
Main concepts from Chapter 1:

• Objects

– an Object:

1. contains information (data)

2. performs functions (operations)

– Objects have types. The type usually gives us some idea as

to what the object can be used for.

– Objects can be told to perform their operations by sending

them messages.

– The textbook shows a way to represent objects graphically

(p. 17).



• Classes

– Classes define a type of Object. Many objects of the same type

can be created (instantiated) from a single class. (Think of the

class as being the cookie cutter and the objects as the cookies.)

– A class can also contain data and perform operations. Because a

class defines the data and operations to be used by its objects,

we will have to have some way to distinguish between data and

operations used by the class, and data and operations used by

the objects.

– The textbook shows a way to represent classes graphically (p.

18).



• Messages

– We can send a message to a specific object. The object must

have a method that matches the given message. If it does, the

method is executed (the operation is performed); if not, an error

occurs.

– Messages can contain extra information the the method may

require in order to do its job. The extra pieces of information

send along with a message are called arguments.

– Methods can send information back to whoever sent the

message (e.g. the result of a calculation or something to say if

the operation worked or not). Only a single piece of information

can be sent back to the sender of the message, and this

information is called the return value.



Example 1: NumberGuesser and NumberHolder

• define NumberGuesser class by describing what type of data,

and what each method (operation) can be performed:

– contains no data

– contains a single method. (Note a constructor wasn’t

needed because there was no data to initialize.):

1. guess. When a NumberGuesser object receives the

message labeled guess, it must think of some random

number between 0 and 100, and ask some NumberHolder

object if that number is the one it is holding. Since

NumberGuesser and NumberHolder objects are not

actually connected to each other, the NumberGuesser

object must be told which NumberHolder to ask. After

finding out if its number was correct, the NumberGuesser

object tells whoever sent the guess message the result.



• define NumberHolder class by describing what type of data,

and what each method (operation) can be performed:

– contains one piece of data:

1. an integer between 0 and 100 (inclusive)

– contains two methods:

1. the constructor. When a NumberHolder object is created, it

must think of a number between 0 and 100 and save that

number as its piece of data.

2. isIt. When the appropriate message is received, it will be

accompanied by an argument which will be an integer

between 0 and 100. This method simply compares the

argument integer to the data contained in the object itself. It

then tells the message sender the result of the comparison.



• Still need a Program:

– contains a single method, main. This method creates the

NumberHolder and NumberGuesser objects from their respective

classes (using the special message new), and then makes the

NumberGuessers repeatedly guess at the NumberHolders’

numbers.



• Inheritance

– Classes can “inherit” information from other classes. This is

used when one class is a special type of another class. For

example, a SmallNumberHolder might be a class that behaves

exactly the same way as the NumberHolder class, except that its

objects store integers between 0 and 10 instead of 0 and 100.

We could then make SmallNumberHolder a subclass of

NumberHolder. (Note that SmallNumberHolder is a type of

NumberHolder, not the other way around. This means

NumberHolder is the superclass and SmallNumberHolder is the

subclass.)

– A class can inherit from at most a single class (that is, it can

only have one “parent”, or superclass.

– A class can have many different types of “children”, or

subclasses.

– An inheritance hierarchy can be drawn showing the relationship



between many classes. See page 29 of the textbook for an

example.

– We won’t be using class inhertance during this course, except

possibly near the end if there is time. You should understand

the very basic ideas, but don’t worry about having to use it in

your programs.



• Life Cycle of Software

– Five basic stages:

1. analysis: deciding on specifications.

2. design: deciding on what classes and objects will be needed.

We focus on the data and methods required, not how the

methods will be performed.

3. coding : the classes are written up on the computer using our

chosen programming language.

4. testing : the code is verified to work by running the programs.

5. operation: the code is put into use.

– All the steps except 3 don’t even require knowing what language

you’re programming in. Programming is only one part creating

software! In this course you should spend as much time on

learning how to design good object-oriented programs as you do

learning how to write java code.


