
OS Final: Concurrency & Persistence
Fall 2022 (Lecture: Remzi Arpaci-Dusseau, Textbook: OSTEP)

Ruixuan Tu, Feijun Chen
{ruixuan.tu, fchen222}@wisc.edu
University of Wisconsin-Madison

Concurrency

• APIs (all return 0 on success or errno on error)

1 void *mythread(void *arg) { ... }; //
example of start_routine↪

2 int pthread_create(pthread_t *thread, NULL,
void *(*start_routine)(void *), void
*arg); // e.g., (&p1, NULL, mythread,
"A")

↪

↪

↪

3 int pthread_join(pthread_t *thread, NULL);
// wait for thread to finish; e.g., (p1,
NULL)

↪

↪

4 pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER; // init a
lock

↪

↪

5 int
pthread_mutex_lock/unlock(pthread_mutex_t
*mutex);

↪

↪

6 pthread_cond_t cond =
PTHREAD_COND_INITIALIZER; // init a
condition variable

↪

↪

7 int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex); // assume mutex
is locked, release mutex and put caller
to sleep (not ready); when signaled,
reacquire mutex before returning

↪

↪

↪

↪

8 int pthread_cond_signal(pthread_cond_t
*cond);↪

9 sem_t sem; // semaphore
10 int sem_init(sem_t *sem, 0, unsigned int

value); // 0: shared between threads in
same process

↪

↪

11 int sem_wait(sem_t *sem); // sem->value--;
wait if sem->value < 0↪

12 int sem_post(sem_t *sem); // sem->value++;
wake up one or more waiting threads↪

• Threads (Ch. 26)

− thread: very much like a separate process, except for
that they share the same address space and thus can
access the same data

∗ states: private PC, set of registers, contexts (with
switch except for page table)

∗ state saving to process control block (PCB) for
process, thread control block (TCB) for thread

∗ multiple stacks for multi-threaded process: vari-
ables, parameters, return values, etc. in thread-
local storage (the stack of relevant thread)

∗ reasons [parallelism] single-threaded program to
multiple CPUs. [avoid slow I/O blocking] en-
ables overlap of I/O with other activities within a
single program, much like multiprogramming did
for processes across programs

− scheduler: what runs next is determined by the OS
scheduler, and it is hard to know what will run at
any given moment in time; a new thread may run
immediately or put in “ready” but not “running” state

− concurrent issues
∗ critical section: a piece of code that accesses a
shared resource, usually a variable or data structure

∗ race condition/data race: arises if multiple
threads of execution enter the critical section at
roughly the same time; both attempt to update the
shared data structure, leading to an indeterminate
(and perhaps undesirable) outcome

∗ an indeterminate program consists of one or
more race conditions; the output of the program
is not deterministic, depending on which threads
ran when

∗ to avoid these, threads should use mutual exclu-
sion primitives to guarantee that only a single
thread ever enters a critical section, thus avoiding
races, and resulting in deterministic program out-
puts

− atomicity: “as a unit”, or “all or none” for a series
of actions called a transaction, no in-between state
visible

− synchronization primitives: hardware provides a
few useful instructions upon which we can build a
general set of what we call synchronization primi-
tives, to build multi-threaded code that accesses criti-
cal sections in a synchronized and controlled manner

1

https://pages.cs.wisc.edu/~remzi/OSTEP/


• Locks (Ch. 28)

− criterias

∗ mutual execution: basic task, lock called mutex
in POSIX library

∗ fairness: does any thread contending for the lock
starve while doing so, thus never obtaining it?

∗ performance: the time overheads added by using
the lock (in single/multiple threads)

− coarse-grained (big lock that is used any time any
critical section is accessed); fine-grained (protect dif-
ferent data structures with different locks, allowing
more threads in locked code at once)

− controlling interrupts. good: simplicity. bad: priv-
iledged operation with trust (monopolize CPU over
OS), does not work on multiprocessors (enter on an-
other CPU), lost interrupts (e.g., disk), inefficient

1 void lock() { DisableInterrupts(); }
2 void unlock() { EnableInterrupts(); }

− spin lock: use CPU cycles until lock available,
requires a preemptive scheduler (i.e., interrupt via
timer). good: correctness (mutex). bad: fairness (no
guarantee), performance (overhead on single CPU,
good when # threads ≈ # CPUs)

∗ test-and-set or atomic exchange (XCHG)

1 int TestAndSet(int *old_ptr, int
new_value) {↪

2 int old_value = *old_ptr; // fetch old
value at old_ptr↪

3 *old_ptr = new_value; // store
'new_value' into old_ptr↪

4 return old_value; // return the old
value↪

5 }
6 typedef struct __lock_t { int flag; }

lock_t;↪

7 void init(lock_t *lock) {
8 // 0: lock is available, 1: lock is

held↪

9 lock->flag = 0;
10 }
11 void lock(lock_t *lock) {
12 while (TestAndSet(&lock->flag, 1) ==

1)↪

13 ; // spin-wait (do nothing)
14 }
15 void unlock(lock_t *lock) { lock->flag =

0; }↪

∗ compare-and-swap/compare-and-exchange

(CMPXCHG)

1 int CompareAndSwap(int *ptr, int
expected, int new_value) {↪

2 int original = *ptr;
3 if (original == expected)
4 *ptr = new_value;
5 return original;
6 }
7 void lock(lock_t *lock) {
8 while (CompareAndSwap(&lock->flag, 0,

1) == 1)↪

9 ; // spin
10 }

⋅ identical to TestAndSet when using spin lock,
but provides lock-free synchronization

∗ load-linked and store-conditional (RISC)

1 int LoadLinked(int *ptr) { return *ptr;
}↪

2 int StoreConditional(int *ptr, int
value) {↪

3 if (no update to *ptr since LoadLinked
to this address) {↪

4 *ptr = value;
5 return 1; // success
6 } else return 0; // failed to update
7 }
8 void lock(lock_t *lock) {
9 while (1) {
10 while (LoadLinked(&lock->flag) == 1)
11 ; // spin until it is 0
12 if (StoreConditional(&lock->flag, 1)

== 1)↪

13 return; // if set-it-to-1
succeeded: all done↪

14 // otherwise: try again
15 }
16 }
17 void unlock(lock_t *lock) { lock->flag =

0; }↪

− ticket locks

∗ store ticket, turn (which process to enter critical
section)

⋅ good: ensure progress for all threads (once as-
signed ticket value, scheduled in the future)

⋅ bad: [without yield] waste time slice if wait for
lock which will not be available, e.g., 𝑁 threads
contending a lock, 𝑁 − 1 time slice wasted

∗ fetch-and-add (XADD) and yield2



1 int FetchAndAdd(int *ptr) { int old =
*ptr; *ptr = old + 1; return old; }↪

2 typedef struct __lock_t { int ticket;
int turn; } lock_t;↪

3 void lock_init(lock_t *lock) {
lock->ticket = 0; lock->turn = 0; }↪

4 void lock(lock_t *lock) {
5 int myturn =

FetchAndAdd(&lock->ticket);↪

6 while (lock->turn != myturn)
7 yield(); // spin(): discussed above
8 }
9 void unlock(lock_t *lock) { lock->turn =

lock->turn + 1; }↪

∗ test-and-set and yield

1 void init() { flag = 0; }
2 void lock() {
3 while (TestAndSet(&flag, 1) == 1)
4 yield(); // give up CPU
5 }
6 void unlock() { flag = 0; }

⋅ yield: deschedules caller itself by moving from
running state to ready state

− queues: sleeping instead of spinning

1 typedef struct __lock_t { int flag; int
guard; queue_t *q; } lock_t;↪

2 void lock_init(lock_t *m) { m->flag = 0;
m->guard = 0; queue_init(m->q); }↪

3 void lock(lock_t *m) {
4 while (TestAndSet(&m->guard, 1) == 1)
5 ; // acquire guard lock by spinning
6 if (m->flag == 0) {
7 m->flag = 1; // lock is acquired
8 m->guard = 0;
9 } else {
10 queue_add(m->q, gettid());
11 setpark(); // if then interrupted,

then park() will return immediately,
avoid wakeup race

↪

↪

12 m->guard = 0;
13 park(); // deschedule caller
14 }
15 }
16 void unlock(lock_t *m) {
17 while (TestAndSet(&m->guard, 1) == 1)
18 ; // acquire guard lock by spinning
19 if (queue_empty(m->q)) m->flag = 0; //

let go of lock; no one wants it↪

20 else unpark(queue_remove(m->q)); // hold
lock for and wake up next thread↪

21 m->guard = 0;
22 }

∗ good: no waste, avoid starvation

∗ bad: (limited) if interrupted in acquiring/releasing
lock, then other threads spin-wait for this to
run again; (without setpark() – about to sleep)
wakeup race if another thread released the lock,
the park() by this thread sleep forever

∗ park() and unpark() switch state between run-
ning and waiting or sleep (not ready)

∗ Linux-based futex locks

1 void futex_wait(void *address, int
expected); // if *address !=
expected, return immediately, else
sleep caller

↪

↪

↪

2 void futex_wake(void *address); // wake
up one thread sleeping on queue↪

− two-phase lock

∗ reason: spinning can be useful, particularly if the
lock is about to be released

∗ procedure: (1) the lock spins for a while, hoping
that it can acquire the lock; (2) if could not acquire,
the caller is put to sleep, and only woken up when
the lock becomes free later by futex lock

• Locked Data Structures (Ch. 29)

− concurrent counter

1 typedef struct __counter_t {
2 int global; // global count
3 pthread_mutex_t glock; // global lock
4 int local[NUMCPUS]; // per-CPU count
5 pthread_mutex_t llock[NUMCPUS]; // ...

and locks↪

6 int threshold; // update frequency
7 } counter_t;
8 void init(counter_t *c, int threshold); //

record threshold, init locks, init
values of all local counts and global
count

↪

↪

↪

9 void update(counter_t *c, int threadID,
int amt); // usually, just grab local
lock and update local amount; once
local count has risen 'threshold',
grab global lock and transfer local
values to it

↪

↪

↪

↪

↪

10 int cpu = threadID % NUMCPUS; // map
thread ID to CPU ID↪

11 int get(counter_t *c); // grab global lock
and return global amount (approximate)↪

3



∗ naive bad: only one thread can increment the
counter at a time

∗ approximate idea: have per-thread counters; pe-
riodically merge counter values. good: multiple
threads (scalable). bad: (1) only approximate value;
(2) read-heavy workloads can still cause lock con-
tention

− concurrent queue

1 typedef struct __node_t { int value;
struct __node_t *next; } node_t;↪

2 typedef struct __queue_t { node_t *head;
node_t *tail; pthread_mutex_t
head_lock; pthread_mutex_t tail_lock;
} queue_t;

↪

↪

↪

3 void Queue_Enqueue(queue_t *q, int value);
// new tmp node; lock tail; add to
tail; unlock tail

↪

↪

4 int Queue_Dequeue(queue_t *q, int *value);
// lock head; remove from head (or
empty); unlock head

↪

↪

∗ dummy node (0th): to make accesses to head and
tail pointers independent (for 2 small locks), value
is not used. good: no need 1 big lock

− concurrent linked list hand-over-hand lock-
ing/lock coupling: a lock per node, grab next node’s
lock and release current node’s lock

• Condition Variables (Ch. 30)

− condition variable: an explicit queue that threads
can put themselves on when some condition is not
desired (by waiting on condition); when some other
thread changes state, can wake one or multiple wait-
ing threads (might not all) and allow them to con-
tinue (by signaling on condition)

∗ good: allow not only mutual execution, but also
ordering of thread execution

− rules

1. keep state in addition to condition variables. if state
is already as needed, thread does not call wait on
CV

2. protect shared state in concurrent programs. hold
the lock while changing the shared variable and
calling signal() to avoid race conditions

3. always check state after waking up
∗ problem: spurious wake-ups (system threads
might wake up even if signal() not called;
signal() may wake up more than one thread)

∗ solution: (1) verify the state has changed as ex-
pected before continuing; (2) use while, not

if when waiting on a condition variable, and
wait() when not satisfied

− join() implementation

1 void thread_exit(thread_t *t) {
2 mutex_lock(&t->mutex);
3 t->done = 1; // might already terminated

before join()↪

4 cond_signal(&t->cond);
5 mutex_unlock(&t->mutex);
6 }
7 void thread_join(thread_t *t) {
8 mutex_lock(&t->mutex);
9 while (t->done == 0) // rule (3)
10 cond_wait(&t->cond, &t->mutex);
11 mutex_unlock(&t->mutex);
12 }

− producer/consumer (bounded buffer) problem

∗ put and get routines

1 int buffer[MAX];
2 int fill_ptr = 0, use_ptr = 0, count =

0;↪

3 void put(int value) {
4 buffer[fill_ptr] = value;
5 fill_ptr = (fill_ptr + 1) % MAX;
6 count++;
7 }
8 int get() {
9 int tmp = buffer[use_ptr];
10 use_ptr = (use_ptr + 1) % MAX;
11 count--;
12 return tmp;
13 }

∗ producer/consumer synchronization

1 cond_t empty, fill; mutex_t mutex;
2 void *producer(void *arg) {
3 int i;
4 for (i = 0; i < loops; i++) {
5 pthread_mutex_lock(&mutex);
6 while (count == MAX)
7 pthread_cond_wait(&empty, &mutex);
8 put(i);
9 pthread_cond_signal(&fill);
10 pthread_mutex_unlock(&mutex);
11 }
12 }
13 void *consumer(void *arg) {
14 int i;
15 for (i = 0; i < loops; i++) {
16 pthread_mutex_lock(&mutex);4



17 while (count == 0)
18 pthread_cond_wait(&fill, &mutex);
19 int tmp = get();
20 pthread_cond_signal(&empty);
21 pthread_mutex_unlock(&mutex);
22 printf("%d\n", tmp);
23 }
24 }

∗ Mesa semantics: when you call signal(), you
do not immediately switch to a waiting thread but
a waiting thread will instead be marked as ready

∗ problems: (1) no data when consumer awake
(after another consumer), solve by while; (2) all
sleep (after producer filled data and a consumer ex-
hausted data, then wake another consumer), solve
by that a consumer/producer should not wake
other consumers/producers, by fill and empty;
(3) only one thread can fill or use a buffer at a time,
solve by unlock when fill or use next buffer, lock
before update count

• Semaphores (Ch. 31)

− value: if negative, equal to # waiting threads, init
value equal to # resources

− binary semaphores/locks: init value 1, sem_wait()
as lock(), sem_post() as unlock()

− semaphores for ordering: waiting/signaling – or-
dering primitive (like condition variables); init value
0, parent runs and calls sem_wait() to sleep (value ==
-1), child runs and calls sem_post() to wake parent
(value == 0)

− producer/consumer (bounded buffer) problem:
no need count, instead semaphores empty and full

1 sem_t empty, full, mutex;
2 void *producer(void *arg) {
3 int i;
4 for (i = 0; i < loops; i++) {
5 sem_wait(&empty);
6 sem_wait(&mutex); // not outer to avoid

deadlock↪

7 put(i);
8 sem_post(&mutex); sem_post(&full);
9 }
10 }
11 void *consumer(void *arg) {
12 int i;
13 for (i = 0; i < loops; i++) {
14 sem_wait(&full); sem_wait(&mutex);
15 int tmp = get();
16 sem_post(&mutex); sem_post(&empty);
17 printf("%d\n", tmp);

18 }
19 }
20 int main() {
21 sem_init(&empty, 0, MAX); // MAX are empty
22 sem_init(&full, 0, 0); // 0 are full
23 sem_init(&mutex, 0, 1); // lock
24 }

− reader-writer locks good: safe to have multiple
readers in the critical section without writer (if a
writer exists, no reader and other writers); bad: often
add overhead

− throttling: init value max # threads, to avoid too
many threads acquiring large memory

− implementation: 1 lock, 1 condition variable, 1
state variable for value

• Bugs (Ch. 32)

− atomicity violation: a code region is intended to
be atomic, but the atomicity is not enforced during
execution; solution by adding locks

− order-violation: 𝐴 should always be executed be-
fore 𝐵, but the order is not enforced during execu-
tion; solution by condition variables

− deadlock: no progress can be made because two or
more threads are each waiting for another to take
some action and thus none ever does
∗ reasons: (1) complex dependencies; (2) encapsula-
tion

∗ conditions: happens when all hold: (1) mutual ex-
clusion, (2) hold-and-wait, (3) no preemption, (4)
circular wait

∗ solution: eliminate any condition: (1) atomic but
lock-free/wait-free, (2) acquire all locks at once, no
more acquire until all released [less encapsulation or
concurrency], (3) trylock and release another lock
on failure [livelock: states constantly change with-
out progress, solve by exponential random back-
off], (4) partial order instead of total order

∗ avoidance: (1) schedule so that no lock wait, (2)
detect deadlock and restart

Persistence
1 s == 103 ms == 106 μs

• Hardware
− I/O Devices (Ch. 36)

∗ reasons for OS controlling device: (1) security;
(2) virtualization [different kinds of hardware, con-
currency]

∗ interface registers: (1) command register stores
commands for device (e.g., r/w block); (2) data reg-
ister stores data to exchange between device and5



outside; (3) status register keepss track of status of
the register (e.g., if device busy)
⋅ access: (1) special I/O instructions addition
to CPU’s instruction set (e.g., IN and OUT in
x86); (2) memory-mapped I/O, device registers
mapped into memory, != mmap

∗ access protocols
⋅ pooling

− procedure: (1) spin until device is not busy
(pooling); (2) write into the data and com-
mand registers; (3) do polling again until re-
quest done

− analysis: good: simple and working. bad:
uses CPU excessively, data transfer uses a lot
of CPU

⋅ interrupt:
− procedure: change spin in pooling to

sem_wait(device_ready), when ready use
sem_post(device_ready) to issue interrupt

− analysis: good: go to sleep instead of spin.
bad: if device fast, very frequent interrupts;
leads to context switch overhead

∗ direct memory access: bypass CPU using DMA
(memory – DMI interface – I/O chip – storage).
analysis faster than copying to CPU then disk;
CPU can do other things when data moving; re-
quires specialized hardware

− HDDs (Ch. 37) block device, read/write a block of
data (typically 512 bytes/4 KB)
∗ access physically: location (𝜙, 𝑟) at platter 𝑝,

cylinder has 𝑟, track has 𝑟, 𝑝, sector has 𝜙, 𝑟, 𝑝;
e.g. surface 3, track 5, sector 7; platters
spin to 𝜙 by spindle (rpm), arms assemblymoves to
𝑟 simultaneously, only one head R/W at one time

∗ access (R/W) time = seek time (arm move to
track) + rotational delay (block rotate under arm
head) + transfer time (actual data move) [sorted
from long to short, transfer very short] (causes
random time >> sequential time)

∗ throughput = amount of data
𝑇access

∗ interface: linear array of blocks/sectors, can per-
form read/write

∗ internals
⋅ 1+ platters that can spin around at a fixed rate
⋅ an arm that can move along different tracks (a
circle on a platter) with a read/write head

⋅ controller: execute commands in buffer, write
output to status and data registers. keep track of
multiple actions at once (allows higher through-
put, schedule actions to optimize delay)

∗ track skew: add some offset between tracks to tol-
erate rotational delay so that when doing sequen-
tial read, the arm can catch up without waiting for

another full rotation cycle
∗ track skew another explaination: sectors on differ-
ent tracks are offset on most disks, e.g., the “gap”
between sectors 11 and 12. good: change tracks
without stopping the platter rotation, allows for
faster sequential reads

∗ policies for disk scheduling
⋅ SSTF/SSF Shortest Seek Time First: pick re-
quests on nearest track first, OS uses nearest-
block-first (NBF) as no geometry. bad: not ac-
count for rotation → disk arm stay on same track
for long time → starvation

⋅ SCAN/Elevator: scan back and forth from
outer track to inner track (called a sweep) to
solve starvation problem. bad: not account for
rotation, only seek
− F-SCAN for Freeze: executes a fixed number

of operations in one batch (other operations
later, fair to requests that are on other parts of
the platter)

− C-SCAN for Circular: only moves into one
direction (does not favor middle tracks)

⋅ SPTF/SATF Shortest Positioning Time
First/Shortest Access Time First: best: minimize
both seek and rotation times (close). need
geometry like track boundaries, perform inside
drive

∗ multi-zoned disk drives: outer tracks have more
sectors than inner tracks

− RAID (Ch. 38)
∗ comparison: 𝑁 disks each with 𝐵 blocks, 𝑆 se-
quential bandwidth of a disk,𝑅 random bandwidth
of a disk, 𝑇 time a request to a single disk would
take

RAID-0 RAID-1 RAID-4 RAID-5

Capacity 𝑁 ⋅ 𝐵 (𝑁 ⋅ 𝐵)/2 (𝑁−1)⋅𝐵 (𝑁−1)⋅𝐵
Reliability 0 1 for

sure; 𝑁
2 if

lucky

1 1

Sequential
read

𝑁 ⋅ 𝑆 (𝑁/2) ⋅ 𝑆 (𝑁−1)⋅𝑆 (𝑁−1)⋅𝑆

Sequential
write

𝑁 ⋅ 𝑆 (𝑁/2) ⋅ 𝑆 (𝑁−1)⋅𝑆 (𝑁−1)⋅𝑆

Random
read

𝑁 ⋅ 𝑅 𝑁 ⋅ 𝑅 (𝑁−1)⋅𝑅 𝑁 ⋅ 𝑅

Random
write

𝑁 ⋅ 𝑅 (𝑁/2) ⋅ 𝑅 1
2 ⋅ 𝑅 𝑁

4 𝑅

Read
latency

𝑇 𝑇 𝑇 𝑇

Write
latency

𝑇 𝑇 2𝑇 2𝑇

∗ reasons for multiple drives: (1) disk failure might
occur, (2) capacity is not enough, (3) improve per-

6



formance
∗ RAID-0 – striping (no redundancy): store the
data evenly across the disks
⋅ layout with chunk size = 1
disk 0 disk 1 disk 2 disk 3
0 1 2 3
4 5 6 7

⋅ logical address A, disk_id = A % disk_count,
offset = A / disk_count

⋅ read / write: direct read / write, each issues 1
I/O

∗ RAID-1 –mirroring: have 2 copies of each block
on different disks; (!) issuing large I/O requests
to different parts of each mirror could achieve full
bandwidth
⋅ layout
disk 0 disk 1 disk 2 disk 3
0 0 1 1
2 2 3 3

⋅ read: directly read one of the copies, 1 I/O;
write: write to all copies in parallel, 𝑀 (mirror-
ing level) I/O; recovery: when a disk fails, there
is another copy of data to be used

∗ RAID-4 – saving spacewith parity: use a disk as
a parity disk, each bit stores the parity information
about the other bits in that position on other disks
⋅ layout
disk 0 disk 1 disk 2 disk 3
0 1 2 P0
3 4 5 P1
6 7 8 P2

⋅ read: direct read, issue 1 I/O; parallel read at
most 𝑁 − 1 since one disk is parity disk

⋅ write (use either): (1) read other blocks and com-
pute parity; write the block to be changed and
the new parity block. (2) read old data and old
parity, then compute new parity and write 2
blocks. (!) both need 2 reads and 2 writes (with
subtractive parity), or 𝑁 − 1 reads and 2 writes
(with additive parity)

⋅ parity computation: parity of a row is the
XOR of all the bits in that row

∗ RAID-5 – rotated parity: store the parity block
on different disks sequentially in a rotated manner
(e.g. first parity block on last disk, second one on
second last)
⋅ layout
disk 0 disk 1 disk 2 disk 3
0 1 2 P0
3 4 P1 5
6 P2 7 8

⋅ read: same as RAID-4, random better as used
all disks; write: same as RAID-4, random much

better as allows request parallelism
• File Systems

− Files & Dirs (Ch. 39)
∗ file: array of bytes (low-level name inode number)
∗ directory/dir: a special type of file; array of
records (human-readable names of files / dirs), map
the names to inode nums

∗ operations
⋅ create: calls creat() system call
⋅ read: use the file descriptor (int). OS map the
FD to the file

⋅ grow: calls write() system call; calls lseek()
to the end of file (set the offset to point to the end
of file) then write there

⋅ truncate: truncate the file to start a new one;
one way to do this is to use O_TRUNC flag in
open()

⋅ remove: calls unlink(). user-level cmd rm
⋅ rename: calls rename(). user-level cmd mv
⋅ link

− hard link: make another name refer to the
same file (points to the same inode num), with
the same stats; need to delete all linked files in
order to delete the file. user-level cmd ln

− soft/symbolic link: create a file of a special
file type, the content has what it is linked
to; can leave daggling pointers (when the file
pointed to is removed). user-level cmd ln -s

⋅ mount: make a file system seems to be under a
dir of another file system; allows us to create one
big FS from many disks

⋅ metadata: stores the file info (name, size, blocks,
inode number, # links, access time, modification
time, etc.)

⋅ path traversal with root dir /
− absolute pathnames: start at root, go down

until getting to desired file / dir; ignore redun-
dant slushs, i.e ////// == /

− relative pathnames: relative to current
working dir (CWD); . refers to current dir;
.. refers to parent dir

− Implementation (Ch. 40)
∗ disk interface: an array of blocks
SidIDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
⋅ 1 super block (S): contains info about the entire
FS; tells where the other block regions are

⋅ 2 bitmap blocks (i for inode, d for data): tracks
if a block is free

⋅ 1 inode block (I, for 32 inodes with 128 bytes
each): stores type (regular file, dir, sym link),
ownership, access rights, size, # blocks, pointers
to data blocks (direct ptrs having a fixed number
of blocks that points to the address of the data

7



block, thus have a max file size limit; indirect
ptrs usually is the last ptr in the array of direct
ptrs, pointing to another data block that is full of
direct ptrs)

⋅ 32 data blocks (D): store data only
∗ make a FS mkfs(): creates an empty file system
(just a root directory)

∗ opening a file with absolute path: (1) read root
directory inode (usually a “well known” number
such as 2) and then read root dir data; (2) check
(2-1) right (if it’s ok for current process to do spec-
ified operations), (2-2) unique (does file already ex-
ist); (3) read inode bitmap and find a free spot, then
write to bitmap; (4) write dir data and dir inode

∗ writing to a file write(fd, buffer, size): (1)
allocate a data block: (1-1) read the data bitmap
and find a free block; (1-2) write to data bitmap.
(2) update inode: (2-1) read reelevant inode block
and update inode; (2-2) write inode block back. (3)
write data to data block

∗ efficient access by page cache: in OS memory,
keep freq/recently accessed FS data. good for (1)
reduces reads; (2) writes, allow to wait to write

− Journaling (Ch. 42): write-ahead logging
∗ log - a special part of disk: before update, write
info to log about update; want to update blocks
atomically (all or nothing)

∗ FSCK (File System Checker): scan the entire file
system and fix inconsistencies
⋅ checks: pointed data block allocated? su-
perblock match? dir contain . and ..? dir
points to valid inodes? inode size and nblocks
match? free bitmap? # dir entries == inode link
count (update link count +mv to /lost+found)?
different inodes point to same block (duplicate
block)? bad ptrs (remove ref)?

⋅ problems: (1) slow; (2) no info about correct
state, only know consistency

∗ journaling: blocks designated to store notes
⋅ assumptions: issue many writes, some may
complete (but not all) in case of crash / power
loss andmay complete in any order; issue a single
512-byte (sector) write atomically; want a trans-
action be atomic

⋅ protocol: (1) write all updates to log; (2) wait
for I/O to complete; (3) issue updates to in-place
final locations

⋅ content: a transaction begin block (𝑇𝑏) info
about the update; update info follows 𝑇𝑏; a trans-
action end block (𝑇𝑒), whichwill be written after
waiting for all the data block to be transferred

− NFS (Ch. 49):
∗ idempotent: same when retry (e.g., lost packet)

∗ UDP: could happen: messages arrive out-of-order
at the client; messages are lost; NOT HAPPEN
message content is corrupted, but still delivered

∗ operations: GETATTR, SETATTR, LOOKUP, READ,
WRITE, CREATE, REMOVE, MKDIR, RMDIR, READDIR;
could accelerate by client-side caching (inconsis-
tency in 3 sec before cache timeout, must flush-on-
close), but not server-side write buffering

− SSD (Ch. 44): Flash-based Solid-State Disk
∗ a blocked based storage device build upon flash
chips; (!) a page in flash chip interface – 2-4 KB,
a block – a chunk of pages, 128-256 KB

∗ operations: read page, erase block (clears entire
block), program page (can only program erased
page and only once)

∗ properties: [performance] read I/O: 10 μs (1000x
faster than HDD); erase: a few ms; program: 100
μs. [reliability] erase/program a block too many
(10k/100k, depending on density) times may wear
out the chip

∗ flash translation layer (FTL)
⋅ goals: convert logical blocks to physical
blocks+pages; parallelism for multiple chips; re-
duces write amplification (less copying for block-
level erases); implement wear leveling (dis-
tributes writes equally to all blocks)

⋅ approaches
− directly mapped

∗ read: just read the physical address as is in
the drive interface

∗ write: (1) identify block that write is
within; (2) read other data out of the block;
(3) erase the entire block; (4) program both
the old data and the new data in; (5) write
the block back to chip

∗ problems: (1) wear out (needs to do unnec-
essary overwrites); (2) performance (needs
to read and write the entire block)

− log structuring
∗ copy-on-write: not overwrite in place
∗ always write new data to the end of log
∗ cleaning/garbage collection: (1) pick a
block; (2) identify live pages; (3) copy live
pages (not dead pages) to the end of log; (4)
erase the block; (!) defer at background

∗ wear leveling: periodically erase long-
lived blocks and rewrite elsewhere, to avoid
no rewritten/garbage collection

8


	Concurrency
	Persistence

