CS302: Self Check Quiz 2

name:

Part I True or False

For these questions, is the statement true or false?

Assume the statements are about the Java programming language.
1.) The result of an expression with a single logical operator $\& \&$ is a boolean value.
2.) A syntax error occurs if t rue is used as the condition (i.e. boolean expression) of a while loop.
3.) Local variables only exist while their method executes.
4.) Class methods are declared without the static modifier.
5.) A compound statement is a sequence of statements surrounded by parentheses.
6.) Variables declared inside a method's body are called data members.
7.) There is no limit to the number of levels of nesting in Java.
8.) The result of: true \&\&! (true \&\& true)
9.) Java programs are terminated if an overflow error occurs.
10.) Short-circuit evaluation only occurs when a boolean variable is assigned a boolean value.
11.) A count-controlled loop repeats until a sentinel value is reached.
12.) It is a good programming practice to design an object to handle many tasks.
13.) The code: $i=d$; is legal if i is a variable of type int and d is a variable of type double.
14.) The data type MainWindow is a reference data type.
15.) Nesting is when a statement is placed inside the body of another statement.
16.) The logical operator! is a binary operator.
17.) It is a good programming practice to cover all possible cases when using a selection control statement.
18.) If a then block or an else block is just one statement, braces (i.e. \{ \}) aren't needed.
19.) Pseudocode is an informal description of code that is useful for describing complex algorithms.
20.) A recursive method is one that calls itself.
21.) For loops are posttest loops since they have an increment part.
22.) A boolean expression must have either a true or false result.
23.) The code, new Exam (), can be used as the argument for a parameter that specifies the type Exam.
24.) You cannot put a while loop inside an if's then block.
25.) Arguments are passed to methods using the pass-by-value scheme.

Part II Multiple Choice

For these questions, choose the one best answer after reading all of the choices.
26.) The following symbols are used to indicate the parts of a flow diagram:

symbol	meaning
	a condition (i.e. a boolean expression)
\square	a single statement or compound statement
\square	a path in the flow of execution

Consider the following flow diagram:

This flow diagram represents which one of the following?
A. an if statement with a while loop nested inside
B. a while loop with an if statement nested inside
C. an if statement with an if statement nested inside
D. an if statement with a do-while loop nested inside
E. a while loop with an do-while loop nested inside
27.) Assume the variables below represent hours and minutes, and are assigned values within the valid ranges:

```
int hour; // valid range: 0 - 23
int minute; // valid range: 0 - 59
```

Which one of the following expresses the interval from 7:15 to 9:15?
A. hour $==7| |$ hour $==8| |$ hour $==9 \& \&$ minute $<=15$
B. hour $==7$ \&\& minute $>=15| |$ hour $==9 \& \&$ minute $<=15$
C. hour $>=7$ \&\& minute $>=15| |$ hour $<=9$ \&\& minute $<=15$
D. hour $==7$ \&\& minute $>=15| |$ hour $==8| |$ hour $==9$ \&\& minute <= 15
E. hour $==7| |$ minute $>=15 \& \&$ hour $==8 \& \&$ hour $==9| |$ minute $<=15$
28.) Which one of the following code fragments computes the factorial of 5 ? The factorial of 5 is computed by multiplying all of the numbers between 1 and 5 inclusive (i.e. including 1 and 5).

```
A. int factorial = 1;
    for (int n = 5; n >= 0; n--) {
        factorial = factorial * n;
    }
B. int factorial = 1;
    for (int n = 1; n <= 5; n++) {
        factorial *= factorial;
    }
C. int n = 1, factorial = 1;
    while (n < 5) {
        factorial = factorial * n;
        n = n + 1;
    }
D. int n = 1, factorial = 0;
        while (n <= 5) {
        factorial *= n;
        n += 1;
        }
E. int n = 5, factorial = 1;
    do {
        factorial = factorial * n;
        n = n - 1;
    } while (n > 0);
```

29.) Consider the following expression:
! ($\mathrm{n}>11 \& \& \mathrm{n}<=22$)
The expression above is equivalent to which one of the following?
A. $n<11| | n>=22$
B. $\mathrm{n}<=11| | \mathrm{n}>22$
C. $\mathrm{n}>11| | \mathrm{n}<=22$
D. $\mathrm{n}<11 \& \& \mathrm{n}>=22$
E. $\mathrm{n}<=11 \& \& \mathrm{n}>22$
30.) Assume n is an integer variable that has been initialized to some positive number and odd is a boolean variable that has been initialized to true. Consider the following three code fragments:

```
fragment 1
if (n%2 == 0)
    odd = false; odd = true;
else
    odd = true;
```


fragment 2

if ($\mathrm{n} \% 2==1$) odd = true;

fragment 3

odd $=\mathrm{n} \% 2==1$;

Which of the fragments results in odd being true if n is an odd number and otherwise false?
A. fragment 2 only
B. fragment 1 and fragment 2 only
C. fragment 1 and fragment 3 only
D. fragment 2 and fragment 3 only
E. all three fragments
31.) Consider the following code fragment:

```
switch (i) {
    case 10:
    case 15: d = 2.2; break;
    case 25: d = 7.7; break;
    default: d = 1.1;
}
```

This fragment is equivalent to which one of the following?
A. if (i $==10| | i==15) d=2.2$;
if (i $==25) d=7.7$;
d = 1.1;
B. if (i $>=10 \& \& i<=15) d=2.2$; if (i == 25) $d=7.7$; $\mathrm{d}=1.1$;
C. if (i $>=10 \& \& i<=15) d=2.2$; else if (i == 25) d = 7.7; else d = 1.1;
D. if (i $>=10| | i<=15) d=2.2$; else if (i == 25) d = 7.7; else d = 1.1;
E. if (i $==10| | i==15) d=2.2$;
else if (i == 25) d = 7.7;
else d = 1.1;
32.) Consider the following boolean expression intended to test if count is a prime number between 1 and 10 :

```
count == 1&& count == 2&& count == 3&& count == 5 && count == 7
```

Which one of the following best describes this code?
A. The result is always false, and the $\& \&$'s should be changed to \||'s.
B. The result is always true, and the $\& \&$'s should be changed to ||'s.
C. The result is true if count is a prime number between 1 and 10 , otherwise the result is false.
D. A compilation error occurs because variables can't be used more than once in a boolean expression.
E. A compilation error occurs because each equality test (i.e. $==$) must be surrounded by parentheses.
33.) Consider the following code fragment:

```
for (int j = 1; j <= 10; j++)
    for (int k = 0; k < j; k++)
        System.out.print(`*');
```

How many * characters are displayed by this code fragment?
A. 10
B. 45
C. 55
D. 65
E. 100
34.) Consider the following poorly indented method in a class named Test:

```
public int calculate(int x, int y, int z) {
    if (x == 1)
    if (y == 4)
    z = z + 2;
    else
    z = z + 4;
    return z;
}
```

If testobject is an instance of the Test class, which one of the following values is returned by the message testObject.calculate (1, 2, 3)?
A. 0
B. 3
C. 5
D. 7
E. none of the above
35.) Consider the following variables that are initialized:

```
int year = 2000:
int month = 11;
int day = 1;
```

Which one of the following boolean expressions does not result in short-circuited evaluation?
A. year $==1999$ || year $==2000$ || year $==2001$
B. year > 2001 \&\& year < 2020
C. month $==11 \& \&$ day $==1| |$ month $==12 \& \&$ day $==1$
D. year $==2000 \& \&$ month $==12 \& \&$ day $==22$
E. year $==2000 \& \&$ month $==11 \& \&$ day $==22$
36.) Consider the following two code fragments:

```
fragment 1 fragment 2
if (a == b) { if ( }\textrm{a}==\textrm{b}&& c == d
    if (c == d) {
    }
}
else {
    System.out.print("B");
}
```

Under which of the following conditions will the two fragments produce the same output?
i. Only a and b are the same values.
ii. Only c and d are the same values.
iii. a and b are the same values, and c and d are the same values.
A. i only
B. iii only
C. i and iii only
D. ii and iii only
E. i, ii, and iii

Part III Written Answers

1.) Show the output for the code fragment below in the box provided. Show a trace of your execution for partial credit.

```
// out is a properly created OutputBox object
int n = 3;
while (n <= 7) {
    for (int c = n; c > 1; c -= 1) {
        if (n%2 == 0)
                out.print("*");
            else
                out.print("-");
    }
    out.skipLine(1);
    n = n + 1;
}
```


2.) Consider the following classes and partial lists of their methods:

- Toy class

Toy (double price) // constructs a toy with the specified price double getPrice () // returns the price of the toy

- ToyListIterator class

```
boolean hasMoreToys ( ) // returns true if there are more toys in the list
```

Toy nextToy () // returns the next toy in the list

- ToyChest class

ToyChest () // constructs a toy chest boolean addToy (Toy toy)// adds toy to the toy chest ToyListIterator getToyListIterator ()

```
                        // returns a ToyListIterator for the toy chest
```

Write a code fragment that creates a ToyChest named, myToys, and add 22 toys, where the first toy has the price 1.01, the second toy has the price 1.02 , up to the last toy that has the price 1.22 .

Assume that the ToyChest, myToys, above has many more toys added to it. Write a code fragment that displays in the console window the total price of all of the toys in this toy chest.

