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Abstract

This paper describes a suite of optimization tools for radiation
treatment planning within the Matlab programming environment. The
data included with these tools was computed for real patient cases us-
ing a Monte Carlo dose engine. The formulation of a series of opti-
mization models is described that utilizes this data within a modeling
system. Furthermore, visualization techniques are provided that assist
in validating the quality of each solution. The versatility and utility
of the tools are shown using a sequence of optimization techniques de-
signed to generate a practical solution. These tools and the associated
data are available for download from www.cs.wisc.edu/∼ferris/3dcrt.

1 Introduction

The optimization of radiation treatment for cancer has become an active
research topic in recent years [2, 3, 4, 7, 13, 14, 28, 31, 32]. Many types
of cancer are treated by applying radiation from external sources, firing
beams into a patient from a number of different angles in such a way that
the targeted tumor lies at the intersection of these beams. The increasing
sophistication of treatment devices—the aperture through which the beams
pass can take on a variety of shapes, multiples apertures can be delivered
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for each beam angle, and wedges can be used to vary the radiation intensity
across the beam—allows delivery of complex and sophisticated treatment
plans, achieving a specified dose to the target area while sparing surrounding
tissue and nearby critical structures. Optimization techniques are proving
to be useful in the design of such plans.

This paper describes a selection of tools that allow optimization ap-
proaches to be applied, visualized and iteratively refined. The tools use the
Matlab programming environment for overall control and visualization, and
the GAMS modeling language for formulation and solution of the under-
lying optimization models. One of the strengths of this paper is that we
utilize data that corresponds to real patient cases and thus include a va-
riety of inhomogeneities due to different tissue types. Several useful tools
for visualization of the results, along with a sophisticated use of an exist-
ing interface between the Matlab programming environment and the GAMS
modeling language are explained via example. We also show how a succes-
sion of optimization problem solutions can be used to satisfy the constraints
of a realistic plan, for example dose-volume histogram constraints and the
location specific control of hot and cold spots.

The tools described in this paper can be used for creating radiation ther-
apy treatment plans delivered using either of two treatment techniques: (1)
three-dimensional conformal radiotherapy (3DCRT) or (2) intensity modu-
lated radiation therapy (IMRT).

3DCRT is the most common delivery technique used in radiation therapy.
With this approach, each beam is shaped to match the view of the tumor
from the given direction. In addition, one can choose to include a wedge filter
in the beam which results in a linear variation in intensity across the beam.
This is particularly useful for treating tumors near the patient’s surface and
for compensating for the curved surface of the patient.

IMRT is a more advanced delivery technique that significantly increases
the complexity of radiation delivery but provides an improved ability to
conform the radiation to the tumor volume. In IMRT, a nonuniform radi-
ation intensity is delivered from each beam angle. The dose delivered to
the tumor volume from each beam angle is typically highly nonuniform, but
the total dose delivered to the tumor from all angles provides adequate dose
uniformity in the tumor with a rapid falloff in dose in the normal tissue.

While the data and techniques used to solve both types of models have
much in common, we restrict the discussion in this paper to 3DCRT for
clarity and ease of exposition. Section 2 of the paper describes the data
generation for the treatment planning problem. We believe there is a funda-
mental core of optimization models that are useful for treatment planning.

2



Several of these optimization models are discussed in Section 3, and the
use of the environment in a simple example is given in Section 4. Matlab
routines are presented to examine the solution quality in Section 5. All of
these routines are available from www.cs.wisc.edu/∼ferris/3dcrt.

We understand that these models should be used in combination and
in an iterative fashion to achieve the goals of the planner. Thus, although
the core optimization model remains the same, the data that describes a
particular instantiation of the model can change in an iterative way as the
optimization proceeds. We believe this is where our environment will be
most useful. In Section 6, we outline two more complex examples of its
use, showing how to incorporate sampling techniques and multiple dvh con-
straints on a single sensitive structure. While the suite of tools we have
developed here are already useful for treatment design and refinement, we
believe their strength is their easy extensibility to provide the basis for sig-
nificant treatment improvements over the coming years.

2 Problem Data

Our planning tool is designed within the Matlab programming environment.
The problem data consists of two broad components, namely a set of struc-
tures (organs) to which a certain level of radiation must be delivered, and
a set of beamlets for delivering this radiation. The amount of data is large
and patient/case specific.

We have designed our environment to allow the use of actual patient
data as well as simulated data. We have a growing collection of examples
of such problems. We have chosen to store these examples as a “gdx” file
[29], a “Gams-Data-eXchange” format that allows the data to be accessed
very quickly within a GAMS optimization model, and also (via an API) by
other programs.

For patient cases, three-dimensional organ geometries are outlined by a
physician on a set of CT or MRI images. The physician outlines the GTV
(“Gross Tumor Volume,” the tumor region) and OARs (for “Organs At
Risk,” also known as “sensitive structures” or “critical structures”). Since
the coordinates of these geometries are continuous, they are not directly
usable within our optimization models and have to be converted to a discrete
set of voxels. A program “gendata” converts these three-dimensional organ
geometries into a set of discrete set of voxel coordinates and stores these
(named) sets in the gdx file.

For treatment planning, the Planning Target Volume (PTV) must also
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be constructed. To construct the PTV, one begins with the GTV that
encompasses known macroscopic disease. Next, a margin is added to include
regions of suspected microscopic disease. The new volume is called the
clinical target volume (CTV). An additional margin is added to account for
anatomical and patient setup uncertainties. The final volume is the PTV.
While this procedure is standard, it has some drawbacks in that some voxels
may appear in the PTV and also in a sensitive structure. The normal tissue
is implicitly stored in the gdx file by saving a rectangular grid of voxels
encompassing all the organs of interest.

The second component of the data is the beamlets. The specific details
of their generation is given in Section 2.1. We store all the resulting patient
specific beamlet data in the same gdx file as the organ structures. It should
be noted that the beamlet data is very large and that it does not need to be
present in the Matlab environment. We simply use an external program to
generate the gdx file, and use the beamlet data only within our optimization
models. Such design allows the optimization process to be independent of
Matlab if desired. In the 3DCRT case, the beamlet data is given for every
voxel indexed over a set of angles and optionally a set of wedges. Section 2.1
describes the generation process in detail, and it can be outlined without
continuity loss to the reader.

We also provide a suite of problems based on a water cylinder. These
problems can be generated using rotational symmetry from a single beamlet
and hence can be stored much more economically. Due to this fact, we
ensure our program “gendata” can generate a corresponding gdx file based
on this compact representation. The details of the extra input that is needed
in this case is given in Appendix A. In the cylinder case, we also provide a
Matlab routine “neworgans” to create simulated organ structures, that may
be of use in tuning models. This routine enables users to create simulated
organ structures within the cylinder.

Finally, the desired or required dose information for each region is spec-
ified by the planner, typically as a sequence of dose volume constraints. For
example, requirements are of the form “no more than X% of structure A
should receive more than Y Gy”. For each patient case, these prescriptions
are available from the web site.

The organ structures can be manipulated directly within Matlab. In
Matlab, each structure is stored as an m × 3 matrix consisting of the m
“voxels” that are part of that structure. We provide two routines that allow
a user to read a structure from a gdx file and to write a new structure to a
gdx file. Access to these structures is useful both for visualization and for
sampling as we demonstrate in the sequel.
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Figure 1: Division of Aperture into Pencil Beams (shaded area represents
one beamlet)

2.1 Pencil Beams and Apertures

Modern linear accelerators use a multileaf collimator, located inside the head
of the accelerator, to shape the beam of radiation [11, 30]. To calculate the
radiation dosage that can be delivered by a beam applied from a given angle,
the rectangular aperture obtained by opening the collimator as widely as
possible is divided into rectangular subfields arranged in a regular M × N

rectangular pattern, as shown in Figure 1. Each of the subfields is called
a pencil beam or beamlet. M represents the number of leaf pairs in the
multileaf collimator, while N represents the number of possible settings we
allow for each leaf. We identify each beamlet by the index pair (i, j), where
i = 1, 2, . . . ,M and j = 1, 2, . . . , N . In our work, the leaves of the multileaf
collimator are 1 cm wide, and a pencil beam is assigned a length of 0.5 cm.
Thus, for a 10 cm by 10 cm field, we would use M = 10 and N = 20, giving
a total of 200 beamlets.
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Figure 2: An example of Beam’s-eye-view

A separate three-dimensional dose distribution is computed for each pen-
cil beam. The dose distribution matrix for each pencil beam from each angle
is calculated using a Monte Carlo technique, which simulates the track of in-
dividual radiation particles, for a large number of particles. A unit-intensity,
non-wedged beam is assumed for the purposes of these calculations. Each
dose distribution consists of the radiation deposited by the beam into each
of the small three-dimensional regions (“voxels”) into which the treatment
area is divided.

As described in Section 1, the pencil beam data sets provided by this tool
can be used for either 3DCRT or IMRT. For IMRT optimization, the pencil
beam intensities are optimized directly. Thus, an optimized intensity map
(fluence map) is produced for each beam angle. In conformal radiotherapy,
the shape of each beam is set to match the beam’s-eye view (BEV) of the
tumor volume, which is essentially the projection of the three-dimensional
shape of the tumor onto the plane of the multileaf collimator [5, 6, 8, 11,
19, 21]. One technique for determining the BEV is to employ a ray-tracing
algorithm from the radiation source to the tumor volume, setting the beam’s-
eye view to include all of the rays that pass through the tumor volume.
We use an alternative approach based on the dose matrices of the pencil
beams. We include in the BEV all pencil beams whose field of significant
dose intersects with the target region. To be specific, given a threshold value
T , we include a pencil beam in the BEV if its dose delivered to at least one
voxel within the target region is at least T% of the dose delivered by that
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pencil beam to any voxel. Figure 2 shows an example of a BEV. Once the
BEV from a particular angle has been chosen, we can construct the dose
matrix for the BEV aperture by simply summing the dose matrices of all
the pencil beams that make up the BEV.

The choice of threshold parameter T is critical. If the value of T used
in the determining the BEV is too small, the BEV overestimates the target,
producing an aperture that irradiates not only the target but also nearby
normal tissue and organs at risk. On the other hand, if the value of T is
too large, the BEV underestimates the target, and the optimizer might not
be able to find a solution that adequately delivers radiation dose within the
required range to all parts of the target. The best value of T to use depends
somewhat on the shape of the tumor. We choose T as the minimum value
such that the resulting BEVs provide a complete 3D coverage of the target
from all beam angles considered in the problem. Based on our experiments,
a value of T of between 7% and 13% appears to be appropriate.

3 Optimization Models

Optimization models can be used in conjunction with the data outlined
above to provide treatment plans that specify how to operate the particular
delivery device to generate a dose distribution over the area of interest. The
basic optimization models are described more fully in [18], including tech-
niques used to reformulate the problems suitably for optimization solvers.

In conformal radiation therapy, the data that we generate using the
procedure outlined above is provided to an optimization model as:

D(i,j,k),A the dose contribution to voxel (i, j, k) from a beam of weight
1 from angle A,

T a collection voxels on the target,

S a collection voxels on the sensitive structure(s),

N a collection voxels on the normal tissue

When wedges are allowed in the optimization, the data will be provided as

D(i,j,k),A,F the dose contribution to voxel (i, j, k) from a beam of weight
1 from angle A, using wedge orientation F
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3.1 Beam Weight Optimization

The classical optimization problem in conformal radiation therapy is to
choose the weights (or intensity levels) to be delivered from a given a set
of angles. While much of the literature reformulates the constraints of the
problem into the objective using penalization, we propose here to exploit
the power of constrained optimization. Thus, these problems can be cast as
a quadratic programming problem, minimizing the Euclidean distance be-
tween the dose delivered to each voxel and the prescribed dose [7, 22, 26, 27].
Our formulation uses wA to represent the beam weight delivered from angle
A, D(i,j,k) for the total dose deposited to voxel (i, j, k) and λ to represent
the relative weighting factors in the objective function. For simplicity we
assume that a target prescription of θ is given, the penalty on overdose in
the target is the same as for underdose, and that a representative sensitive
structure regards dose exceeding φ as being hot.

min
w

λt
‖DT − θeT ‖

2
2

card (T )
+ λs

‖(DS − φeS)+‖
2
2

card (S)
+ λn

‖DN ‖2
2

card (N )

s.t. DΩ =
∑

A∈A DΩ,AwA, Ω = T ∪ S ∪N ,

l ≤ DT ≤ u,

0 ≤ wA, ∀A ∈ A.

(1)

Note that (·)+ := max(·, 0) can be reformulated using extra constraints
and variables as a smooth quadratic as detailed in [18]. Furthermore, we
have imposed hard upper and lower bound constraints on the target dose,
as well as the objective requirement to be close to the prescription. Other
constraints may be useful to deal with prescription constraints at other
locations. An implementation of this model is given as qp.gms in Appendix
C.

Linear programming (LP) has also been extensively used to improve
conventional treatment planning techniques [1, 17, 20, 24, 26]. The strength
of LP is its ability to control hot and cold spots or integral dose on the organs
using constraints, and the presence of many state-of-the-art LP solvers.
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An example of an LP formulation is as follows:

min
w

λt
‖(DT − θeT )+‖1

card (T )
+ λs

‖(DS − φeS)+‖1

card (S)
+ λn

‖DN ‖1

card (N )

s.t. DΩ =
∑

A∈A DΩ,AwA, Ω = T ∪ S ∪N ,

l ≤ DT ≤ u,

0 ≤ wA, ∀A ∈ A.

(2)

The model here replaces the Euclidean norm objective function with a poly-
hedral one, for which standard reformulations (see [18]) result in linear pro-
gramming problems. This model is available as lp.gms on the website. While
these techniques still suffer from large amounts of data in D(i,j,k),A, they are
typically solved in acceptable time frames. These models tend to find opti-
mal solutions more quickly than the corresponding quadratic programming
formulations.

Another technique to convert the quadratic (or more generally convex)
problem to a linear program is via a piecewise-linear approximation of the
objective (see [23]). For a quadratic function, a uniform spacing for the
breakpoints guarantees small approximation errors from the piecewise linear
interpolant [15]. Since the piecewise linear interpolant is convex, standard
techniques can be used to reformulate this as a linear program [12]. The
paper [15] suggests a particular formulation and the use of an interior point
method to solve the resulting problems.

Recently, some of the medical physics literature has been advocating the
use of other forms of objective function in place of the ones outlined above.
A popular alternative to those given above is that of generalized equivalent
uniform dose (EUD). This is defined on a per structure basis as

EUDa(D,Ω) :=





1

card (Ω)

∑

(i,j,k)∈Ω

Da
(i,j,k)





1/a

.

Note that EUD is a scaled version of the a-norm of the dose to the particular
structure, and hence is known to be a convex function for any a ≥ 1 and
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concave for a ≤ 1 [9]. Thus the problem

max
w

EUDa(D, T )

s.t. DΩ =
∑

A∈A DΩ,AwA, Ω = T ∪ S ∪ N ,

EUDb(D,S) ≤ φ,

EUDc(D,N ) ≤ u,

0 ≤ wA, ∀A ∈ A.

is a convex optimization problem provided a ≤ 1 and b, c ≥ 1. As such, non-
linear programming algorithms will find global solutions to these problems.
An example is provided as eud.gms on the website.

3.2 Beam angle selection and wedge optimization

Optimization also lends itself to solving the more complex problem of se-
lecting which angles to use as well as their intensities. Mixed Integer Pro-
gramming (MIP) is a straightforward technique for selecting beams angles
among many candidates.

min
w,ψ

λt
‖(DT − θeT )+‖1

card (T )
+ λs

‖(DS − φeS)+‖1

card (S)
+ λn

‖DN ‖1

card (N )

s.t. DΩ =
∑

A∈A DΩ,AwA, Ω = T ∪ S ∪ N ,

l ≤ DT ≤ u,

0 ≤ wA ≤MψA, ∀A ∈ A,

K ≥
∑

A∈A

ψA,

ψA ∈ {0, 1}, ∀A ∈ A.

(3)

The variable ψA is used to determine whether or not to use an angle A for
delivery. The choice of M plays a critical role in the speed of the optimiza-
tion; further advice on its choice is given in [18]. This is implemented as
optangle.gms.

Finally, we describe an optimization model that simultaneously opti-
mizes beam angles, wedge orientations, and beam intensities. Wedges are
placed in front of the collimator to produce a gradient over the dose distri-
bution and can be effective for reducing dose to organs at risk. This can be
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done by adding an extra dimension F to the variable wA:

min
w,ψ

λt
‖(DT − θeT )+‖1

card (T )
+ λs

‖(DS − φeS)+‖1

card (S)
+ λn

‖DN ‖1

card (N )

s.t. DΩ =
∑

A∈A DΩ,A,FwA,F , Ω = T ∪ S ∪ N ,

wA,F ≤ M · ψA,

l ≤ DT ≤ u,

K ≥
∑

A∈A

ψA,

ψA ∈ {0, 1}, ∀A ∈ A.

(4)

Note that the data for this problem is considerably larger, increasing by a
factor related to the number of wedge orientations allowed. An implemen-
tation of (4) is available as optwedge.gms. Additional optimization models
relating to (4) can also be found in [18].

It should be noted that beam energy and non-coplanar beams can also
be treated in a similar fashion to wedges within this framework at the cost
of increasing the amount of data.

The models described above have been implemented within the GAMS
modeling system. Appendix C gives an example for model (1). Most of the
notation used in this GAMS file tries to imitate the mathematical symbols
used in (1) with a few exceptions: PTV represents T , OAR is for S, Normal
is used for N , and sumDose represents D. For debugging purposes, this
model can be executed directly at the command prompt:

% gams qp

Note that “matsol.gms” is a reserved file for the system.

4 Optimization Process

We demonstrate the entire treatment planning process using a set of prostate
data that is generated by our phantom cylinder configuration.. There are
two organs in this example, namely “prostate” and “rectum”. The tumor
volume has 5245 voxels, while the rectum consists of 1936 voxels. We are
interested in optimizing beam intensities of 36 beam angles for a treatment
plan.

We take two steps to generate data that is needed for the rest of treat-
ment planning. The first step is to collect appropriate input data for the
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Matlab command “gendata” using the second example given in Appendix
A. It creates a Matlab structure array “prob” with data values necessary to
utilize the “prostate” example. The second step is to produce the necessary
data for the optimization using the inputs (prob) created above:

gendata(prob);

This generates both a GAMS include file (initdata.gms) and a GDX (GAMS
Data Exchange) file [29], typically named data.gdx, that are used in the
GAMS models. The file initdata.gms is a problem specific file that defines
sets and parameters that are used in the optimization model. It is described
in more detail in Appendix B. It is included at the very beginning of any
GAMS files in our toolbox:

$include initdata.gms;

A Matlab program “rungms” generates a treatment plan based on this data:

Dose = rungms(’qp’);

This command uses the interface [10] to execute the GAMS program “qp.gms”
of Appendix C. At the end of the run, the Matlab variable “Dose” contains
the dose that is delivered as determined by the optimization of the model
(1). If necessary, GAMS options can be added followed immediately after
the GAMS file name. The last two lines of “qp.gms” facilitate the return of
the Dose variable to the Matlab environment.

Since it is typical that a user will wish to update the various organs that
are contained in the model and visualize the DVH plots of various structures
in the problem, we provide a Matlab command “readstruct” to retrieve the
coordinates from the GDX file. For example,

PTV = readstruct(’data.gdx’,’prostate’);

retrieves the three-dimensional coordinates of “prostate” from “data.gdx”
into PTV. These coordinates are stored in a Matlab matrix that has a pos-
itive number of rows and 3 columns. Each row holds the three dimensional
coordinates of a given voxel in the structure.

More complex use of “rungms” is as follows.

rungms(’GAMS_file_name [-options]’,organ1,organ2,...,data);

Users can specify the GAMS solver options immediately after the GAMS
file name. The additional (optional) input arguments are Matlab structures
representing organs. Each organ structure must have a name field. The
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name field must be the string that is the set name used in GAMS. For an
example, we define a Matlab structure array for the target, another for the
sensitive structure, and the third for the normal tissue as follows:

target = struct(’name’,’prostate’);

sensitive = struct(’name’,’rectum’,’data’,samplerect);

normal = struct(’name’,’Normal’);

In the above example, the target (prostate) is extracted from the “data.gdx”
file, whereas the sensitive structure (rectum) uses the voxels provided in the
samplerect matrix (which has the same format as that described above for
PTV). The M-file “rungms” automatically writes out “samplerect” to a
GDX file (rectum.gdx) using a Matlab command “writestruct”:

writestruct(’rectum.gdx’,samplerect);

The set normal contains the set of those voxels that are neither target nor
sensitive and is generated automatically.

The specified GAMS file is executed and returns the three-dimensional
matrix of the final dose distribution. This can be used to evaluate the
treatment quality using DVH and dose distribution plots as will be explained
in the next section.

A final output is always returned, namely the intensities w:

[Dose,w] = rungms(’qp’,target);

In the “rungms” example immediately above, the intensities are returned in
w. Note that the “qp” model will only have a target structure in this case,
i.e. the sensitive and normal structures will be empty in the optimization
problem.

The amount of voxels in normal can be unnecessarily large. We provide
a Matlab command “genrind” that can be useful to reduce the amount of
normal voxels. For example,

genrind(PTV,5);

generates a set of three-dimensional voxel coordinates that surrounds the
PTV within a distance of five voxels. The rind of the PTV can be used as
a substitute for the normal structure to reduce the number of voxels in the
optimization.

Thus the following Matlab commands set up a rind of the PTV as normal
tissue, again with no sensitive structures included in the optimization:
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normal = struct(’name’,’Normal’,’data’,genrind(PTV,5));

Dose = rungms(’qp’,target,normal);

While “initdata.gms” contains default values that allow the model to be
run, we also provide a mechanism to update the values of the parameters in
the optimization model. For example,

data = struct(’kBeams’,6,’thetaL’,0.97,’thetaU’,1.05,...

’phi’,struct(’rectum’,0.4),...

’lambda’,struct(’prostate’,2,’normal’,0.5));

Dose = rungms(’qp’,target,sensitive,normal,data);

generates new values for various parameters in “qp.gms”. The data argu-
ment (a Matlab structure) must be the last argument to “rungms”. To
distinguish it from the organ structures, it cannot have a ’name’ field. The
remaining fields use execution time assignments to update the values of the
given fields. Thus, kBeams gets reset to the value 6, θL to the value 0.97,
etc. For parameters defined over one dimensional sets (e.g. φ), we update
a subset of its components by specifying new values in a structure. Thus
φrectum will be reset to 0.4 in the above example. The communication mech-
anism to facilitate this is a file “updatedata.gms”.

5 Visualization

Medical experts rely on visualizations of the dose to examine the quality of
treatment plans, instead of the objective function that operations researchers
typically employ. Two such visualizations are the dose volume histogram
(DVH) and a slicewise dose distribution plot. The Matlab routines “dvh”
and “doseplot” are provided to allow both sets of users to determine if the
quality of solutions are in broad agreement.

5.1 Plotting DVH

The quality of a treatment plan is typically specified and evaluated using a
DVH. The DVH shows what fraction of the volume receives at least a certain
level of dose. To make a DVH plot of the current solution, the final dose
distribution and sets of three-dimensional organ coordinates are passed to a
Matlab routine “dvh”. “Dose” must be the first input argument for “dvh”,
followed by the organs of interest:

dvh(Dose,PTV,OAR);
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Figure 3: Dose Volume Histogram

This generates a Matlab figure with dose volume histograms for the specified
organs. Optionally, the user can specify a line property for the DVH plot as
follows:

dvh(Dose,PTV,’b-’,OAR,’r’);

where the color blue (’b-’) with a solid line is specified for the “PTV” and
red (’r’) for the “OAR.”

An example DVH is shown in Figure 3. The X-axis is normalized so that
the target prescribed dose (θ) is one. The Y-axis represents the fraction
of the volume. For example, the line of the normal tissue approximately
passes through the coordinate (0.2, 0.2). This means that 80% of the normal
tissue receives 20% or less of the target prescribed dose level. Note that the
labels on the structures are created manually using the Matlab figure editor;
alternatively the “legend” command could be used.

5.2 Plotting dose distribution

Although a DVH provides information about the fraction of each organ
receiving each dose level, it does not give spatial information with regards
to the location of “hot spots”, “cold spots”, or “streaking”. Visualizing the
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dose distribution becomes important to finalize treatment plans for practical
use.

To meet this need, a Matlab routine “doseplot” is provided to examine
the dose distribution from different viewpoints: axial, sagittal, and coronal.
To visualize the dose distribution of the current solution from the axial
viewpoint, the following command suffices:

doseplot(Dose);

This produces a Matlab figure with dose distribution of the current solution
using the default viewpoint (“axial” slice). All slices can be viewed one slice
at a time by pressing any button on the keyboard. Optional arguments are
also allowed. These include sets of three-dimensional organ coordinates, a
string (“axial”, “coronal” or “sagittal”) representing the viewpoint of the
image, and a vector of slice numbers:

doseplot(Dose,PTV,OAR,’axial’);

doseplot(Dose,PTV,OAR,’axial’,15:20);

In the above examples, the PTV and OAR structures will be outlined on the
same slice of the dose distribution. The slice number must come after the
choice of the viewpoint. The PTV and OAR structures are indicated on the
resulting “axial” output as shown in Figure 4. The second case allows only
slices 15 to 20 to be displayed as opposed to all slices. Note that the color
blue represents the cold spots while red indicates hot spots as depicted in the
Matlab color bar located on the right side of Figure 4. For each structure,
an optional argument facilitates the change of the outline color of a given
organ, e.g.

doseplot(Dose,PTV,’b’,OAR,’coronal’);

outlines the target in blue on all coronal slices.

6 Example usage of toolbox

We outline the use of some of the tools described above for a particular
example of 3D conformal radiation therapy treatment planning in a prostate
case. We use the model format (3) that has been encoded in a GAMS file
“optangle.gms”.

To start the process, we use the Matlab command “gendata” to gen-
erate files initdata.gms and data.gdx as discussed in Section 4. These files
are required for running optimization models. Using the first example of
Appendix A,
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Figure 4: Dose distribution plot in axial slice

gendata(prob);

generates “initdata.gms” and uses the existing “data.gdx” file. Alterna-
tively, a new GDX file can be generated as discussed in the second example
of Appendix A.

A Matlab command “readstruct” is used to extract the organ geometries
from the GDX file into the Matlab workspace:

prostate = readstruct(’data.gdx’,’prostate’);

rectum = readstruct(’data.gdx’,’rectum’);

As discussed in Section 4, some parameters of the optimization model
can be updated as follows:

data = struct(’kBeams’,6,’thetaL’,0.97,’thetaU’,1.05,...

’phi’,struct(’rectum’,0.4),...

’lambda’,struct(’normal’,0.5));

6.1 Data Sampling

A large number of voxels comprise the normal tissue. Although voxels in the
normal tissue are important for the final treatment plan, it is shown that

17



using sampled voxels of the normal structure in the optimization problem has
an insignificant effect on the optimal treatment plan dose distribution [18].
A random sampling of voxels can also be used to speed up the computation
[25].

In addition to these data reduction techniques, rather than using the
complete sets of organ structures, we follow an interactive approach that
tries to determine promising beam angles based on an α% sampling of the
sensitive structure as outlined in [18]. The sampling scheme is also noted
elsewhere [16].

A self-explanatory example of our sampling scheme is as follows:

goodAngles = zeros(prob.nAngle,1);

rate = 0.1; nsamples = 10;

for s = 1:nsamples

% sample a subset of prostate

sample = find(rand(length(prostate),1) < rate);

target = struct(’name’,’prostate’,’data’,prostate(sample,:));

% sample a subset of rectum

sample = find(rand(length(rectum),1) < rate);

sens = struct(’name’,’rectum’,’data’,rectum(sample,:));

% sample a subset of normal

sample = find(rand(length(normal),1) < rate/10);

snormal = struct(’name’,’normal’,’data’,normal(sample,:));

% run a GAMS optimization model

[Dose,w] = rungms(’optangle lo=1 optfile=1 optcr=0.03’,...

target,sens,snormal,data);

used = find(w > 0);

goodAngles(used) = goodAngles(used) + 1;

end

We used these sampled problems (that solve very quickly) to determine
which subset of the angles are promising. The Matlab vector “goodAngles”
contains a count of sample how many solutions used as given angle. We
then resolve the full model using just those angles that were used in more
than one sample case..

fixangles = find(goodAngles<=1)-1; % index adjustment

wup = [fixangles,zeros(length(fixangles),1)];

data.wup = wup;

Note that the Matlab structure “data” holds new values for parameters
that are already declared in the GAMS model “optangle”. In particular,
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the parameter “wup” is used to set new upper bounds on the weights in
the model. By resetting some of these to be zero, the model ignores the
corresponding bad angles.

We continue to sample the normal structure, but include all those voxels
that are close to the target.

target = struct(’name’,’prostate’);

sens = struct(’name’,’rectum’);

sample = find(rand(length(normal),1) < rate);

newnormal = [genrind(prostate,3);normal(sample,:)];

snormal = struct(’name’,’normal’,’data’,newnormal);

[Dose,w] = rungms(’optangle lo=1 optfile=1 optcr=0.03’,...

target,sens,snormal,data);

dvh(Dose,prostate,rectum);

6.2 Refining solutions

At this stage, the dvh may show a sensitive structure that is violating a
“dvh” constraint. To rectify this situation, we have three recourses. We can
update the parameter φ in (3) using:

data.phi.rectum = 0.2;

This will penalize dose on the rectum that exceeds 0.2, instead of the original
value of 0.4. Secondly, we can update the penalty parameters in relation to
the organ structures:

data.lambda = struct(’prostate’,0.9,’rectum’,2,’normal’,0.2);

Thirdly, we can update the structure itself to allow a subset of the problem
voxels to violate the constraints:

rectumBottom = extract(Dose,rectum,’bottom’,0.82);

By executing the above line, the Matlab command “extract” sorts the values
of the dose delivered to all voxels in the rectum. Then it exracts (the bottom)
82% of the voxels that received the low dose. The sensitive structure is
updated using this new set of voxels in the rectum:

sensitive = struct(’name’,’rectum’,’data’,rectumBottom);

This is a heuristic, based on a dvh that allows 20% of the voxels to be
essentially ignored, we actually ignore slightly less than this. Note that the
command “extract”,
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extract(dose_matrix,organ_coordinates,option_string,value);

offers two different option types for user to sample a faction of voxels in
the specified organ structure: absolute option and relative option. The rel-
ative option was displayed in the previous example of “extract”. The same
command line can be replaced by

rectumBottom = extract(Dose,rectum,’top’,0.18);

Two options are available for the absolute option: “above” and “below”.

extract(Dose,rectum,’above’,0.9);

can be used to extract all voxels that received more than 90% of the target
prescribed dose in the rectum.

Resolving the newly updated problem,

Dose = rungms(’optangle’,target,sensitive,data);

dvh(Dose,prostate,rectum);

gives a new dvh. Furthermore, other changes to the parameters of the
formulation may be carried out, or changes to the formulation itself can
be implemented by simply updating the GAMS model file, or the Matlab
solution process.

Another example where iterative solution can be useful is in the treat-
ment of location specific hot or cold spots. The dvh plot does not distinguish
between the locations of such spots, but clinically cold spots in the center of
a tumor location are more serious than those on the periphery. If one of the
models (1), (2) or (3) is used, then this should not be a problem since the
model incorporates hard upper and lower bound constraints on the dose in
the tumor. However, in practice, these hard constraints can lead to infea-
sibilities or overly homogeneous solutions, and may be dropped or relaxed
within the modeling process.

To isolate voxels on the periphery of a given structure we can use the
routine “genrind”. In the following example, we extract the “internal” rind
of size 3 from the tumor (in this case, the prostate):

genrind(prostate,-3);

To find the cold spots that are centrally located in the tumor we invoke the
routine “extract” to find the voxels that are dosed below a given cutoff value,
and throw away those voxels that are close to the periphery as follows:
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coldVox = extract(Dose,prostate,’below’,0.9);

coldVox = setdiff(coldVox,genrind(prostate,-3),’rows’);

Similar techniques could be used to find hot spots within a sensitive struc-
ture.

In order to pass new constraints on these substructures to the optimiza-
tion routines, we use any number of additional organ structures that our
toolbox provides by default. These additional organs are called org1, · · · , org100.
Thus, to impose a strict lower bound of 0.95 on the dose in the center of the
tumor, the following additional lines would suffice:

coldTarg = struct(’name’,’org1’,’data’,coldVox);

data.DoseLo.org1 = 0.95;

Dose = rungms(’optangle’,target,sensitive,coldTarg,data);

The additional organs could also be subject to soft constraints - the user
just has to define φ and λ appropriately. For example,

data.lambda.org1 = 10;

Dose = rungms(’optangle’,target,sensitive,coldTarg,data);

Streaking control: When relatively few angles are used for treatment,
“streaking” can occur in the normal tissue. Essentially, high dose is deliv-
ered along particular rays that due to the decay mechanism results in hot
spots of radiation close to beam entry locations. These hot spots must be
removed before the treatment plan is finalized. We take two steps to do
this. First the normal structure is divided into two distinct sets innormal

and outnormal. The set “innormal” is an external rind of the target struc-
ture while “outnormal” is defined as the remainder. Second, a strict dose
upperbound is applied only on “outnormal”. Note that “innormal” is not
considered in the optimization model. The following lines of Matlab code
shows an implementation of this method that also uses sampling to reduce
the normal voxels considered.

sample = find(rand(length(normal),1) < rate/10);

innormal = genrind(prostate,6);

outnormal = setdiff(normal(sample,:),innormal,’rows’);

snormal = struct(’name’,’normal’,’data’,outnormal);

data.DoseUp.normal = 0.8;

[Dose,w] = rungms(’optangle lo=1 optfile=1 optcr=0.03’,...

target,sens,snormal,data);
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The same technique using additional organs org1, · · · , org100 could be
used to impose different bounds on different pieces of the structure. Thus to
remove hot spots in the normal tissue close to the tumor whilst maintaining
streaking control, we would use an additional organ org2, for example:

org2 = struct(’name’,’org2’,’data’,innormal);

data.DoseUp.org2 = 1.05;

[Dose,w] = rungms(’optangle lo=1 optfile=1 optcr=0.03’,...

target,sens,snormal,org2,data);

7 Conclusions

We have provided clinical data for radiation therapy treatment planning
within the Matlab environment. We have shown how to use a small suite of
programs (gendata, rungms, genrind, extract, dvh, doseplot) in conjunction
with a library of optimization model to provide an effective and adaptive
treatment planning procedeure. We have demonstrated the utility of the
Matlab environment to facilitate more complex data and optimization con-
trol.
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A Problem Specification

The routine “gendata” reads in user input that specifies the total number
of beam angles considered in the problem, a flag indicating if wedges are to
be used, the name of the PTV, GAMS set names for the organ structures,
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the GAMS include file name that will store set and parameter definitions,
organ geometries, and the dose matrix. This data is provided as a Matlab
structure.

For documentation purposes, we have provided Matlab code that gener-
ates the appropriate structure for some existing examples. The first example

prob = struct(...

’nAngle’, 36,... % number of beam angles

’gengdx’, ’no’,... % generate a GDX file or not

’use_wedge’, ’no’,... % use wedge or not

’PTVname’, ’prostate’,... % target set name

’gdxDataName’, ’data.gdx’,... % GDX data file

’gdxIncludeFile’,’initdata.gms’,...

’structures’, {{’prostate’,’rectum’}});

retrieves its data from a GDX file. Note that the flag “gengdx” is set to
“no” here since the GDX file is assumed to exist already.

The second example shows how to utilize the existing Beamdata and
structure information to generate a new GDX file:

prob = struct(...

’nAngle’, 36,...

’beamcutoff’, 9.5,... % value of T as discussed in Section 2

’use_wedge’, ’no’,...

’gengdx’, ’yes’,...

’is_cylinder’, ’yes’,...

’baseDir’, ’/p/cure-cancer/work1/LIM/’,...

’beamID’, ’10x10’,...

’beamDir’, ’Beamdata_cylinder’,...

’structDir’, ’Structures’,...

’gdxDataName’, ’data.gdx’,...

’gdxIncludeFile’,’initdata.gms’,...

’PTVname’, ’prostate’,...

’structures’, struct(’prostate’,’ptv.dat’,’rectum’,’rectum.dat’));

B initdata.gms

This file is generated automatically from the problem input described in
Appendix A. This file has six components. First, basic sets and their di-
mensions are defined for solving the optimization problems. An example is
shown below.
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sets

I /0*125/

J /0*125/

K /0* 31/

nAngle /0*35/

angle(nAngle);

Note that the set “angle” is a subset of all angles considered in the op-
timization. This set is particularly useful for MIP problems ((3), (4)) to
automatically reduce the solution search space. The use of “angle” can be
seen in Appendix C.

The next component is to define sets of the three-dimensional coordinates
and their dimensions. Sets “prostate” and “rectum” provide coordinates of
organs, “PTV”, “OAR”, and “Normal” are auxiliary set definitions for the
target, the sensitive, and the normal structures respectively. The name of
the parameter to store the dose distribution is also defined:

sets

prostate(I,J,K), rectum(I,J,K),

PTV(I,J,K), OAR(I,J,K), Normal(I,J,K);

parameter Dose(I,J,K,nAngle);

The third component is to define the collection of organ names:

set allorgans /’prostate’,’rectum’,’Normal’, org1*org100/;

Note that the set “allorgans” has dummy organs “org1*org100”. These
extra empty organs play an important role when new organ structures (not
defined in the GDX file) are added. As shown in Section 6, an immediate
application of this feature can be seen on the local dose control over a subset
of an organ structure.

In the next component, global variables for the GAMS model is defined
for the target and the critical structures. We then define a set “organs” as
the collection of critical structures of interest for the particular instance. In
our example, the following three lines

$setglobal target ’prostate’

$setglobal critical ’rectum’

set organs(allorgans) /%critical%/;

make the global variable target contain “prostate” and the variable critical
contain “rectum”. If there is more than one critical (sensitive) structure, the
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string “rectum” is replaced by a single quoted string of comma separated
organ names, e.g. ’rectum, bladder’. The set “organs” is defined over the
critical structure “rectum”. The “rungms” interface automatically updates
this set if a user excludes organs from consideration as outlined in Section 4.

All necessary data for the optimization is stored (by “gendata”) in
GAMS GDX format. Therefore, the next component is written to retrieve
the data in the GAMS file:

$GDXIN data.gdx

$LOAD PTV=%target% prostate rectum

$LOAD Dose

$GDXIN

“$GDXIN data.gdx” opens the GDX file “data.gdx” for reading. The second
line is used to load sets from “data.gdx”. Note that a set can be renamed at
this stage: the set “target” is now named “PTV”. The last line “$GDXIN”
closes the file “data.gdx”.

Finally, a set “Sensitive” of the sensitive structures is defined as a collec-
tion of “allorgans” in the GAMS file. Each organ must be defined explicitly
as shown in the second line below:

set Sensitive(I,J,k,allorgans);

Sensitive(I,J,K,’rectum’) = yes$rectum(I,J,K);

Note that gendata forms this file for a given input of the types shown in
Appendix A.

C qp.gms

* qp.gms

* This program solves 3D conformal radiation treatment problem.

* The solution includes: optimal beam weights

option limrow=0, limcol=0, solprint=off;

scalar theta ’dose level prescribed for target’ /1.0/;

scalar thetaU ’hot spot control parameter on the target’ /1.07/;

scalar thetaL ’cold spot control parameter on the target’ /0.9/;

scalar ubar ’dose upper bound on the target voxels’ /1.15/;

*--- Read in dose matrix and set definition of the model ---*

$include initdata.gms
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*--- Define parameters ---*

parameter phi(allorgans) ’hot spot control parameters for organs’;

phi(allorgans) = 0.3;

parameter wup(nAngle) ’upper bound of w(nAngle)’;

wup(nAngle) = inf;

parameter DoseUp(allorgans) ’dose upper bound on organ structures’;

DoseUp(allorgans) = inf;

parameter DoseLo(allorgans) ’dose lower bound on organ structures’;

DoseLo(allorgans) = -inf;

parameter lambda(allorgans) ’objective function penalty parameters’;

lambda(allorgans) = 1;

*--- OPTIMIZATION MODEL DEFINITION ---*

positive variables w(nAngle), dS(I,J,K,allorgans);

variable sumDose(I,J,K), z;

equations

Def4sens(I,J,K,allorgans),

Def4sumDose(I,J,K),

Obj;

Def4sumDose(I,J,K)$(PTV(I,J,K) or OAR(I,J,K) or Normal(I,J,K)) ..

sumDose(I,J,K) =e= sum(angle,Dose(I,J,K,angle)*w(angle));

Def4sens(OAR,organs)$Sensitive(OAR,organs) ..

-sumDose(OAR) + dS(OAR,organs) =g= -phi(organs);

Obj ..

z =e= lambda(’%target%’)*sum(PTV,sqr(sumDose(PTV)))/card(PTV)

+ sum(organs,lambda(organs)*sum(OAR$Sensitive(OAR,organs),

sqr(dS(OAR,organs)))/max(1,sum(OAR$Sensitive(OAR,organs),1)))

+ lambda(’normal’)*sum(Normal,sqr(sumDose(Normal)))

/max(1,card(Normal));

*--- Bound constraints & Data update ---*

Normal(I,J,K)=yes;

$if exist updatedata.gms $include updatedata.gms

wup(nAngle) = min(wup(nAngle),ubar/smax(PTV,Dose(PTV,nAngle)));

w.up(nAngle) = wup(nAngle);
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angle(nAngle) = yes$(w.up(nAngle) gt w.lo(nAngle));

OAR(I,J,K) = yes$sum(organs$Sensitive(I,J,K,organs),1);

Normal(PTV) = no; Normal(OAR) = no; OAR(PTV) = no;

sumDose.up(PTV) = DoseUp(’%target%’);

sumDose.lo(PTV) = DoseLo(’%target%’);

sumDose.up(Normal) = DoseUp(’normal’);

loop(organs,

sumDose.up(I,J,K)$(Sensitive(I,J,K,organs)) = DoseUp(organs);

);

model conf / all/;

solve conf using nlp minimizing z;

*--- Write out the solution for Matlab users ---*

sumDose.l(I,J,K) = sum(angle,Dose(I,J,K,angle)*w.l(angle));

$libinclude matout sumDose.l I J K

$libinclude matout w.l nAngle nWedge
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