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COMP SCI ���: DBMS

Final, Fall ���� (Lecture: AnHai Doan; Slide: AnHai Doan, Paris Koutris, R. Ramakrishnan, Evan McCarty)

Ruixuan Tu (ruixuan.tu@wisc.edu), University of Wisconsin-Madison

Relational algebra

notions

no-bag: multiset in SQL, set (no duplicate) in relational algebra

schemas: , 

limitations: e.g., cannot compute/express transitive closure

� basic operators

union : all tuples in  or ;  have same schema; (bag) add # occurences

set di�erence/except : all tuples in  and not in ;  have same schema; (bag)

subtract # occurences

selection : returns all tuples in relation  which satisfy a condition  ( ); output

schema same as input schema; (bag) preserve # occurences

projection : return certain columns, eliminates duplicate tuples; input schema ; condition

; output schema ; (bag) preserve # occurences, no duplicate elimination

Cartesian/cross product : each tuple in  with each tuple in ; input schemas ;

condition ; output schema ; rarely used without join; (bag) no duplicate elimination

relations with named �elds

renaming ; does not change the relational instance, changes the relational schema only; input

schema ; output schema 

derived operators

intersection : all tuples both in  and in ;  have same schema; derivation 

join (also, inner join and outer join)

theta join : a join that involves a predicate (condition ); input schemas ; condition

; output schema ; derivation 

natural join : combine all pairs of tuples in  and  that agree on the join attributes 

; input schemas ; output schema  where ; deviation

equi-join : natural join is a particular case of equi-join (on all the common �elds); most

frequently used

semi-join : input schemas ; derivation 

division : output contains all values  s.t. for every tuple  in , tuple  is in ; input

schemas ; output schema 

extended relational algebra

group by/aggregate : group by the attributes in , aggregate the attribute in  (SUM,

COUNT, AVG, MIN, MAX); output schema:  + an extra numerical attribute
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relational algebra experssions, � notations

sequences of assignment statements: (�) create temporary relation names, (�) renaming can be implied

by giving relations a list of attributes; e.g.,  can be written: (�) , (�)

expressions with several operators: interpret in order, or forced order by user-inserted parentheses, from

highest to lowest: (�) unary operators (select, project, rename), (�) products and joins, (�) intersection, (�)

union and set di�erence

expression trees (usually): leaves are operands ( either variables standing for relations or particular,

constant relations); interior nodes are operators, applied to their child or children

Implementation of operators

no universally best technique for most operators

external sorting

motivation of sorting: data requested in sorted order; �rst step in bulk loading B+ tree index; eliminating

duplicate copies in a collection of records, sort-merge join

�-way sort with � bu�ers: (Pass �) read a page, sort it, write it (only � bu�er page is used); (Pass �, )

three bu�er page used

�-way external merge sort: each pass we r+w each page in �le;  pages in �le  

; ; idea: divide and conquer - sort sub�les, merge

general external merge sort: more than � bu�er pages; to sort a �le with  pages using  bu�er pages:

(Pass �): use  bu�er pages, produce  sorted runs of  pages each; (Pass �, ) merge  runs by

sorting the �rst page of each sorted subset of pages; ; 

typical case: if  bu�er pages, a �le of  pages, and , then the cost of sort is . (Pass �)

create runs of  pages long, costing ; (Pass �) create runs of  pages long: if ,

then we are done, costing 

joins

notion:  is Reserves,  is Sailors;  pages for ,  tuples per page,  pages for ,  tuples per page;

 bu�er pages; di�erent hash functions  and ; cost metric: # I/Os ignoring �nal output costs

nested loop join

tuple-based: foreach tuple  in , foreach tuple  in : if  ==  then join( , ). I/O cost: 

. 

page-based: foreach page  in , foreach page  in , foreach tuple  in , foreach tuple  in :

if  ==  then join( , ). I/O cost , or if  is outer, , use whichever

smaller. 

block: foreach block  in , foreach page  in , foreach tuple  in , foreach tuple  in : if 

==  then join( , ).  as � page as input bu�er for scanning inner , and � page as

output bu�er.  scanned once, costing  page I/Os; read  for  times. I/O cost 

. I/O cost formula: scan of outer + # outer blocks * scan of inner ( )

index: foreach tuple  in , foreach tuple  in  where == : join( , ). If there is an index on

the join column of one relation (say ), can make it the inner and exploit the index. I/O cost: 

. For each  tuple, cost of probing  index is about

�.� for hash index, �-� for B+ tree. 

sort-merge join 

procesure: sort  and  on the join column, then scan them to do a merge, and output result tuples
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scan: Advance scan of  until current -tuple >= current -tuple, then advance scan of  until current

-tuple >= current -tuple; do this until current -tuple = current -tuple. At this point, all -tuples

with same value in  (current  group) and all  tuples with same value in  (current  group)

match; output  for all pairs of such tuples. Then resume scanning  and 

general cost:  scanned once; each  group (equivalent) is scanned once per matching  tuple (with

bu�er hits, or nested loop, di�culty)

cost if : sort , read in order and match  (no duplicate/match

within � outer page,  as NLJ if many duplicates [  as upper bound]) by �

bu�er pages, total 

cost if : I/O cost 

hash-join

procedure: (�) partition both relations using  into buckets :  tuples could only match 

tuples in same bucket; (�) matching tuples/ -partition in each partition of  and the same partition of

 by hashing  by  (or using block nested loop join)

observation: # partitions  (� input bu�er),  (� input bu�er, �

output bu�er). For uniformly sized partitions with maximal , , , i.e., 

. Could build in-memory hashtable to speed up with more memory. If  not uniform, could apply

hash-join recursively to �t some partitions which does not �t in memory

I/O cost:  (partitioning r+w both relations , matching read both relations 

)

general join conditions

equalities over join attributes : (Index NL) build index on , or using existing indexes on a subset

or an element of . (Sort-Merge and Hash) sort/partition on combination of the columns of 

inequality conditions: (Index NL) need (clustered) B+ tree index. (Sort-Merge and Hash) not

applicable. (Block NL) best method

other relational operations

selection  SELECT R.C FROM Reserves R 

�le scan: scan whole table,  I/Os

index scan: use indexes on attributes : (hash index) ; (B+ tree index)  [unclustered]

, [clustered] 

projection  SELECT DISTINCT R.C FROM Reserves R , 

sorting procedure: (�) modify pass � of external sort to eliminate unwanted �elds (  I/Os for scan,

 pages after projection and I/Os for write); (�) modify merging passes to eliminate duplicates

(sorting I/Os calculated by above formula with -� pass (pass � for unwanted) and pages after

projection); (�) �nal scan (I/Os by # pages after projection)

hashing procedure: (partitioning) read  by � input bu�er. for each tuple, discard unwanted �elds,

apply  to choose a partition in ; � tuples from di�erent partitions guaranteed distinct.

(duplicate elimination) for each partition, read and build an in-memory hashtable by  on all �elds to

remove duplicates. if partition does not �t in bu�er memory, apply hash-based projection on the

partition recursively

set operations

intersection and Cartesian/cross product: special cases of join

union (distinct)

sorting procedure: (�) sort both relations (on all attributes); (�) merge sorted relations eliminating

duplicates
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hashing procedure: (�) partition  and  by ; (�) build in-memory hashtable for every partition

 (�) on that, scan corresponding partition  and add tuples if not duplicate

set di�erence/except: similar to union

aggregate

without groupby: requires scanning the relation

sorting procedure: (�) sort on group by attributes (if any); (�) scan sorted tuples, computing running

aggregate; (�) when the group by attribute changes, output aggregate result; I/O cost=sorting

hashing procedure: (�) hash on group by attributes (if any) (hash entry = group attributes + running

aggregate); (�) scan tuples, probe hashtable, update hash entry; (�) scan hashtable and output each

hash entry; I/O cost=scan relation

index procedure

without groupby: given B+ tree on aggregate attributes in SELECT or WHERE clauses, do index-

only scan

with groupby: given B+ tree on all attributes in SELECT, WHERE, and GROUPBY clauses, do index-

only scan; if GROUPBY attributes form pre�x of search key, tuples retrived in GROUPBY order

Query optimization

query plans

logical query plan: created by the parser from the input SQL text; expressed as a relational algebra tree;

each SQL query has many possible logical plans

physical query plan: goal is to choose an e�cient implementation for each operator in the RA tree; each

logical plan has many possible physical plans

transformed: access path selection for each relation (scan or index); implementation choice for each

operator (e.g., nested loop join, hash join); scheduling decisions for operators (pipelined or batch)

execution

pipeline: tuples generated by an operator are immediately sent to the parent (used whenever possible)

bene�ts: no operator synchronization issues; no need to bu�er tuples between operators; no r+w

intermediate data from disk

batch/materialize: write the intermediate result before we start the next operator (which read the result)

query optimization process: (�) identi�es candidate equivalent relational algebra trees (i.e., logical query

plan); (�) for each relational algebra tree, it �nds the best annotated version (using any available indexes) (i.e.,

physical query plan); (�) chooses the best/cheapest overall plan by estimating the I/O cost of each plan

System R optimizer: cost estimation for cost of operations and result sizes, by approximate with statistics,

considering CPU + I/O costs; to prune large plan space, only consider the space of left-deep plans and avoid

cartesian products

relational algebra tree transformation on physical plan enumeration

pushing down (execute as early as possible in query plan)

selections: always possible to change the order through projections, joins, other selections

projections: through selections, joins

reason: fewer tuples in intermediate steps of plan

note: unable to use the index of a column after pushing a selection down

join reordering by 

properties: (communitativity) ; (associativity) ; can

reorder in any way (exponentially many)

left-deep join: ; bene�t to focus: allow pipeline;  possible trees

right-deep join: ;  possible trees

R S h  1

S  i R  i

R ⋈ S ⋈ T ⋈ U

R ⋈ S ≡ S ⋈ R (R ⋈ S) ⋈ T ≡ R ⋈ (S ⋈ T )

((R ⋈ S) ⋈ T ) ⋈ U n!
R ⋈ (S ⋈ (T ⋈ U)) n!

( )
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bushy join: ;  possible trees

cost estimation of query plan

must estimate cost of each operation in plan tree; depends on input cardinalities; algorithm cost

(previously)

must also estimate size of result for each operation in tree; use information about the input relations; for

selections and joins, assume independence of predicates

system catalog updated periodically (everytime is expensive)

statistics: # tuples and # pages for each relation; # distinct key values and # pages for each index; index

height, low/high key values for each tree index

histograms for some values are sometimes stored

Transaction management

motivation: recovery, durability, concurrency, or in all to avoid inconsistency

transaction: a sequence of SQL statements that you want to execute as a single atomic unit;

 BEGIN TRANSACTION; {SQL} COMMIT;  or  START TRANSACTION {SQL} END TRANSACTION , use  ROLLBACK  for  COMMIT  to

abort

without: execute a transaction half way (e.g., app crash); that can leave app in an inconsistent state

ACID properties: atomic, consistent, isolation, durable

atomic: all actions in the transaction happen, or none happen. if a transaction crashes half way, then

remove its e�ect

consistent: a database in a consistent state will remain in a consistent state after the transaction

isolation: the execution of a transaction is isolated from other (possibly interleaved) transaction. if two

users run transactions concurrently, they should not interfere with each other

durable: once a transaction commits, its e�ects must persist

implementation: DB ensures ACID by using locks and crash recovery. User App must be structured as

executing transactions on a database

Recovery

types of failures

wrong data entry: prevent by having constraints in the database; �x by data cleaning

disk crashes: prevent by using redundancy (RAID, archive); �x by using archives

system failures: most frequent (e.g., power); use recovery by log (as internal state is lost)

log: a �le that records every single action of the transaction

an append-only �le containing log records

multiple transactions run concurrently, log records are interleaved

after a system crash, use log to: redo/undo some transaction that did not commit

elements: assumes that the database is composed of elements (usually � element = � block, can be = � record or

= � relation); assumes each transaction r/w some elements

primitive operations of transactions

 INPUT(X) : read element  X  to memory bu�er

 READ(X, t) : copy element  X  to transaction local variable  t 

 WRITE(X, t) : copy transaction local variable  t  to element  X 

 OUTPUT(X) : write element  X  to disk

undo logging

log records

(R ⋈ S) ⋈ (T ⋈ U)  (n−1)!
(2n−2)!
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 <START T> : transaction  T  has begun

 <COMMIT T> :  T  has committed

 <ABORT T> :  T  has aborted

 <T,X,v> :  T  has updated element  X , and its old value was  v 

rules

If  T  modi�es  X , then  <T,X,v>  must be written to disk before  X  is written to disk

If  T  commits, then  <COMMIT T>  must be written to disk only after all changes by T are written to disk

(no need to undo)

 OUTPUT s are done early (before  COMMIT )

recovery after system crash

procedure: (�) decide each transaction  T  whether completed: (complete)  <START T> ... <COMMIT T> ,

 <START T> ... <ABORT T> ; (incomplete)  <START T> ...... . (�) undo all modi�cations by incompleted

transactions

read log from end; cases: ( <COMMIT T> / <ABORT T> ) mark  T  as completed; ( <T,X,v> ) if  T  not

completed then write  X=v  to disk, else ignore; ( <START T> ) ignore

all undo commands are idempotent: if we perform them a second time, no harm is done (e.g., crash

during recovery)

stop reading: until beginning of log �le, or (better) use checkpointing

recovery with nonquiescent checkpointing procedure: (�) look for the last  <END CKPT> , undo all

uncommitted transactions along the way; (�) stop until the corresponding  <START CKPT> 

checkpointing

checkpoint the database periodically: (�) stop accepting new transactions; (�) wait until all curent

transactions complete; (�) �ush log to disk; (�) write a log record, �ush; (�) resume transactions

nonquiescent checkpointing: checkpoint while database is operational (not freezing DB)

procedure: (�) write a  <START CKPT(T1, ..., Tk)>  where  T1, ..., Tk  are all active transactions;

(�) continue normal operation; (�) when all of  T1, ..., Tk  have completed, write  <END CKPT> 

(ensures the system did not crash and the checkpoint terminated)

redo logging

log records � change:  <T,X,v> :  T  has updated element  X , and its new value is  v 

rules

If  T  modi�es  X , then both  <T,X,v>  and  <COMMIT T>  must be written to disk before  X  is written to

disk

If  <COMMIT T>  is not seen,  T  de�nitely has not written any of its data to disk (no dirty data)

 OUTPUT s are done late (after  COMMIT )

recovery after system crash

procedure: (�) decide each transaction  T  whether completed (same as undo logging); (�) read log

from the beginning, redo all updates of committed transactions

nonquiescent checkpointing procedure: (�) write a  <START CKPT(T1, ..., Tk)>  where  T1, ..., Tk 

are all active transactions; (�) �ush to disk all blocks of committed transactions (dirty blocks), while

continuing normal operation; (�) when all blocks have been written, write  <END CKPT> 

recovery with nonquiescent checkpointing procedure: (�) look for the last  <END CKPT> ; (�) redo all

committed transactions that are listed in and starting after this  <START CKPT ...> 

undo/redo logging

log records � change:  <T,X,u,v> :  T  has updated element  X , its old value was  u , and its new value is  v 

rule

If  T  modi�es  X , then  <T,X,u,v>  must be written to disk before  X  is written to disk

Free to  OUTPUT  early or late
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recovery procedure: (�) redo all committed transaction, top-down; (�) undo all uncommitted transactions,

bottom-up

Normalization

types of anomalies

redundancy: repetition of data

update anomalies: update one item and forget others = inconsistencies

deletion anomalies: delete many items, delete one item, loose other information

insertion anomalies: cannot insert one item without inserting others

good design: (�) start with original db schema ; (�) transform it until we get a good design 

desirable properties of /schema re�nement: minimize redundancy; avoid info loss; preserve

dependencies/constraints; ensure good query performance (can be con�icting)

normal forms: transform  to  in some of normal forms

motivation: recognize a good design ; transform  into ; using  directly causes anomalies

examples: Boyce-Codd or �.�NF (focus), �NF (FD preserving), �NF (all attributes are atomic) normal forms

If  is in a normal form, then  is guaranteed to achieve certain good properties

procedure: (�) take a relation schema; (�) test it against a normalization criterion; (�) if it passes, �ne!

maybe test again with a higher criterion; (�) if it fails, decompose into smaller relations; each of them will

pass the test; each can then be tested with a higher criterion

functional dependencies

de�nition  (  functionally determines ): if two tuples agree on attributes  as , then

they must also agree on attributes  as 

properties: a form of constraint (in schema); �nding them is part of DB design; used heavily in schema

re�nement

checking : (�) erase all other columns; (�) check if the remaining relation is many-one (functional

in math)

creating schema: list all FDs we believe valid; FDs should be valid on all DB instances conforming the

schema

relation keys

key of relation : a set of attributes that functionally determines all attributes of  (certain FDs are true);

none of its subsets determines all attributes of 

superkey: a set of attributes that contains a key; including a key itself

rules for �nding key of relation from: (entity set) the set of attributes which is the key of the entity set;

(many-many) the set of all attribute keys in the relations corresponding to the entity sets

trivial: An FD  is called trivial if the attribute  belongs in the attribute set 

Armstrong’s Axioms on sets of attributes like  (other sets could of di�erent sizes)

basic rules: (re�exivity) ; (augmentation) if  then ; (transitivity) if

 and  then 

additional rules: (union) if  and  then ; (decomposition) if  then 

 and ; (pseudo-transitivity) if  and  then 

closure of FD set  as : all FDs logically implied by 

procedure of inference: (�) ; (�) loop: (�-�) foreach  in  apply re�exivity and augmentation

rules, (�-�) add new FDs to , (�-�) foreach pair of FDs in  apply the transitivity rule, (�-�) add newe

FDs to ; (�) �nish when  does not change any further

closure of attribute set  as : (�) ; (�) loop: if  is in  and  are all in  and  is not

in  then add  to ; (�) �nish when  does not change any further
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R∗ R R∗ R

R∗ R∗
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R R
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A = {A  }  i i=1
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A → a subset of A A → B AC → BC

A → B B → C A → C

X → Y X → Z X → Y Z X → Y Z X →
Y X → Z X → Y Y Z → U XZ → U

S S+ S

S ←+ S f S

S+ S

S+ S+

A A+ A ←+ A B → C S B X C

X C A+ A+
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usage: (test if  a superkey) check if  contains all attributes of ; (check if  holds) check if

 is contained in 

another way to compute FD closure : (�) foreach subset of attributes  in relation : compute ;

(�) foreach subset of attributes  in : output FD 

relational schema/logical design: (conceptual model) ER diagram; (relational model) create tables, specify

FDs, �nd keys; (normalization) use FDs to decompose tables for better design

relation decomposition

in general: decompose  into  and  s.t.  and  is projection of  on  and

 is projection of  on 

lossless (desirable property #�): a decomposition is lossless if we can recover (

,  not larger)

another de�nition of lossless decomposition: decompositions which produce only lossless joins

lossy join: if you decompose a relation schema, then join the parts of an instance via a natural join, you

might get more rows than you started with

FD preserving (desirable property #�): given a relation  and a set of FDs  and decomposition 

, suppose  has a set of FDs ,  has a set of FDs , we say the decomposition is FD preserving

if by enforcing  over  and  over  we can enforce  over 

not FD preserving for : when a relation is decomposed, the  of ends up only in one of the

new relations and the  ends up only in another

BCNF

de�nition: a relation  is in BCNF i�: whenever there is a nontrivial FD  for  then  is a superkey

for 

equivalent de�nition: for every attribute set  in , either  or 

decomposition procedure: (�) �nd a FD that violates the BCNF condition  (heuristics: choose

largest ); (�) decompose  and  to ,  and remaining attributes to  (any �-attribute relation is in

BCNF); (�) continue until no BCNF violations left

properties of BCNF decomposition: removes all redundancy based on FD; is lossless-join; is not always FD

preserving

X X+ R X → Y

Y X+

S+ X R X+

Y X+ X → Y

R(A) R  (B)1 R  (C)2 B ∪ C = A R  1 R B

R  2 R C

R(A,B,C) →
R  (A,B),R  (A,C) →1 2 R (A,B,C)′ R =′ R

R S R →
R  ,R  1 2 R  1 S  1 R  2 S  2

S  1 R  1 S  2 R  2 S R

X → Y X

Y

R A → B R A

R

X R X =+ X X =+ all attributes
A → B

B A B R  1 A R  2


