COMP SCI 564: DBMS

Final, Fall 2022 (Lecture: AnHai Doan; Slide: AnHai Doan, Paris Koutris, R. Ramakrishnan, Evan McCarty)
Ruixuan Tu (ruixuan.tu@wisc.edu), University of Wisconsin-Madison

Relational algebra

- notions
- no-bag: multiset in SQL, set (no duplicate) in relational algebra
- schemas: $A=A, B=B, R_{1}(A), R_{2}(B)$
- limitations: e.g., cannot compute/express transitive closure
- 5 basic operators
- union $R_{1} \cup R_{2}$: all tuples in R_{1} or $R_{2} ; R_{1}, R_{2}, R_{1} \cup R_{2}$ have same schema; (bag) add \# occurences
- set difference/except $R_{1}-R_{2}$: all tuples in R_{1} and not in $R_{2} ; R_{1}, R_{2}, R_{1} \cup R_{2}$ have same schema; (bag) subtract \# occurences
- selection $\sigma_{c}(R)$: returns all tuples in relation R which satisfy a condition $c(=,<,>$, and, or, not); output schema same as input schema; (bag) preserve \# occurences
- projection $\Pi_{A}(R)$: return certain columns, eliminates duplicate tuples; input schema $R(B)$; condition $A \subseteq B$; output schema $S(A)$; (bag) preserve \# occurences, no duplicate elimination
- Cartesian/cross product $R_{1} \times R_{2}$: each tuple in R_{1} with each tuple in R_{2}; input schemas R_{1}, R_{2}; condition $A \cap B=\emptyset$; output schema $S(A, B)$; rarely used without join; (bag) no duplicate elimination
- relations with named fields
- renaming $\rho_{B_{1}, \ldots, B_{n}}(R)$; does not change the relational instance, changes the relational schema only; input schema $R(A)$; output schema $S\left(B_{1}, \ldots, B_{n}\right)$
- derived operators
- intersection $R_{1} \cap R_{2}$: all tuples both in R_{1} and in $R_{2} ; R_{1}, R_{2}, R_{1} \cap R_{2}$ have same schema; derivation $=$ $R_{1}-\left(R_{1}-R_{2}\right)$
- join (also, inner join and outer join)
- theta join $R_{1} \bowtie_{\theta} R_{2}$: a join that involves a predicate (condition θ); input schemas R_{1}, R_{2}; condition $A \cap B=\emptyset$; output schema $S(A, B)$; derivation $=\sigma_{\theta}\left(R_{1} \times R_{2}\right)$
- natural join $R_{1} \bowtie R_{2}$: combine all pairs of tuples in R_{1} and R_{2} that agree on the join attributes $A \cap B$; input schemas R_{1}, R_{2}; output schema $S\left(C_{1}, \ldots, C_{p}\right)$ where $\left\{C_{1}, \ldots, C_{p}\right\}=A \cup B$; deviation $\sigma_{\text {agreement on join attributes }}\left(R_{1} \times R_{2}\right)$
- equi-join $R_{1} \bowtie_{A=B} R_{2}$: natural join is a particular case of equi-join (on all the common fields); most frequently used
- semi-join $R_{1} \ltimes R_{2}$: input schemas R_{1}, R_{2}; derivation $=\Pi_{A}\left(R_{1} \bowtie R_{2}\right)$
- division R_{1} / R_{2} : output contains all values a s.t. for every tuple (b) in R_{2}, tuple (a, b) is in R_{1}; input schemas $R_{1}(A, B), R_{2}(B)$; output schema $R(A)$
- extended relational algebra
- group by/aggregate $\gamma_{X, \operatorname{Agg}(Y)}(R)$: group by the attributes in X, aggregate the attribute in Y (SUM, COUNT, AVG, MIN, MAX); output schema: $X+$ an extra numerical attribute
- relational algebra experssions, 3 notations
- sequences of assignment statements: (1) create temporary relation names, (2) renaming can be implied by giving relations a list of attributes; e.g., $R_{3}:=R_{1} \mathrm{JOIN}_{C} R_{2}$ can be written: (1) $R_{4}:=R_{1} * R_{2}$, (2) $R_{3}:=\operatorname{SELECT}_{C}\left(R_{4}\right)$
- expressions with several operators: interpret in order, or forced order by user-inserted parentheses, from highest to lowest: (1) unary operators (select, project, rename), (2) products and joins, (3) intersection, (4) union and set difference
- expression trees (usually): leaves are operands (either variables standing for relations or particular, constant relations); interior nodes are operators, applied to their child or children

Implementation of operators

- no universally best technique for most operators
- external sorting
- motivation of sorting: data requested in sorted order; first step in bulk loading B+ tree index; eliminating duplicate copies in a collection of records, sort-merge join
- 2-way sort with 3 buffers: (Pass 0) read a page, sort it, write it (only 1 buffer page is used); (Pass $1, \ldots$. .) three buffer page used
- 2-way external merge sort: each pass we r+w each page in file; N pages in file $\Longrightarrow \#$ passes $=$ $\left\lceil\log _{2} N\right\rceil+1$; total cost $=2 N\left(\left\lceil\log _{2} N\right\rceil+1\right)$; idea: divide and conquer - sort subfiles, merge
- general external merge sort: more than 3 buffer pages; to sort a file with N pages using B buffer pages: (Pass 0): use B buffer pages, produce $\left\lceil\frac{N}{B}\right\rceil$ sorted runs of B pages each; (Pass $1, \ldots$) merge $B-1$ runs by sorting the first page of each sorted subset of pages; $\#$ passes $=1+\left\lceil\log _{B-1}\left\lceil\frac{N}{B}\right\rceil\right\rceil$; total $\operatorname{cost}=2 N *$ (\# passes)
- typical case: if B buffer pages, a file of M pages, and $M<B * B$, then the cost of sort is $4 M$. (Pass 0) create runs of B pages long, costing $2 M$; (Pass 1) create runs of $B *(B-1)$ pages long: if $M<B * B$, then we are done, costing $2 M$
- joins
- notion: R is Reserves, S is Sailors; M pages for R, P_{R} tuples per page, N pages for S, p_{S} tuples per page; B buffer pages; different hash functions h_{1} and h_{2}; cost metric: \# I/Os ignoring final output costs
- nested loop join
- tuple-based: foreach tuple t_{R} in R, foreach tuple t_{S} in S : if $t_{R_{i}}=t_{S_{j}}$ then join $\left(t_{R}, t_{S}\right)$. I/O cost: $M+$ $P_{R} * M * N . B=2$
- page-based: foreach page p_{R} in R, foreach page p_{S} in S, foreach tuple t_{R} in p_{R}, foreach tuple t_{S} in p_{S} : if $t_{R_{i}}==t_{S_{j}}$ then join $\left(t_{R}, t_{S}\right)$. I/O cost $M+M * N$, or if S is outer, $N+N * M$, use whichever smaller. $B=2$
- block: foreach block b_{R} in R, foreach page p_{S} in S, foreach tuple t_{R} in b_{R}, foreach tuple t_{S} in p_{S} : if $t_{R_{i}}$ $==t_{S_{j}}$ then join $\left(t_{R}, t_{S}\right)$. $\left|b_{R}\right|=B-2$ as 1 page as input buffer for scanning inner S, and 1 page as output buffer. R scanned once, costing M page I/Os; read S for $\left\lceil\frac{M}{B-2}\right\rceil$ times. I/O cost $M+N *\left\lceil\frac{M}{B-2}\right\rceil$. I/O cost formula: scan of outer $+\#$ outer blocks * scan of inner ($\#$ outer blocks $=\left\lceil\frac{\# \text { pages of outer }}{\text { blocksize }}\right\rceil$)
- index: foreach tuple t_{R} in R, foreach tuple t_{S} in S where $t_{R_{i}}==t_{S_{j}}$: join $\left(t_{R}, t_{S}\right)$. If there is an index on the join column of one relation (say S), can make it the inner and exploit the index. I/O cost: $M+$ $\left(\left(M * P_{R}\right) *\right.$ cost of finding matching S tuples $)$. For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. $B=2$
- sort-merge join $R \bowtie_{i=j} S$
- procesure: sort R and S on the join column, then scan them to do a merge, and output result tuples

DBMS

- scan: Advance scan of R until current R-tuple >= current S-tuple, then advance scan of S until current S-tuple >= current R-tuple; do this until current R-tuple = current S-tuple. At this point, all R-tuples with same value in R_{i} (current R group) and all S tuples with same value in S_{j} (current S group) match; output $\langle r, s\rangle$ for all pairs of such tuples. Then resume scanning R and S
- general cost: R scanned once; each S group (equivalent) is scanned once per matching R tuple (with buffer hits, or nested loop, difficulty)
- cost if $M \leq B^{2}, N \leq B^{2}$: sort $4 M+4 N$, read in order and match $M+N$ (no duplicate/match within 1 outer page, $M * N$ as NLJ if many duplicates [output size $+M+N$ as upper bound]) by 2 buffer pages, total $5 M+5 N$
- cost if $B=M+N$: I/O cost B

- hash-join

- procedure: (1) partition both relations using h_{1} into buckets $[1, B-1]$: R tuples could only match S tuples in same bucket; (2) matching tuples/ h_{2}-partition in each partition of R and the same partition of S by hashing R by h_{2} (or using block nested loop join)
- observation: \# partitions $k<B-1$ (1 input buffer), $B-2>\mid$ largest partition \mid (1 input buffer, 1 output buffer). For uniformly sized partitions with maximal $k, k=B-1, \frac{M}{B-1}<B-2$, i.e., $B>$ \sqrt{M}. Could build in-memory hashtable to speed up with more memory. If h not uniform, could apply hash-join recursively to fit some partitions which does not fit in memory
- I/O cost: $3(M+N)$ (partitioning r+w both relations $2(M+N)$, matching read both relations $M+$ N)

- general join conditions

- equalities over join attributes A : (Index NL) build index on A, or using existing indexes on a subset or an element of A. (Sort-Merge and Hash) sort/partition on combination of the columns of A
- inequality conditions: (Index NL) need (clustered) B+ tree index. (Sort-Merge and Hash) not applicable. (Block NL) best method
- other relational operations

- selection SELECT R.C FROM Reserves R

- file scan: scan whole table, $O(M)$ I/Os
- index scan: use indexes on attributes C : (hash index) $O(1)$; (B+ tree index) height $+X$ [unclustered] $X=\#$ selected tuples in worst case, [clustered] $X=\left\lceil\frac{\# \text { selected tuples }}{P_{R}}\right\rceil$
- projection SELECT DISTINCT R.C FROM Reserves $\mathrm{R}, R(A)$
- sorting procedure: (1) modify pass 0 of external sort to eliminate unwanted fields (M I/Os for scan, $\left\lceil M * \frac{C}{A}\right\rceil$ pages after projection and I/Os for write); (2) modify merging passes to eliminate duplicates (sorting I/Os calculated by above formula with -1 pass (pass 0 for unwanted) and pages after projection); (3) final scan (I/Os by \# pages after projection)
- hashing procedure: (partitioning) read R by 1 input buffer. for each tuple, discard unwanted fields, apply h_{1} to choose a partition in $[1, B-1] ; 2$ tuples from different partitions guaranteed distinct. (duplicate elimination) for each partition, read and build an in-memory hashtable by h_{2} on all fields to remove duplicates. if partition does not fit in buffer memory, apply hash-based projection on the partition recursively

- set operations

- intersection and Cartesian/cross product: special cases of join
- union (distinct)
- sorting procedure: (1) sort both relations (on all attributes); (2) merge sorted relations eliminating duplicates
- hashing procedure: (1) partition R and S by h_{1}; (2) build in-memory hashtable for every partition S_{i} (3) on that, scan corresponding partition R_{i} and add tuples if not duplicate
- set difference/except: similar to union
- aggregate
- without groupby: requires scanning the relation
- sorting procedure: (1) sort on group by attributes (if any); (2) scan sorted tuples, computing running aggregate; (3) when the group by attribute changes, output aggregate result; I/O cost=sorting
- hashing procedure: (1) hash on group by attributes (if any) (hash entry = group attributes + running aggregate); (2) scan tuples, probe hashtable, update hash entry; (3) scan hashtable and output each hash entry; I/O cost=scan relation
- index procedure
- without groupby: given B+ tree on aggregate attributes in SELECT or WHERE clauses, do indexonly scan
- with groupby: given B+ tree on all attributes in SELECT, WHERE, and GROUPBY clauses, do indexonly scan; if GROUPBY attributes form prefix of search key, tuples retrived in GROUPBY order

Query optimization

- query plans
- logical query plan: created by the parser from the input SQL text; expressed as a relational algebra tree; each SQL query has many possible logical plans
- physical query plan: goal is to choose an efficient implementation for each operator in the RA tree; each logical plan has many possible physical plans
- transformed: access path selection for each relation (scan or index); implementation choice for each operator (e.g., nested loop join, hash join); scheduling decisions for operators (pipelined or batch)
- execution
- pipeline: tuples generated by an operator are immediately sent to the parent (used whenever possible)
- benefits: no operator synchronization issues; no need to buffer tuples between operators; no r+w intermediate data from disk
- batch/materialize: write the intermediate result before we start the next operator (which read the result)
- query optimization process: (1) identifies candidate equivalent relational algebra trees (i.e., logical query plan); (2) for each relational algebra tree, it finds the best annotated version (using any available indexes) (i.e., physical query plan); (3) chooses the best/cheapest overall plan by estimating the I/O cost of each plan
- System R optimizer: cost estimation for cost of operations and result sizes, by approximate with statistics, considering CPU + I/O costs; to prune large plan space, only consider the space of left-deep plans and avoid cartesian products
- relational algebra tree transformation on physical plan enumeration
- pushing down (execute as early as possible in query plan)
- selections: always possible to change the order through projections, joins, other selections
- projections: through selections, joins
- reason: fewer tuples in intermediate steps of plan
- note: unable to use the index of a column after pushing a selection down
- join reordering by $R \bowtie S \bowtie T \bowtie U$
- properties: (communitativity) $R \bowtie S \equiv S \bowtie R$; (associativity) $(R \bowtie S) \bowtie T \equiv R \bowtie(S \bowtie T)$; can reorder in any way (exponentially many)
- left-deep join: $((R \bowtie S) \bowtie T) \bowtie U$; benefit to focus: allow pipeline; n ! possible trees
- right-deep join: $R \bowtie(S \bowtie(T \bowtie U))$; n ! possible trees
- bushy join: $(R \bowtie S) \bowtie(T \bowtie U) ; \frac{(2 n-2)!}{(n-1)!}$ possible trees
- cost estimation of query plan
- must estimate cost of each operation in plan tree; depends on input cardinalities; algorithm cost (previously)
- must also estimate size of result for each operation in tree; use information about the input relations; for selections and joins, assume independence of predicates
- system catalog updated periodically (everytime is expensive)
- statistics: \# tuples and \# pages for each relation; \# distinct key values and \# pages for each index; index height, low/high key values for each tree index
- histograms for some values are sometimes stored

Transaction management

- motivation: recovery, durability, concurrency, or in all to avoid inconsistency
- transaction: a sequence of SQL statements that you want to execute as a single atomic unit;

BEGIN TRANSACTION; \{SQL\} COMMIT; or START TRANSACTION \{SQL\} END TRANSACTION, Use ROLLBACK for COMMIT to abort

- without: execute a transaction half way (e.g., app crash); that can leave app in an inconsistent state
- ACID properties: atomic, consistent, isolation, durable
- atomic: all actions in the transaction happen, or none happen. if a transaction crashes half way, then remove its effect
- consistent: a database in a consistent state will remain in a consistent state after the transaction
- isolation: the execution of a transaction is isolated from other (possibly interleaved) transaction. if two users run transactions concurrently, they should not interfere with each other
- durable: once a transaction commits, its effects must persist
- implementation: DB ensures ACID by using locks and crash recovery. User App must be structured as executing transactions on a database

Recovery

- types of failures
- wrong data entry: prevent by having constraints in the database; fix by data cleaning
- disk crashes: prevent by using redundancy (RAID, archive); fix by using archives
- system failures: most frequent (e.g., power); use recovery by log (as internal state is lost)
- log: a file that records every single action of the transaction
- an append-only file containing log records
- multiple transactions run concurrently, log records are interleaved
- after a system crash, use log to: redo/undo some transaction that did not commit
- elements: assumes that the database is composed of elements (usually 1 element =1 block, can be = 1 record or $=1$ relation); assumes each transaction r / w some elements
- primitive operations of transactions
- INPUT(X) : read element X to memory buffer
- $\operatorname{READ}(X, t)$: copy element X to transaction local variable t
- WRITE (X, t) : copy transaction local variable t to element X
- OUTPUT(X) : write element X to disk
- undo logging
- log records
- <START T> : transaction T has begun
- <COMMIT T> : T has committed
- <ABORT T> : T has aborted
- <T, X, v>: T has updated element X , and its old value was v
- rules
- If T modifies X, then $<T, X, v>$ must be written to disk before X is written to disk
- If T commits, then <COMMIT T> must be written to disk only after all changes by T are written to disk (no need to undo)
- OUTPUT s are done early (before COMMIT)
- recovery after system crash
- procedure: (1) decide each transaction T whether completed: (complete) <START T> ... <COMMIT T> , <START T> ... <ABORT T> ; (incomplete) <START T> (2) undo all modifications by incompleted transactions
- read log from end; cases: (<COMMIT T> / <ABORT T>) mark T as completed; ($<\mathrm{T}, \mathrm{X}, \mathrm{v}\rangle$) if T not completed then write $\mathrm{X}=\mathrm{v}$ to disk, else ignore; (<START T>) ignore
- all undo commands are idempotent: if we perform them a second time, no harm is done (e.g., crash during recovery)
- stop reading: until beginning of log file, or (better) use checkpointing
- recovery with nonquiescent checkpointing procedure: (1) look for the last <END CKPT>, undo all uncommitted transactions along the way; (2) stop until the corresponding <START CKPT>

- checkpointing

- checkpoint the database periodically: (1) stop accepting new transactions; (2) wait until all curent transactions complete; (3) flush log to disk; (4) write a log record, flush; (5) resume transactions
- nonquiescent checkpointing: checkpoint while database is operational (not freezing DB)
- procedure: (1) write a <START CKPT(T1, ..., Tk)> where T1, Tk are all active transactions; (2) continue normal operation; (3) when all of T1, ..., Tk have completed, write <END CKPT> (ensures the system did not crash and the checkpoint terminated)
- redo logging
- \log records 1 change: $\langle T, X, v\rangle$: T has updated element X, and its new value is v
- rules
- If T modifies X, then both $<T, X, v>$ and <COMMIT $T>$ must be written to disk before X is written to disk
- If <COMMIT T> is not seen, T definitely has not written any of its data to disk (no dirty data)
- OUTPUT s are done late (after COMMIT)
- recovery after system crash
- procedure: (1) decide each transaction T whether completed (same as undo logging); (2) read log from the beginning, redo all updates of committed transactions
- nonquiescent checkpointing procedure: (1) write a <START CKPT(T1, ..., Tk)> where T1, ..., Tk are all active transactions; (2) flush to disk all blocks of committed transactions (dirty blocks), while continuing normal operation; (3) when all blocks have been written, write <END CKPT>
- recovery with nonquiescent checkpointing procedure: (1) look for the last <END CKPT> ; (2) redo all committed transactions that are listed in and starting after this <START CKPT ...>

- undo/redo logging

- \log records 1 change: $\langle T, X, u, v\rangle$: T has updated element X, its old value was u, and its new value is v - rule
- If T modifies X, then $\langle T, X, u, v>$ must be written to disk before X is written to disk
- Free to OUTPUT early or late
- recovery procedure: (1) redo all committed transaction, top-down; (2) undo all uncommitted transactions, bottom-up

Normalization

- types of anomalies
- redundancy: repetition of data
- update anomalies: update one item and forget others = inconsistencies
- deletion anomalies: delete many items, delete one item, loose other information
- insertion anomalies: cannot insert one item without inserting others
- good design: (1) start with original db schema R; (2) transform it until we get a good design R^{*}
- desirable properties of $R^{*} /$ schema refinement: minimize redundancy; avoid info loss; preserve dependencies/constraints; ensure good query performance (can be conflicting)
- normal forms: transform R to R^{*} in some of normal forms
- motivation: recognize a good design R^{*}; transform R into R^{*}; using R directly causes anomalies
- examples: Boyce-Codd or 3.5NF (focus), 3NF (FD preserving), 1NF (all attributes are atomic) normal forms
- If R^{*} is in a normal form, then R^{*} is guaranteed to achieve certain good properties
- procedure: (1) take a relation schema; (2) test it against a normalization criterion; (3) if it passes, fine! maybe test again with a higher criterion; (4) if it fails, decompose into smaller relations; each of them will pass the test; each can then be tested with a higher criterion
- functional dependencies
- definition $A \rightarrow B$ (A functionally determines B): if two tuples agree on attributes A_{1}, \ldots, A_{n} as A, then they must also agree on attributes B_{1}, \ldots, B_{m} as B
- properties: a form of constraint (in schema); finding them is part of $D B$ design; used heavily in schema refinement
- checking $A \rightarrow B$: (1) erase all other columns; (2) check if the remaining relation is many-one (functional in math)
- creating schema: list all FDs we believe valid; FDs should be valid on all DB instances conforming the schema
- relation keys
- key of relation R : a set of attributes that functionally determines all attributes of R (certain FDs are true); none of its subsets determines all attributes of R
- superkey: a set of attributes that contains a key; including a key itself
- rules for finding key of relation from: (entity set) the set of attributes which is the key of the entity set; (many-many) the set of all attribute keys in the relations corresponding to the entity sets
- trivial: An FD $X \rightarrow A$ is called trivial if the attribute A belongs in the attribute set X
- Armstrong's Axioms on sets of attributes like $A=\left\{A_{i}\right\}_{i=1}^{i=n}$ (other sets could of different sizes)
- basic rules: (reflexivity) $A \rightarrow$ a subset of A; (augmentation) if $A \rightarrow B$ then $A C \rightarrow B C$; (transitivity) if $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$
- additional rules: (union) if $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow Y Z$; (decomposition) if $X \rightarrow Y Z$ then $X \rightarrow$ Y and $X \rightarrow Z$; (pseudo-transitivity) if $X \rightarrow Y$ and $Y Z \rightarrow U$ then $X Z \rightarrow U$
- closure of FD set S as S^{+}: all FDs logically implied by S
- procedure of inference: (1) $S^{+} \leftarrow S$; (2) loop: (2-1) foreach f in S apply reflexivity and augmentation rules, (2-2) add new FDs to S^{+}, (2-3) foreach pair of FDs in S apply the transitivity rule, (2-4) add newe FDs to S^{+}; (3) finish when S^{+}does not change any further
- closure of attribute set A as A^{+}: (1) $A^{+} \leftarrow A$; (2) loop: if $B \rightarrow C$ is in S and B are all in X and C is not in X then add C to A^{+}; (3) finish when A^{+}does not change any further

DBMS

- usage: (test if X a superkey) check if X^{+}contains all attributes of R; (check if $X \rightarrow Y$ holds) check if Y is contained in X^{+}
- another way to compute FD closure S^{+}: (1) foreach subset of attributes X in relation R : compute X^{+}; (2) foreach subset of attributes Y in X^{+}: output FD $X \rightarrow Y$
- relational schema/logical design: (conceptual model) ER diagram; (relational model) create tables, specify FDs, find keys; (normalization) use FDs to decompose tables for better design
- relation decomposition
- in general: decompose $R(A)$ into $R_{1}(B)$ and $R_{2}(C)$ s.t. $B \cup C=A$ and R_{1} is projection of R on B and R_{2} is projection of R on C
- lossless (desirable property \#2): a decomposition is lossless if we can recover $(R(A, B, C) \rightarrow$ $R_{1}(A, B), R_{2}(A, C) \rightarrow R^{\prime}(A, B, C), R^{\prime}=R$ not larger $)$
- another definition of lossless decomposition: decompositions which produce only lossless joins
- lossy join: if you decompose a relation schema, then join the parts of an instance via a natural join, you might get more rows than you started with
- FD preserving (desirable property \#3): given a relation R and a set of FDs S and decomposition $R \rightarrow$ R_{1}, R_{2}, suppose R_{1} has a set of FDs S_{1}, R_{2} has a set of FDs S_{2}, we say the decomposition is FD preserving if by enforcing S_{1} over R_{1} and S_{2} over R_{2} we can enforce S over R
- not FD preserving for $X \rightarrow Y$: when a relation is decomposed, the X of ends up only in one of the new relations and the Y ends up only in another
- BCNF
- definition: a relation R is in BCNF iff: whenever there is a nontrivial FD $A \rightarrow B$ for R then A is a superkey for R
- equivalent definition: for every attribute set X in R, either $X^{+}=X$ or $X^{+}=$all attributes
- decomposition procedure: (1) find a FD that violates the BCNF condition $A \rightarrow B$ (heuristics: choose largest B); (2) decompose A and B to R_{1}, A and remaining attributes to R_{2} (any 2-attribute relation is in BCNF); (3) continue until no BCNF violations left
- properties of BCNF decomposition: removes all redundancy based on FD; is lossless-join; is not always FD preserving

