COMP SCI 577 Homework 01

Divide and Conquer

Ruixuan Tu

rtuZawisc edu

University of Wisconsin-Madison

20 September 2022

3 [Graded]

Algorithm

Explanation

With an input of array of integers Arr, we want to calculate the inversion number of the sorted tree Inv_M with the swapping property, the sorted array Sorted_M without the swapping property, and the tree itself $Tree_M.$ We first break Arr which is the original tree, or array to sort from the middle into two identical pieces Arr_L and $Arr_R.$ Then we recursively call the function itself on the separated pieces to get the Inv, Sorted, and Tree values for both sides $(L \mbox{ and } R).$ After that, we first call ${\tt Merge}$ to merge $Sorted_L$ and $Sorted_R$ to form $Sorted_M,$ as well as counting the cross inversion number $CrossInv_{L < R}$ if there is no swap between the left and right subtrees. Then we call Merge to merge it in a reverse direction to see if the cross inversion number decreases for $CrossInv_{R < L}$ if the two sides are swapped; the *Sorted* returned is not used and ignored. If $CrossInv_{R < L}$ is smaller, then we should swap the two subtrees so that $\mathit{Tree_M}$ is formed by the original right part at left, and the original left part at right; otherwise, $Tree_M$ should have the original left part at left, and the original right part at right, as unmodified. Finally, we return $Inv_M = Inv_L + Inv_R + \min(CrossInv_{L < R}, CrossInv_{R < L})$, $Sorted_M$, and $Tree_M$

The subroutine $Merge(Sorted_L, Sorted_R)$ is the combination of the functions Count-Crossand Merge introduced in the lecture on September 13 [1] without modification compared to the function used in counting inversions with two sorted sub-arrays.

1

Pseudo Code

- 1 Function MergeSort(Arr): $Mid \leftarrow Size(Arr)/2$
- $Arr_{I} \leftarrow Arr[0:Mid]$:
- $Arr_{R} \leftarrow Arr[Mid : Size(Arr));$
- $\mathit{Inv}_L, \mathit{Sorted}_L, \mathit{Tree}_L \gets \texttt{MergeSort}(\mathit{Arr}_L);$
- $Inv_R, Sorted_R, Tree_R \leftarrow MergeSort(Arr_R);$
- $CrossInv_{L < R}, Sorted_M \leftarrow Merge(Sorted_L, Sorted_R);$
- $CrossInv_{R \leq L}, None \leftarrow Merge(Sorted_R, Sorted_L);$
- if $CrossInv_{L < R} < CrossInv_{R < L}$ then
- 10 $Tree_M \leftarrow [Arr_L \dots Arr_R]$ 11 else
- 12 $Tree_M \leftarrow [Arr_R \dots Arr_L];$
- $Inv_M \leftarrow Inv_L + Inv_R + \min(CrossInv_{L < R}, CrossInv_{R < L});$ 13
- 14 return Inv_M, Sorted_M, Tree_M;
- 15 Function Merge (Sorted_L, Sorted_R):
- $CrossInv, Index_L, Index_R \leftarrow 0;$ 16
- 17 Sorted_M \leftarrow [];

18

 $\mathbf{21}$

22

25

- while $Index_L < Size(Sorted_L)$ and $Index_R < Size(Sorted_R)$ do
- if $Sorted_L[Index_L] > Sorted_R[Index_R]$ then
- 19 $CrossInv \leftarrow CrossInv + (Size(Sorted_L) - Index_L);$ 20
 - $Sorted_M \leftarrow [Sorted_M \dots Sorted_R[Index_R]];$
 - $Index_R \leftarrow Index_R + 1;$
 - else
- 23 $Sorted_M \leftarrow [Sorted_M \dots Sorted_L[Index_L]];$ 24
 - $Index_L \leftarrow Index_L + 1;$
- while Index_L < Size(Sorted_L) do 26
- $Sorted_M \leftarrow [Sorted_M \dots Sorted_L[Index_L]];$ 27
- $Index_L \leftarrow Index_L + 1;$ 28
- 29 while Index_R < Size(Sorted_R) do
- $Sorted_M \leftarrow [Sorted_M \dots Sorted_R[Index_R]];$ 30
- $Index_R \leftarrow Index_R + 1;$
- 32 return CrossInv, Sorted_M;

Code (Python)

- 1 from typing import List, Tuple
- def merge(left_sorted: List[int], right_sorted: List[int]): 3 left_ptr: int = 0 right_ptr: int = 0 6 cross_inv: int = 0 sorted: List[int] = list() while left_ptr < len(left_sorted) and right_ptr < len(</pre> right_sorted): if left_sorted[left_ptr] > right_sorted[right_ptr]: 9 cross_inv += len(left_sorted) - left_ptr 10 sorted.append(right_sorted[right_ptr]) 11 12 right_ptr += 1 13 else: 14sorted.append(left_sorted[left_ptr]) 15left_ptr += 1 while left_ptr < len(left_sorted):</pre> 16 sorted.append(left_sorted[left_ptr]) 17 18 left ptr += 1 19 while right_ptr < len(right_sorted):</pre> sorted.append(right_sorted[right_ptr]) 20 21right ptr += 1 return cross_inv, sorted 22 23 24 def mergesort(to_sort: List[int]) → Tuple[int, List[int], List[int]]: 25n: int = len(to_sort) 26 **if** n ≤ 1: return 0, to_sort, to_sort 27mid: int = int(n / 2)2829left_arr: List[int] = to_sort[0: mid] 30 right_arr: List[int] = to_sort[mid: n] left_inv, left_sorted, left_tree = mergesort(left_arr) 31
 - 32 right_inv, right_sorted, right_tree = mergesort(right_arr)

- cross_inv_lr, sorted = merge(left_sorted, right_sorted) 33
- 34 cross_inv_rl, _ = merge(right_sorted, left_sorted)
- 35 if cross_inv_lr < cross_inv_rl:</pre>
- 36 tree = left_tree + right_tree
- 37 else:
- 38 tree = right tree + left tree
- inv = left_inv + right_inv + min(cross_inv_lr, cross_inv_rl) 39

2

- 40 return inv, sorted, tree
- 41
- 42 if __name__ = "__main__":
 43 A: List[int] = list(int(x) for x in input().split(" "))
- 44 inv, sorted, tree = mergesort(A)
 print("inv:", inv)
- 45
- 46 print("sorted:", sorted)
- 47 print("tree:", tree)

Test Cases

Input: [4,2,1,3] Output: $Inv \leftarrow 1$; Sorted $\leftarrow [1,2,3,4]$; Tree $\leftarrow [1,3,2,4]$

Input: [1,4,2,8,5,7,3,6]Output: Inv \leftarrow 7; Sorted \leftarrow [1,2,3,4,5,6,7,8]; Tree \leftarrow [1,4,2,8,3,6,5,7]

Correctness

Induction

Claim: The algorithm is correct for any array with a size of 2^n with $n \in \mathbb{N}$. **Base Case:** n = 0. As an array with a size of 1 is already sorted without any other integer to compare, the inversion number Inv_M is 0, and the sorted array and the tree array $Sorted_M$ and Tree_M are kept unmodified. Thus, the algorithm is correct for any array with a size of 1. **Inductive Step:** Assume that the algorithm is correct for n = k - 1. For n = k, what we can swap is only the whole left part and the whole right part which are both with a size of 2^{k-1} . To argue the correctness of the merged tree $Tree_M$ and the inversion number Inv_M , we should arrange $Tree_L$ and $Tree_R$ in a way so that the merged $[Tree_L...Tree_R]$ or $[Tree_R...Tree_L]$ has the minimal inversion number Iw_M which is counted by $Iw_L + Iw_R + \min(CrossIw_{L < R}, CrossIw_{R < L})$. The correctness of $Merge(Sorted_L, Sorted_R)$ yielding $CrossIw_M$ and $Sorted_M$ has been proved in the lecture [1]. This counting technique could still apply, as the sorted properties of $Sorted_L$ and $Sorted_R$ are kept, as well as that a parent node could only switch its two subtrees, instead of modifying the nodes in the subtrees. Then we only need to compare the inversion numbers in two situations: the original order of $Tree_L$ and $Tree_R$, and the reversed order of $Tree_L$ and $Tree_R$, which should only rely on $CrossIw_{L < R}$ and $CrossIw_{R < L}$ yielded in these two situtions (as Iw_L and Iw_R are immutable). As we want the minimal inversion number, we should only swap the two subtrees if $CrossIw_{L < R}$ is smaller than $CrossIw_{L < R}$. Thus, the algorithm is correct for any array with a size of 2^k .

Termination

The size of 2^n of the array is halved in each recursion, namely that we deduct the power by 1 every time, for all n > 0. Then the size of the array should always converge to $2^0 = 1$, and the base case will be reached. Thus, the algorithm terminates after $\log 2^n = n$ recursions.

Complexity

For the subroutine $Merge(Sorted_L, Sorted_R)$, its complexity introduced in the lecture [1] is O(n) with n = Size(L) + Size(R), which is also stated in Theorem 2 and Theorem 5 of [2]. For the main function MergeSort(Arr), according to Master Theorem, the recurrence is of the form $T(n) = 2T(\frac{n}{2}) + f(n)$ with f(n) = O(n), as there is there are two recursive calls for Arr_R respectively, as well as one O(n) call to Merge. Then we can see that the function's recurrence is the same as the original Merge Sort introduced in the lecture [1] and Theorem 3 of [2], whose run time complexity is $O(n\log n)$.

References

 Dieter van Melkebeek (2022) COMP SCI 577 Lecture Note, 13 September 2022, University of Wisconsin-Madison. https://canvas.wisc.edu/courses/308877/files/27719231.

 [2] Deeparnab Chakrabarty (2020) CS31 (Algorithms), Spring 2020 : Lecture 3, Dartmouth College. https://www.cs.dartmouth.edu/~deepc/Courses/S20/lec3.pdf.

5