COMP SCI 564: DBMS

Final, Fall 2022 (Lecture: AnHai Doan; Slide: AnHai Doan, Paris Koutris, R. Ramakrishnan, Evan McCarty)

Ruixuan Tu (ruixuan.tu@wisc.edu), University of Wisconsin-Madison

Relational algebra

- notions
 - no-bag: multiset in SQL, set (no duplicate) in relational algebra
 - schemas: $A = A, B = B, R_1(A), R_2(B)$
 - limitations: e.g., cannot compute/express transitive closure
- 5 basic operators
 - union $R_1 \cup R_2$: all tuples in R_1 or R_2 ; $R_1, R_2, R_1 \cup R_2$ have same schema; (bag) add # occurences
 - set difference/except $R_1 R_2$: all tuples in R_1 and not in R_2 ; $R_1, R_2, R_1 \cup R_2$ have same schema; (bag) subtract # occurrences
 - selection $\sigma_c(R)$: returns all tuples in relation R which satisfy a condition c (=, <, >, and, or, not); output schema same as input schema; (bag) preserve # occurences
 - **projection** $\Pi_A(R)$: return certain columns, eliminates duplicate tuples; input schema R(B); condition $A \subseteq B$; output schema S(A); (bag) preserve # occurences, no duplicate elimination
 - **Cartesian/cross product** $R_1 \times R_2$: each tuple in R_1 with each tuple in R_2 ; input schemas R_1, R_2 ; condition $A \cap B = \emptyset$; output schema S(A, B); rarely used without join; (bag) no duplicate elimination

• relations with named fields

• renaming $\rho_{B_1,\ldots,B_n}(R)$; does not change the relational instance, changes the relational schema only; input schema R(A); output schema $S(B_1,\ldots,B_n)$

• derived operators

- intersection $R_1 \cap R_2$: all tuples both in R_1 and in R_2 ; $R_1, R_2, R_1 \cap R_2$ have same schema; derivation = $R_1 (R_1 R_2)$
- **join** (also, inner join and outer join)
 - theta join $R_1 \bowtie_{\theta} R_2$: a join that involves a predicate (condition θ); input schemas R_1, R_2 ; condition $A \cap B = \emptyset$; output schema S(A, B); derivation $= \sigma_{\theta}(R_1 \times R_2)$
 - natural join $R_1 \bowtie R_2$: combine all pairs of tuples in R_1 and R_2 that agree on the join attributes $A \cap B$; input schemas R_1, R_2 ; output schema $S(C_1, \ldots, C_p)$ where $\{C_1, \ldots, C_p\} = A \cup B$; deviation $\sigma_{\text{agreement on join attributes}}(R_1 \times R_2)$
 - equi-join $R_1 \bowtie_{A=B} R_2$: natural join is a particular case of equi-join (on all the common fields); most frequently used
 - semi-join $R_1 \ltimes R_2$: input schemas R_1, R_2 ; derivation = $\prod_A (R_1 \bowtie R_2)$
 - **division** R_1/R_2 : output contains all values *a* s.t. for every tuple (*b*) in R_2 , tuple (*a*, *b*) is in R_1 ; input schemas $R_1(A, B), R_2(B)$; output schema R(A)
- extended relational algebra
 - group by/aggregate $\gamma_{X, Agg(Y)}(R)$: group by the attributes in X, aggregate the attribute in Y (SUM, COUNT, AVG, MIN, MAX); output schema: X + an extra numerical attribute

- relational algebra experssions, 3 notations
 - sequences of assignment statements: (1) create temporary relation names, (2) renaming can be implied by giving relations a list of attributes; e.g., $R_3 \coloneqq R_1$ JOIN_C R_2 can be written: (1) $R_4 \coloneqq R_1 * R_2$, (2) $R_3 \coloneqq \text{SELECT}_C(R_4)$
 - **expressions with several operators**: interpret in order, or forced order by user-inserted parentheses, from highest to lowest: (1) unary operators (select, project, rename), (2) products and joins, (3) intersection, (4) union and set difference
 - **expression trees** (usually): leaves are operands (either variables standing for relations or particular, constant relations); interior nodes are operators, applied to their child or children

Implementation of operators

- no universally best technique for most operators
- external sorting
 - **motivation** of sorting: data requested in sorted order; first step in bulk loading B+ tree index; eliminating duplicate copies in a collection of records, sort-merge join
 - **2-way sort with 3 buffers**: (Pass 0) read a page, sort it, write it (only 1 buffer page is used); (Pass 1, ...) three buffer page used
 - 2-way external merge sort: each pass we r+w each page in file; N pages in file $\implies \#$ passes = $\lceil \log_2 N \rceil + 1$; total cost = $2N (\lceil \log_2 N \rceil + 1)$; idea: divide and conquer sort subfiles, merge
 - **general external merge sort**: more than 3 buffer pages; to sort a file with *N* pages using *B* buffer pages: (Pass 0): use *B* buffer pages, produce $\left\lceil \frac{N}{B} \right\rceil$ sorted runs of *B* pages each; (Pass 1, ...) merge B - 1 runs by sorting the first page of each sorted subset of pages; # passes = $1 + \left\lceil \log_{B-1} \left\lceil \frac{N}{B} \right\rceil \right\rceil$; total cost = 2N * (# passes)
 - **typical case**: if *B* buffer pages, a file of *M* pages, and M < B * B, then the cost of sort is 4M. (Pass 0) create runs of *B* pages long, costing 2M; (Pass 1) create runs of B * (B 1) pages long: if M < B * B, then we are done, costing 2M
- joins
 - **notion**: *R* is Reserves, *S* is Sailors; *M* pages for *R*, P_R tuples per page, *N* pages for *S*, p_S tuples per page; *B* buffer pages; different hash functions h_1 and h_2 ; cost metric: # I/Os ignoring final output costs
 - nested loop join
 - **tuple-based**: for each tuple t_R in R, for each tuple t_S in S: if $t_{R_i} = t_{S_j}$ then join (t_R, t_S) . I/O cost: $M + P_R * M * N$. B = 2
 - **page-based**: foreach page p_R in R, foreach page p_S in S, foreach tuple t_R in p_R , foreach tuple t_S in p_S : if $t_{R_i} = t_{S_j}$ then join (t_R, t_S) . I/O cost M + M * N, or if S is outer, N + N * M, use whichever smaller. B = 2
 - block: foreach block b_R in R, foreach page p_S in S, foreach tuple t_R in b_R, foreach tuple t_S in p_S: if t_{R_i} == t_{S_j} then join(t_R, t_S). |b_R| = B 2 as 1 page as input buffer for scanning inner S, and 1 page as output buffer. R scanned once, costing M page I/Os; read S for [M/B-2] times. I/O cost M + N * [M/B-2]. I/O cost formula: scan of outer + # outer blocks * scan of inner (# outer blocks = [# pages of outer]).
 - index: for each tuple t_R in R, for each tuple t_S in S where $t_{R_i} = t_{S_j}$: join (t_R, t_S) . If there is an index on the join column of one relation (say S), can make it the inner and exploit the index. I/O cost: $M + ((M * P_R) * \text{cost of finding matching } S \text{ tuples})$. For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. B = 2
 - sort-merge join $R \bowtie_{i=j} S$
 - procesure: sort *R* and *S* on the join column, then scan them to do a merge, and output result tuples

- scan: Advance scan of R until current R-tuple >= current S-tuple, then advance scan of S until current S-tuple >= current R-tuple; do this until current R-tuple = current S-tuple. At this point, all R-tuples with same value in R_i (current R group) and all S tuples with same value in S_j (current S group) match; output $\langle r, s \rangle$ for all pairs of such tuples. Then resume scanning R and S
- general cost: R scanned once; each S group (equivalent) is scanned once per matching R tuple (with buffer hits, or nested loop, difficulty)
- cost if $M \le B^2$, $N \le B^2$: sort 4M + 4N, read in order and match M + N (no duplicate/match within 1 outer page, M * N as NLJ if many duplicates [output size +M + N as upper bound]) by 2 buffer pages, total 5M + 5N
- $\operatorname{cost} \operatorname{if} B = M + N$: I/O cost B
- hash-join
 - procedure: (1) *partition* both relations using h₁ into buckets [1, B 1]: R tuples could only match S tuples in same bucket; (2) *matching* tuples/h₂-partition in each partition of R and the same partition of S by hashing R by h₂ (or using block nested loop join)
 - **observation**: # partitions k < B 1 (1 input buffer), B 2 > |largest partition| (1 input buffer, 1 output buffer). For uniformly sized partitions with maximal $k, k = B 1, \frac{M}{B-1} < B 2$, i.e., $B > \sqrt{M}$. Could build in-memory hashtable to speed up with more memory. If h not uniform, could apply hash-join recursively to fit some partitions which does not fit in memory
 - I/O cost: 3(M + N) (partitioning r+w both relations 2(M + N), matching read both relations M + N)
- general join conditions
 - equalities over join attributes *A*: (Index NL) build index on *A*, or using existing indexes on a subset or an element of *A*. (Sort-Merge and Hash) sort/partition on combination of the columns of *A*
 - inequality conditions: (Index NL) need (clustered) B+ tree index. (Sort-Merge and Hash) not applicable. (Block NL) best method
- other relational operations
 - selection SELECT R.C FROM Reserves R
 - file scan: scan whole table, O(M) I/Os
 - index scan: use indexes on attributes C: (hash index) O(1); (B+ tree index) height + X [unclustered] X = # selected tuples in worst case, [clustered] $X = \left\lceil \frac{\# \text{ selected tuples}}{P_R} \right\rceil$
 - \circ projection SELECT DISTINCT R.C FROM Reserves R , R(A)
 - sorting procedure: (1) modify pass 0 of external sort to eliminate unwanted fields (*M* I/Os for scan, [*M* * ^{*C*}/_{*A*}] pages after projection and I/Os for write); (2) modify merging passes to eliminate duplicates (sorting I/Os calculated by above formula with -1 pass (pass 0 for unwanted) and pages after projection); (3) final scan (I/Os by # pages after projection)
 - hashing procedure: (*partitioning*) read R by 1 input buffer. for each tuple, discard unwanted fields, apply h₁ to choose a partition in [1, B 1]; 2 tuples from different partitions guaranteed distinct. (*duplicate elimination*) for each partition, read and build an in-memory hashtable by h₂ on all fields to remove duplicates. if partition does not fit in buffer memory, apply hash-based projection on the partition recursively
 - set operations
 - intersection and Cartesian/cross product: special cases of join
 - union (distinct)
 - **sorting** procedure: (1) sort both relations (on all attributes); (2) merge sorted relations eliminating duplicates

- hashing procedure: (1) partition R and S by h_1 ; (2) build in-memory hashtable for every partition S_i (3) on that, scan corresponding partition R_i and add tuples if not duplicate
- **set difference/except**: similar to union
- aggregate
 - without groupby: requires scanning the relation
 - **sorting** procedure: (1) sort on group by attributes (if any); (2) scan sorted tuples, computing running aggregate; (3) when the group by attribute changes, output aggregate result; I/O cost=sorting
 - hashing procedure: (1) hash on group by attributes (if any) (hash entry = group attributes + running aggregate); (2) scan tuples, probe hashtable, update hash entry; (3) scan hashtable and output each hash entry; I/O cost=scan relation
 - index procedure
 - without groupby: given B+ tree on aggregate attributes in SELECT or WHERE clauses, do indexonly scan
 - with groupby: given B+ tree on all attributes in SELECT, WHERE, and GROUPBY clauses, do indexonly scan; if GROUPBY attributes form prefix of search key, tuples retrived in GROUPBY order

Query optimization

- query plans
 - **logical query plan**: created by the parser from the input SQL text; expressed as a relational algebra tree; each SQL query has many possible logical plans
 - **physical query plan**: goal is to choose an efficient implementation for each operator in the RA tree; each logical plan has many possible physical plans
 - **transformed**: access path selection for each relation (scan or index); implementation choice for each operator (e.g., nested loop join, hash join); scheduling decisions for operators (pipelined or batch)
- execution
 - **pipeline**: tuples generated by an operator are immediately sent to the parent (used whenever possible)
 - benefits: no operator synchronization issues; no need to buffer tuples between operators; no r+w intermediate data from disk
 - batch/materialize: write the intermediate result before we start the next operator (which read the result)
- **query optimization process**: (1) identifies candidate equivalent relational algebra trees (i.e., logical query plan); (2) for each relational algebra tree, it finds the best annotated version (using any available indexes) (i.e., physical query plan); (3) chooses the best/cheapest overall plan by estimating the I/O cost of each plan
 - **System R optimizer**: *cost estimation* for cost of operations and result sizes, by approximate with statistics, considering CPU + I/O costs; to prune large *plan space*, only consider the space of left-deep plans and avoid cartesian products
- relational algebra tree transformation on physical plan enumeration
 - **pushing down** (execute as early as possible in query plan)
 - selections: always possible to change the order through projections, joins, other selections
 - projections: through selections, joins
 - **reason**: fewer tuples in intermediate steps of plan
 - **note**: unable to use the index of a column after pushing a selection down
 - join reordering by $R \bowtie S \bowtie T \bowtie U$
 - **properties**: (*communitativity*) $R \bowtie S \equiv S \bowtie R$; (*associativity*) $(R \bowtie S) \bowtie T \equiv R \bowtie (S \bowtie T)$; can reorder in any way (exponentially many)
 - left-deep join: $((R \bowtie S) \bowtie T) \bowtie U$; benefit to focus: allow pipeline; n! possible trees
 - right-deep join: $R \bowtie (S \bowtie (T \bowtie U)); n!$ possible trees

- bushy join: $(R \bowtie S) \bowtie (T \bowtie U)$; $\frac{(2n-2)!}{(n-1)!}$ possible trees
- **cost estimation** of query plan
 - must estimate **cost** of each operation in plan tree; depends on input cardinalities; algorithm cost (previously)
 - must also estimate **size** of result for each operation in tree; use information about the input relations; for selections and joins, assume independence of predicates
- system catalog updated periodically (everytime is expensive)
 - **statistics**: # tuples and # pages for each relation; # distinct key values and # pages for each index; index height, low/high key values for each tree index
 - histograms for some values are sometimes stored

Transaction management

- motivation: recovery, durability, concurrency, or in all to avoid inconsistency
- transaction: a sequence of SQL statements that you want to execute as a single atomic unit;
 BEGIN TRANSACTION; {SQL} COMMIT; or START TRANSACTION {SQL} END TRANSACTION, use ROLLBACK for COMMIT to abort
 - without: execute a transaction half way (e.g., app crash); that can leave app in an inconsistent state
- ACID properties: atomic, consistent, isolation, durable
 - **atomic**: all actions in the transaction happen, or none happen. if a transaction crashes half way, then remove its effect
 - **consistent**: a database in a consistent state will remain in a consistent state after the transaction
 - **isolation**: the execution of a transaction is isolated from other (possibly interleaved) transaction. if two users run transactions concurrently, they should not interfere with each other
 - **durable**: once a transaction commits, its effects must persist
- **implementation**: DB ensures ACID by using locks and crash recovery. User App must be structured as executing transactions on a database

Recovery

- types of failures
 - wrong data entry: prevent by having constraints in the database; fix by data cleaning
 - **disk crashes**: prevent by using redundancy (RAID, archive); fix by using archives
 - system failures: most frequent (e.g., power); use recovery by log (as internal state is lost)
- **log**: a file that records every single action of the transaction
 - an append-only file containing log records
 - multiple transactions run concurrently, log records are interleaved
 - after a system crash, use log to: redo/undo some transaction that did not commit
- **elements**: assumes that the database is composed of elements (usually 1 element = 1 block, can be = 1 record or = 1 relation); assumes each transaction r/w some elements
- primitive operations of transactions
 - INPUT(X) : read element X to memory buffer
 - READ(X, t) : copy element X to transaction local variable t
 - WRITE(X, t) : copy transaction local variable t to element X
 - OUTPUT(X) : write element X to disk
- undo logging
 - log records

- START T> : transaction T has begun
- <commit t>: t has committed
- <ABORT T> : T has aborted

• rules

- If T modifies X, then <T,X,v> must be written to disk before X is written to disk
- If T commits, then <COMMIT T> must be written to disk only after all changes by T are written to disk (no need to undo)
- **OUTPUT** s are done *early* (before **COMMIT**)
- recovery after system crash

 - read log from end; cases: (<COMMIT T> / <ABORT T>) mark T as completed; (<T,X,v>) if T not completed then write X=v to disk, else ignore; (<START T>) ignore
 - all undo commands are **idempotent**: if we perform them a second time, no harm is done (e.g., crash during recovery)
 - **stop reading**: until beginning of log file, or (better) use **checkpointing**
 - recovery with nonquiescent checkpointing procedure: (1) look for the last <END CKPT> , undo all uncommitted transactions along the way; (2) stop until the corresponding <START CKPT>
- checkpointing
 - **checkpoint** the database periodically: (1) stop accepting new transactions; (2) wait until all curent transactions complete; (3) flush log to disk; (4) write a log record, flush; (5) resume transactions
 - **nonquiescent checkpointing**: checkpoint while database is operational (not freezing DB)
 - procedure: (1) write a <START CKPT(T1, ..., Tk)> where T1, ..., Tk are all active transactions;
 (2) continue normal operation; (3) when all of T1, ..., Tk have completed, write <END CKPT> (ensures the system did not crash and the checkpoint terminated)

• redo logging

- log records 1 change: <T,X,v> : T has updated element X, and its *new* value is v
- rules
 - If T modifies X, then both <T,X,v> and <COMMIT T> must be written to disk before X is written to disk
 - If **<COMMIT T>** is not seen, **T** definitely has not written any of its data to disk (no dirty data)
 - **OUTPUT** s are done *late* (after **COMMIT**)
- recovery after system crash
 - procedure: (1) decide each transaction T whether completed (same as undo logging); (2) read log from the beginning, redo all updates of *committed* transactions
 - nonquiescent checkpointing procedure: (1) write a <START CKPT(T1, ..., Tk)> where T1, ..., Tk are all active transactions; (2) flush to disk all blocks of committed transactions (dirty blocks), while continuing normal operation; (3) when all blocks have been written, write <END CKPT>
 - recovery with nonquiescent checkpointing procedure: (1) look for the last <END CKPT>; (2) redo all committed transactions that are listed in and starting after this <START CKPT ...>
- undo/redo logging
 - log records 1 change: <T,X,u,v> : T has updated element X, its old value was u, and its new value is v
 - ° rule
 - If T modifies X, then <T,X,u,v> must be written to disk before X is written to disk
 - Free to **OUTPUT** *early* or *late*

• **recovery** procedure: (1) redo all committed transaction, top-down; (2) undo all uncommitted transactions, bottom-up

Normalization

- types of anomalies
 - **redundancy**: repetition of data
 - **update anomalies**: update one item and forget others = inconsistencies
 - deletion anomalies: delete many items, delete one item, loose other information
 - insertion anomalies: cannot insert one item without inserting others
- good design: (1) start with original db schema R; (2) transform it until we get a good design R^*
 - **desirable properties of** *R**/schema refinement: minimize redundancy; avoid info loss; preserve dependencies/constraints; ensure good query performance (can be conflicting)
- **normal forms**: transform R to R^* in some of normal forms
 - **motivation**: recognize a good design R^* ; transform R into R^* ; using R directly causes anomalies
 - examples: Boyce-Codd or 3.5NF (focus), 3NF (FD preserving), 1NF (all attributes are atomic) normal forms
 - If R^* is in a normal form, then R^* is guaranteed to achieve certain good properties
 - **procedure**: (1) take a relation schema; (2) test it against a normalization criterion; (3) if it passes, fine! maybe test again with a higher criterion; (4) if it fails, decompose into smaller relations; each of them will pass the test; each can then be tested with a higher criterion
- functional dependencies
 - **definition** $A \to B$ (A functionally determines B): if two tuples agree on attributes A_1, \ldots, A_n as A, then they must also agree on attributes B_1, \ldots, B_m as B
 - **properties**: a form of constraint (in schema); finding them is part of DB design; used heavily in schema refinement
 - **checking** $A \rightarrow B$: (1) erase all other columns; (2) check if the remaining relation is many-one (*functional* in math)
 - **creating schema**: list all FDs we believe valid; FDs should be valid on *all* DB instances conforming the schema
- relation keys
 - key of relation R: a set of attributes that functionally determines all attributes of R (certain FDs are true); none of its subsets determines all attributes of R
 - **superkey**: a set of attributes that contains a key; including a key itself
 - **rules for finding key of relation** from: (entity set) the set of attributes which is the key of the entity set; (many-many) the set of all attribute keys in the relations corresponding to the entity sets
 - \circ trivial: An FD X
 ightarrow A is called *trivial* if the attribute A belongs in the attribute set X
- Armstrong's Axioms on sets of attributes like $A = \{A_i\}_{i=1}^{i=n}$ (other sets could of different sizes)
 - **basic rules**: (*reflexivity*) $A \to a$ subset of A; (*augmentation*) if $A \to B$ then $AC \to BC$; (*transitivity*) if $A \to B$ and $B \to C$ then $A \to C$
 - **additional rules**: (*union*) if $X \to Y$ and $X \to Z$ then $X \to YZ$; (*decomposition*) if $X \to YZ$ then $X \to Y$ and $X \to Z$; (*pseudo-transitivity*) if $X \to Y$ and $YZ \to U$ then $XZ \to U$
 - \circ closure of FD set S as S^+ : all FDs logically implied by S
 - **procedure** of inference: (1) $S^+ \leftarrow S$; (2) loop: (2-1) foreach f in S apply reflexivity and augmentation rules, (2-2) add new FDs to S^+ , (2-3) foreach pair of FDs in S apply the transitivity rule, (2-4) add newe FDs to S^+ ; (3) finish when S^+ does not change any further
 - **closure of attribute set** A as A^+ : (1) $A^+ \leftarrow A$; (2) loop: if $B \rightarrow C$ is in S and B are all in X and C is not in X then add C to A^+ ; (3) finish when A^+ does not change any further

- **usage**: (test if X a superkey) check if X^+ contains all attributes of R; (check if $X \to Y$ holds) check if Y is contained in X^+
- another way to **compute FD closure** S^+ : (1) foreach subset of attributes X in relation R: compute X^+ ; (2) foreach subset of attributes Y in X^+ : output FD $X \to Y$
- **relational schema/logical design**: (*conceptual model*) ER diagram; (*relational model*) create tables, specify FDs, find keys; (*normalization*) use FDs to *decompose* tables for better design
- relation decomposition
 - in general: decompose R(A) into $R_1(B)$ and $R_2(C)$ s.t. $B \cup C = A$ and R_1 is projection of R on B and R_2 is projection of R on C
 - lossless (desirable property #2): a decomposition is lossless if we can recover $(R(A, B, C) \rightarrow R_1(A, B), R_2(A, C) \rightarrow R'(A, B, C), R' = R$ not larger)
 - another definition of lossless decomposition: decompositions which produce only lossless joins
 - **lossy join**: if you decompose a relation schema, then join the parts of an instance via a natural join, you might get more rows than you started with
 - **FD preserving** (desirable property #3): given a relation R and a set of FDs S and decomposition $R \rightarrow R_1, R_2$, suppose R_1 has a set of FDs S_1, R_2 has a set of FDs S_2 , we say the decomposition is *FD preserving* if by enforcing S_1 over R_1 and S_2 over R_2 we can enforce S over R
 - not FD preserving for X → Y: when a relation is decomposed, the X of ends up only in one of the new relations and the Y ends up only in another
- BCNF
 - **definition**: a relation R is in BCNF iff: whenever there is a nontrivial FD $A \to B$ for R then A is a superkey for R
 - equivalent **definition**: for every attribute set X in R, either $X^+ = X$ or $X^+ =$ all attributes
 - **decomposition** procedure: (1) find a FD that violates the BCNF condition $A \rightarrow B$ (heuristics: choose largest B); (2) decompose A and B to R_1 , A and remaining attributes to R_2 (any 2-attribute relation is in BCNF); (3) continue until no BCNF violations left
 - **properties** of BCNF decomposition: removes all redundancy based on FD; is lossless-join; is not always FD preserving