
CS 577: Introduction to Algorithms Fall 2022

Homework 1

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

This homework covers the divide and conquer paradigm. Problem 3 must be submitted for

grading by 2:29pm on 9/20. Please refer to the homework guidelines on Canvas for detailed

instructions.

Warm-up problems

1. Consider the problem of powering an integer:

Input: (a, b) with a, b 2 Z and b � 1

Output: a
b
, which we define as a

b .
= a · a · · · · · a| {z }

b times

, where “·” denotes multiplication.

Design an algorithm for this problem that uses at most O(log b) multiplications.

2. A Toeplitz matrix is a matrix A in which the value of the (i, j)th entry Aij only depends on

the value of i� j.

Design an algorithm that computes the product Ax of a Toeplitz matrix A 2 Rn⇥n
with a

vector x 2 Rn
using O(n log n) elementary operations.

Regular problems

3. [Graded] You are given a perfect binary tree T with n = 2
d
leaves, where each leaf contains

an integer value. Reading the leaf values from left to right yields a sequence of integers. The

question is how small we can make the number of inversions in that sequence by applying

any number of operations of the following type: Select an internal vertex and swap the two

child subtrees. Data associated to a vertex in a subtree follow the vertex in the swap.

For example, if the sequence of leaf values is (4, 2, 1, 3), then a swap at the root followed by

a swap at the right child of the root turns the sequence into (1, 3, 2, 4), which has only one

inversion. See the figure below. It is impossible to do better, so the answer for this particular

example is 1.

4 2 1 3

)
1 3 4 2

)
1 3 2 4

Design an O(n log n) algorithm for this problem.

4. Consider the following computational problem:

Input: Array A[1, . . . , n] of positive integers.

Output: Array C[1, . . . , n] where C[i] is the number of j 2 {1, . . . , i� 1} with A[j] � A[i].

For example, if A = [8, 12, 10, 9, 10, 12, 7] then C = [0, 0, 1, 2, 2, 1, 6].

Design an O(n log n) algorithm for this problem.
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5. You are given a string T [1 . . . n] over a finite alphabet A, where A does not contain the symbol

*, and a string P [1 . . .m] of length m  n over the alphabet A [ {⇤}. Your goal is to find

all the occurrences of P in T , where the symbol * acts as a wildcard, i.e., it matches every

symbol in A.

For example, for T = (a, a, b, a, b, a, a) and P = (⇤, a, b), there are two occurrences, namely

T [1 . . . 3] = (a, a, b) and T [3 . . . 5] = (b, a, b).

Design an algorithm that outputs the start positions of all occurrences of P in T and uses

O(n log n) elementary operations.

In the above example, the output would be (1, 3).

Challenge problem

The following is one of the nicest introductory algorithm problems I know. Give it a try!

6. You are given n coins, at least one of which is bad. All the good coins weigh the same, and

all the bad coins weigh the same. The bad coins are lighter than the good coins.

Design an algorithm that makes O((log n)
2
) weighings on a balance to find the exact number

of bad coins. Each weighing tells you whether the total weight of the coins on the left side of

the balance is smaller than, equal to, or larger than the total weight of the coins on the right

side.

Programming problem

7. SPOJ problem Insertion Sort (problem code CODESPTB).
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CS 577: Introduction to Algorithms Fall 2022

Homework 1 Solutions to Warm-up Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 1

Consider the problem of powering an integer:

Input: (a, b) with a, b 2 Z and b � 1

Output: a
b, which we define as ab

.
= a · a · · · · · a| {z }

b times

, where “·” denotes multiplication.

Design an algorithm for this problem that uses at most O(log b) multiplications.

We first consider the case where b is a power of two. The key idea is to treat the expression

a · a · · · · · a| {z }
b times

like an array to be divided into halves. We can rewrite it as

(a · a · · · · · a| {z }
b/2 times

) · (a · a · · · · · a| {z }
b/2 times

),

and observe that the factors are equal. Because they are equal, we can compute both of them with
only one recursive call. Since b/2 remains a power of two, this is a complete algorithm for that
case.

For the general case, b is an arbitrary positive integer. Still we can use a similar decomposition
into halves:

a
b = (a · a · · · · · a| {z }

bb/2c times

) · (a · a · · · · · a| {z }
db/2e times

).

In this case, the second part is identical to the first part up to a single factor of a. The extra factor
is present if and only if b is odd. So we can recursively compute the first part, square it, and then,
when b is odd, multiply in one more factor of a. This gives us Algorithm 1:

It remains to prove that Algorithm 1 is correct, and to analyze its running time. Correctness
is formally argued by induction, and we provide some of the details. It is easy to see that the
algorithm is correct for b = 1, since a

b = a. For b > 1, we consider two cases:

1. b is even. In this case, ab = a
bb/2c · abb/2c.

2. b is odd. In this case, ab = a
bb/2c · abb/2c · a.

In both cases, substituting c = a
bb/2c shows that the algorithm returns the correct value.

As for the running time, we use the recursion tree method. Each invocation of Fast-Power has
at most one recursive call, so the shape of the recursion tree is a line. When moving one level down
the tree, the ‘b’ argument is halved (rounding down). It becomes 1 after blog bc halvings(essentially
by the definition of logarithm). As a result, the depth of the recursion tree is at most blog bc. Each
node in the recursion tree does at most two (hence O(1)-many) multiplications. It follows that
there are at most O(1) · blog bc = O(log b) multiplications in any invocation of Fast-Power.

1

Algorithm 1

Input: a, b 2 Z, b � 1
Output: a

b

1: procedure Fast-Power(a, b)
2: if b = 1 then

3: return a

4: else

5: c Fast-Power(a, bb/2c)
6: if b is even then

7: return c · c
8: else

9: return c · c · a
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Problem 2

A Toeplitz matrix is a matrix A in which the value of the (i, j)th entry Aij only depends on
the value of i� j.

Design an algorithm that computes the product Ax of a Toeplitz matrix A 2 Rn⇥n with a
vector x 2 Rn using O(n log n) elementary operations.

Let’s consider what the product of a Toeplitz matrix and a vector looks like. An n⇥n Toeplitz
matrix has 2n� 1 distinct values, one for each diagonal of the matrix. Call our Toeplitz matrix T .
The value for entry (i, j) is ti�j . That is, T looks like this:

2

666664

t0 t�1 · · · t�n+2 t�n+1

t1 t0 · · · t�n+3 t�n+2
...

. . .
. . .

. . .

tn�2 tn�3 · · · t0 t�1

tn�1 tn�2 · · · t1 t0

3

777775

We want to multiply T by an n-vector x, with values x0, x1, · · · , xn�1. The product is then
given by the n-dimensional vector

2

6664

t0 · x0 + t�1 · x1 + · · ·+ t�n+1 · xn�1

t1 · x0 + t0 · x1 + · · ·+ t�n+2 · xn�1
...

tn�1 · x0 + tn�2 · x1 + · · ·+ t0 · xn�1

3

7775

To solve this problem, we construct two polynomials – one from T and one from x – such that
by looking at the product of these polynomials we can easily find the entries in the vector Tx.

We construct the first polynomial, of degree 2n� 1, from the values of T :

T (z) = t�n+1 + t�n+2z + t�n+3z
2 + · · ·+ t0z

n�1 + t1z
n + · · ·+ tn�2z

2n�3 + tn�1z
2n�2

The other polynomial, of degree n� 1, we get from the values of x:

x(z) = x0 + x1z + x2z
2 + · · ·+ xn�1z

n�1

We claim that every entry of the vector Tx is the coe�cient of a term in the product of these two
polynomials. In particular, the 0-th entry of Tx is the coe�cient of the term of degree n � 1 in
T (z) · x(z), the “first” entry of Tx is the coe�cient of the term of degree n, and, in general, the
i-th entry of Tx (for 0  i  n� 1) is the coe�cient of the term in T (z) · x(z) of degree i+ n� 1.
Indeed, the coe�cient for this term is

Pn�1
j=0 xjti�j , which is precisely the i-th entry of the product

vector.
We now use the fact that multiplication of polynomials of degree at most d can be done in time

O(d log d) in the standard coe�cient representation, which allows us to compute the product of
T (z) and x(z) in time O(n log n) since they have degree 2n� 2 and n� 1, respectively. All that is
left then is to read o↵ the coe�cients from the result, which takes linear time, so the total running
time is O(n log n).
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CS 577: Introduction to Algorithms Fall 2022

Homework 1 Solutions to Regular Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 3

You are given a perfect binary tree T with n = 2d leaves, where each leaf contains an integer
value. Reading the leaf values from left to right yields a sequence of integers. The question
is how small we can make the number of inversions in that sequence by applying any number
of operations of the following type: Select an internal vertex and swap the two child subtrees.
Data associated to a vertex in a subtree follow the vertex in the swap.

Design an O(n log n) algorithm for this problem.

We can equivalently think of the input as the array A of leaf values, and the objective as
applying some among a restricted family of permutations to A so as to minimize the number of
inversions in A. The inversions in A can be broken into three types:

(i) inversions within the left half of A,

(ii) inversions within the right half of A, and

(iii) inversions that cross the boundary between the two halves.

Swap operations on nodes of the left subtree of T only a↵ect (i). Similarly, swap operations on the
right subtree of T only a↵ect (ii). A swap on the root of T only a↵ects (iii). This means that in
order to minimize the total count of inversions in T , we can independently minimize the counts of
(i), (ii), and (iii).

Minimizing the counts of (i) and (ii) corresponds to simpler instances of the given problem,
namely for the left subtree of T and the right subtree of T , respectively; thus we can find those
quantities by recursion.

Minimizing (iii) is where the real work happens. Given the recursion into (i) and (ii), we can
a↵ord O(n) work to compute (iii) and still get an O(n log n) running time.

Recall the procedure Count-Cross from class. It takes two sorted arrays as input, and, in
linear time, outputs the number of inversions in the concatenation of the first and the second array.
Thus, if L and R are sorted copies of the left and right halves of A, then we can compute the
minimum value of (c) as the minimum of Count-Cross(L,R) and Count-Cross(R,L). So it
su�ces to get our hands on L and R.

To do that, we strengthen the specification of our algorithm. In addition to computing the
minimum number of inversions, we require that it return a sorted copy of A. Thus, when we
recurse on the left half of A and the right half of A, these recursive calls directly return L and R

as well. As discussed, this allows us to minimize the counts of (i), (ii), and (iii), but now we must
also compute a sorted copy of A. We can meet this requirement by using the procedure Merge
from class. It takes as input two sorted arrays and returns their sorted concatenation. Since we
have L and R, we can use Merge to compute a sorted copy of A. Merge runs in linear time.

All together, we get a divide-and-conquer algorithm for the augmented problem, where in
addition to the minimum number of inversions for T we also output the leaf values in sorted order.
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The algorithm is given as Algorithm 1 below. The answer to the original question is the first
component of the value returned by TreeInversionCount(T ), where T is the original input tree.

Algorithm 1 Counting Tree Inversions
Input: T , a perfect binary tree with an integer at each leaf
Output: The pair (v, S), where v is the minimum possible number of inversions in T ’s leaf node

values after swapping subtrees of some internal nodes, and S is a sorted array of all leaf node
values in T

1: procedure TreeInversionCount(T )
2: if |T | = 1 then

3: return (0, k) where k is the integer stored at the node in T

4: (a, L) TreeInversionCount(T ’s left subtree)
5: (b, R) TreeInversionCount(T ’s right subtree)
6: c1  Count-Cross(L,R)
7: c2  Count-Cross(R,L)
8: c min(c1, c2)
9: v  a+ b+ c

10: S  Merge(L,R)
11: return (v, S)

Correctness. Correctness follows from an inductive argument on the depth of T . The base case
is when d = 0, i.e, T has only one node. In this case, TreeInversionCount returns 0 and a
singleton array of that element. Since a sequence of one value never has any inversions, and an
array of one element is always sorted, this is the correct result.

We now establish the inductive step. Recall that in order to minimize the total number of
inversions, it su�ces to compute the minimum counts of inversions of types (i), (ii), and (iii)
independently. By the inductive hypothesis, TreeInversionCount returns correctly for T ’s left
and right children. Thus a stores the minimum count of inversions of type (i), and b stores the
minimum count of inversions of type (ii). L and R store sorted copies of the left and right halves of
A, respectively. As discussed, the number of inversions of type (iii) equals the number of inversions
in LR or in RL, depending on whether a swap is done at the root. By correctness of Count-Cross,
c1 and c2 store these respective values, and so c = min(c1, c2) is the minimum count of inversions
of type (iii). It follows that a+ b+ c is the minimum possible number of all kinds of inversions, and
so v is a valid output for the first part of the spec. By correctness of Merge, S correctly stores a
sorted copy of A, so is a valid output for the second part of the spec. Thus TreeInversionCount
correctly implements its specification.

Analysis. The running time analysis is nearly identical to the analysis for Merge Sort. In the
recursive case, any given execution of TreeInversionCount makes two recursive calls, two calls
to Count-Cross, a call to Merge, and O(1) additional work. The recursive calls of TreeIn-
versionCount divide the input into equal-size halves. As discussed in class, Count-Cross and
Merge take time linear in the sum of the lengths of their arguments; it follows that each level of
the recursion tree does a combined O(n) work. As there are O(log n) levels, the running time of
TreeInversionCount is O(n log n).
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Problem 4

Consider the following computational problem:

Input: Array A[1, . . . , n] of positive integers.

Output: Array C[1, . . . , n] where C[i] is the number of j 2 {1, . . . , i� 1} with A[j] � A[i].

Design an O(n log n) algorithm for this problem.

We use a divide-and-conquer approach, in which we break up the given array A[1, . . . , n] into two
halves, L

.
= A[1, . . . , bn/2c] and R

.
= A[bn/2c + 1, . . . , n], recursively find the respective solutions

CL and CR for those subproblems, and then use CL and CR to e�ciently compute the solution
C for A. Below, we show how to compute C in O(n) time, given CL and CR. Given that, the
resulting algorithm runs in time O(n log n) as it follows the same pattern as MergeSort.

The first half of C equals CL, i.e., C[1, . . . , bn/2c] = CL[1, . . . , bn/2c]. This is because the
elements that precede elements in the first half of C all occur in that first half, which equals CL.

For the second half of C, we need to add to CR the number of elements in L that are larger
than or equal to the element from A under consideration. More precisely, for 1  k  dn/2e, we
have:

C[bn/2c+ k] = CR[k] + |{i 2 [bn/2c] such that L[i]  R[k]}| .

Note that the added term equals the number of inversions formed by the k-th element of R with
elements from L in the concatenation LR, provided that we also count pairs of positions that contain
equal values as inversions. In class we saw a linear-time algorithm to count the aggregate of all
such inversions (and sort the concatenation LR) when both L and R are sorted in nondecreasing
order. We use the same procedure here with the following modifications:

• Consider cross pairs of equal values as inversions. This can be achieved by moving the pointer
into R rather than the pointer into L in the case of equal values.

• Record separately the counts for each element of R rather than aggregating them.

• Keep track of the original positions of the sorted entries in the given array A. This enables
us to add the cross inversions to the correct positions.

For clarity we include pseudocode for the combining process IndividualMerge. It uses records
consisting of the value of an entry of the given array and the position of the entry in the given
array in order to represent the given array.

For completeness we also include pseudocode for the recursive procedure CountIndividualIn-
versions that takes an array and returns the array in sorted record format as well as the solution
to the problem. See pages 4–5.

Correctness Correctness of CountIndividualInversions and IndividualMerge is estab-
lished by organizing the ideas from the above discussion into a typical correctness proof.

To start, we establish correctness of CountIndividualInversions by induction on n. The
n-th statement to be established is that CountIndividualInversions matches its specification
on all inputs A of length n. As base cases, we have n = 0 and n = 1. In the former case, we are
required to return two empty arrays, as the algorithm does. In the latter case, we are required
to return an array containing the pair (1, A[1]), and an array containing 0, as the algorithm does.
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For n > 1, CountIndividualInversions enters its recursive case. The specification for the
recursive calls and the specification for IndividualMerge compose to match the specification for
CountIndividualInversions, so correctness follows directly from the inductive hypothesis and
correctness of IndividualMerge.

Finally, it remains to establish correctness of IndividualMerge. However, due to its similarity
to correctness of Count-Cross from lecture/scribe notes, we omit the details here.

Running Time Lastly, we need to analyze the running time of CountIndividualInversions
(hence also IndividualMerge). As withCount-Cross, IndividualMerge runs in time O(`+r).
CountIndividualInversions has a recursion tree shaped identically to MergeSort, as well as
the same work-per-node up to constant factors, so it runs in time O(n log n).

Algorithm 2

Input: Array A[1, . . . , n] of intergers.
Output: (C, bA) where C is the solution for A, and bA contains the pairs (i, A[i]) for i = 1, . . . , n,

sorted in nondecreasing order of the second component.
1: procedure CountIndividualInversions(A[1, . . . , n])
2: if n = 0 then

3: return ( [], [] )
4: else if n = 1 then

5: return ( [ (1,A[1]) ], [0] )
6: else

7: (CL,
bL) CountIndividualInversions(A[1, . . . , bn/2c])

8: (CR,
bR) CountIndividualInversions(A[bn/2c] + 1, n)

9: return IndividualMerge(bL, bR,CL, CR)
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Algorithm 3

Input: Arrays bL[1, . . . , `] and bR[1, . . . , r] of (position, value) records corresponding to arrays L

and R, respectively; bL and bR are sorted in order of nondecreasing value. Solutions CL[1, . . . , `]
and CR[1, . . . , r] for the arrays L and R, respectively.

Output: (C, bA) where bA is an array of (position, value) records corresponding to the concatenation
LR of L and R, sorted in nondecreasing order of value, and C is the solution for LR.

1: procedure IndividualMerge(bL[1, `], bR[1, r], CL, CR)
2: i 1; j  1; k  1
3: C  CLCR (concatenation)
4: while j  r do

5: if i  ` and bL[i].value < bR[j].value then

6: bA[k] bL[i]
7: i i+ 1
8: else

9: bA[k] bR[j] with ‘position’ component increased by `

10: C[ bA[k].position] C[ bA[k].position] + (`� i+ 1)
11: j  j + 1

12: k  k + 1
13: if i  ` then

14: bA[k, . . . , `+ r] bL[i, . . . , `]
15: return ( bA[1, . . . , `+ r], C[1, . . . , `+ r])
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Problem 5

You are given a string T [1 . . . n] over a finite alphabet A, where A does not contain the symbol
*, and a string P [1 . . .m] of length m  n over the alphabet A [ {⇤}. Your goal is to find all
the occurrences of P in T , where the symbol * acts as a wildcard, i.e., it matches every symbol
in A.

Design an algorithm that outputs the start positions of all occurrences of P in T and uses
O(n log n) elementary operations.

A natural (but ine�cient) way of solving this problem is as follows: for every starting position
1  i  n�m, we compare T [i] with P [1], T [i+1] with P [2] and so on, keeping track of positions i
for which we obtain perfect matches (recall that ⇤ matches every symbol in A). This approach takes
time O(nm) = O(n2), which is too much, but it gives us some insight into the more e�cient solution
for this problem. Say T and P are vectors of coe�cients for two polynomials T (x) and P (x), then,
polynomial multiplication does something similar: it fixes a vector, say T and computes inner
products for all possible shifts of (the reverse of) the other vector, in this case P . To understand
how this can be useful, consider the following example:

T = (a, a, b, b, a) and P = (a, b, b),

which we view as the polynomials

T (x) = a+ ax+ bx
2 + bx

3 + ax
4 and P

R(x) = b+ bx+ ax
2
.

Notice that we reversed P so that the inner products align correctly (instead of in reverse). By
assigning numeric (possibly complex) values to each symbol in A, T (x) and P

R(x) are polynomials
of degree n� 1 and m� 1, respectively. Their product is

C(x) = ab+ (ab+ ab)x+ (a2 + ab+ b
2)x2 + (a2 + b

2 + b
2)x3

+(ba+ b
2 + ab)x4 + (ab+ ba)x5 + a

2
x
6
.

Note that the coe�cient of x3 being a
2 + b

2 + b
2 indicates that we matched P with the substring

of T of size 3 that ends in position 4 (since the coe�cient of xi is given by the (i + 1)-th position
in C(x), when viewed as a vector). This is the only match for these two strings, and the only time
where the expression a

2 + b
2 + b

2 appears as a coe�cient in C(x).
Now, our objective is to assign numeric (possibly complex) values to each of a, b, c, · · · 2 A such

that we can determine when a sum is composed of matching square symbols, e.g. a2+ b
2+ . . . . We

still need to deal with the wildcard symbol ⇤, but that will not be too complicated. One way we
can try to di↵erentiate between sums of squares and mismatched sums is by forcing a

2 = b
2 = c

2 =
· · · = 1 for all symbols in A, while having the real part of ab, ac, bc, . . . be less than 1, again for all
pairs of symbols in A. If we can do this, then a matching sum will add up to exactly the length
of P (assuming no wildcards), and sums with mismatched symbols will add up to a number whose
real part is less than that. To deal with wildcards, we set the value of ⇤ to 0, and only require that
the sum equals the number of non-wildcard symbols in P .

Let |A| = k. To achieve our objective, we map each symbol in T to a distinct k-th root of unity.
To be more precise, for A = {a0, a1, . . . , ak�1}, we map each occurrence of aj in T to the complex

number !j
k, where !k denotes a primitive k-th root of unity. Similarly, we map each occurrence of
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aj in P to the multiplicative inverse of !j
k, that is, we map aj to !

k�j
k (note that !j

k ·!
k�j
k = !

k
k = 1).

That way, when we multiply two matching symbols (one in T and one in P ), the result is exactly
1, but when we multiply mismatched symbols we get a result whose real part is less than 1 (as the
result lies on the unit circle but is di↵erent from 1).

The final algorithm is then as follows, on input T [1, . . . , n] over an alphabet A of size k, and
P [1, . . . ,m] over A [ {⇤} where m  n, do the following:

1. Construct the polynomial T (x) of degree n � 1 with coe�cients given by mapping each
occurrence of aj in T (where aj 2 A) to !

j
k

2. Construct the polynomial PR(x) of degree m � 1 with coe�cients given by mapping each

occurrence of aj in P
R (the reverse of P ) to !

k�j
k and mapping ⇤ to 0.

3. Compute the product C(x) = T (x) · PR(x).

4. Let L be an empty list.

5. Let p be the number of non-wildcard symbols in P . For each j 2 {m�1, . . . , n�1} such that
the coe�cient of xj in C(x) equals p, add j �m+ 2 to L.

6. Return L.

The reason we return a list with positions j �m+2 instead of j is that the problem statement
asks for the start positions of all occurrences of P in T , while our approach gives us the ending
positions minus one (because of the conversion from arrays to polynomials).

Correctness for this procedure follows from the preceding discussion. The running time, in terms
of elementary operations, is dominated by computing the product C(x) = T (x) ·PR(x), which takes
time O(n log n) using the polynomial multiplication algorithm from class since the degree of T (x)
and P

R(x) is at most n.
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