hundreds of thousands of machines
for which our dataset only reports information about a sin-



gle file (see Section 4.1). If a new or rare file only appears
on a machine for which we have limited or no other infor-
mation about co-occurring files, AESOP will consider it to be
immature and will not be able to classify it.

Though the lack of complete machine-file data does limit
AESOP’s coverage, in the security space, this is a much bet-
ter problem to have than that of labeling files incorrectly.
In academic literature, a false positive rate of 0.1% is often
considered to be good, however, this represents incorrectly
labeling 1 out of a 1000 benign files as malicious. Since
malicious file labels are ideally used to prevent malware in-
fections by removing them from users’ computers, this false
positive rate is prohibitively high; the stability and usabil-
ity of most customer machines would be impacted because of
benign file removals. Ultimately, we do not expect our tool
to be deployed in isolation of other techniques, but rather,
that it will be an important component in Symantec’s pro-
tection strategy and used to identify malicious files that can-
not be identified through other techniques.

5.2 Deployment Plans

Our goal in this work was to determine how useful co-
occurrence information is for malicious file detection, ulti-
mately with an eye on integrating it into Symantec’s suite
of malware protection capabilities. Symantec’s endpoint se-
curity products already incorporate many tiers of defence,
including traditional Anti-Virus protection, Intrusion Detec-
tion, Behavioral Protection, and Insight™, of which Polo-
nium’s [7] machine-hygiene-based scores are a key compo-
nent. We expect AESOP to slot easily into this existing suite
of protection capabilities for the following reasons:

e Given AESOP’s exceptionally low false positive rate, its
malicious vs. benign verdicts are independently use-
ful, providing improved coverage and early detection
of malware samples.

e Symantec has an infrastructure for cloud-based query-
ing of Insight scores that we can leverage for AESOP.
This infrastructure is needed because Insight scores ev-
ery file that Symantec has ever seen, which represents
far more information than can be replicated on indi-
vidual customer devices. AESOP produces a similar
amount of data, but can leverage Insight’s infrastruc-
ture.

e We developed AESOP on the same database that sup-
ports Insight, so that our reputation scores can be
easily incorporated into Insight’s reputation scores in
the same way that Polonium’s [7] file-reputation scores
were used. That is, AESOP scores will form a new fea-
ture used by the Insight classifier, thereby improving
its coverage and creating new opportunities for early
malware detection.

The next step towards the deployment of AESOP is a more
detailed study of its false positives, to determine what kinds
of mistakes our approach is prone to making. We are also
exploring additional applications for the reputation scores
obtained from AESOP, such as for false-positive mitigation
of existing technologies. In parallel, we believe that the file-
relation dataset that this work creates will prove to be fertile
ground for additional insights. For example, we expect to see
clusters of files that contain many files from a single malware
family. These clusters may offer an early view of emerging
malware and insights into the attackers themselves.

6. RELATED WORK

The exceptional depth and breadth of related work in
the malware-detection space is a testament to the impor-
tance and difficulty of the problem. Most closely related to
AESOP’s malware detection approach are reputation-based
techniques and techniques that exploit similarities between
files for detection.

There exist reputation systems that have been developed
to address security-related problems, such as reputation scor-
ing for IP addresses [1] and DNS entries [2, 3]. The most
closely related work to ours is Polonium [7], one of Syman-
tec’s current malware detection technologies. Polonium also
takes a graph-based approach to infer file reputation, how-
ever with important differences. First, AESOP infer files’
goodness by directly considering file-to-file relations, which
is different than Polonium’s indirect approach of analyzing
file-to-machine relations. Second, Polonium was not de-
signed to pick out related files that frequently co-appear,
while AESOP does; leveraging this relational information,
AESOP is able to accurately label many files at least one
week before the current technologies (as discussed in Sec-
tion 4).

As the number of unique malware executable files has
exploded due to their use of polymorphic and metamor-
phic techniques, security researchers are increasingly turning
to techniques that identify clusters of related malware files
rather than attempt to detect files individually. Syman-
tec’s MutantX-S [15] system clusters executables accord-
ing to their static and dynamic properties. This approach
works with low-level malware features such as sequences of
machine-language opcodes, making it largely orthogonal to
our approach.

Karampatziakis et al. [18] use file placement as the pri-
mary component of its malware detection technique, by lever-
aging unique properties of file containers that would not
generalize to machines, such as the idea that the presence of
any malicious file in an archive is sufficient evidence to la-
bel all files in that archive as malicious. In addition, rather
than performing inference as AESOP does with belief propa-
gation, their logistic regression classifier only looks at a file’s
immediate neighbors in the archives to which it belongs.

Ye et al. [24] presents a malware detection approach that
combines file-to-file relationship data with features extracted
at the individual file level. An important difference is the
size of our dataset, which is orders of magnitude larger than
their dataset of 691,650 files. Second, due to the smaller
dataset size, they do not address scalability challenges as we
do. Third, while AESOP identifies malware at an extremely
low false positive rate of 0.0001 by itself, their combined
approach operates at a more than 0.001 false positive rate.

In summary, not only does AESOP demonstrate the inde-
pendent value of calculating file-to-file similarity scores, it
also provides an algorithm that addresses scalability prob-
lems while achieving impressive results compared to the state-
of-the-art techniques. Furthermore, AESOP’s belief propa-
gation approach provides a reputation-based system with
nuanced scores that are ideally suited for integrating and
improving existing malware detection technologies.

7. CONCLUSIONS

We present AESOP, an algorithm that uses the principle of
guilt by association to establish nuanced reputation scores



for executable files based on the company they keep. We use
a large dataset voluntarily contributed by the members of
Norton Community Watch, consisting of partial lists of the
files that exist on their machines. AESOP leverages locality-
sensitive hashing to efficiently compute file similarity values
to construct a file-relation graph for inferring file goodness

based on belief propagation.

Our experiments show that

AESOP achieves earlier detection of unlabeled files with ex-
ceptionally low error rates in comparison to the state-of-the-
art techniques.
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