COMP SCI 577 Homework 01
Divide and Conquer
Ruixuan Tu
rtu7awisc.edu
University of Wisconsin-Madison
20 September 2022

3 [Graded]

Algorithm

Explanation

With an input of array of integers Arr, we want to calculate the inversion number of the sorted tree Inv_{M} with the swapping property, the sorted array $\operatorname{Sorted}_{M}$ without the swapping property, and the tree itself Tree $_{M}$. We first break Arr which is the original tree, or array to sort from the middle into two identical pieces $A r r_{L}$ and $A r r_{R}$. Then we recursively call the function itself on the separated pieces to get the Inv, Sorted, and Tree values for both sides (L and R). After that, we first call Merge to merge $\operatorname{Sorted}_{L}$ and $\operatorname{Sorted}_{R}$ to form $\operatorname{Sorted}_{M}$, as well as counting the cross inversion number CrossInv $v_{L<R}$ if there is no swap between the left and right subtrees. Then we call Merge to merge it in a reverse direction to see if the cross inversion number decreases for CrossInv ${ }_{R<L}$ if the two sides are swapped; the Sorted returned is not used and ignored. If CrossInv ${ }_{R<L}$ is smaller, then we should swap the two subtrees so that Tree $_{M}$ is formed by the original right part at left, and the original left part at right; otherwise, Tree $_{M}$ should have the original left part at left, and the original right part at right, as unmodified. Finally, we return $\operatorname{Inv} v_{M}=\operatorname{Inv}_{L}+\operatorname{Inv}_{R}+\min \left(\operatorname{CrossInv}_{L<R}, \operatorname{CrossInv}_{R<L}\right), \operatorname{Sorted}_{M}$, and Tree ${ }_{M}$.

The subroutine Merge $\left(\right.$ Sorted $_{L}$, Sorted $\left._{R}\right)$ is the combination of the functions Count-Cross and Merge introduced in the lecture on September 13 [1] without modification compared to the function used in counting inversions with two sorted sub-arrays

Pseudo Code

${ }_{1}$ Function MergeSort(Arr):
${ }_{2} \quad$ Mid $\leftarrow \operatorname{Size}($ Arr $) / 2$;
$\operatorname{Arr}_{L} \leftarrow \operatorname{Arr}[0:$ Mid $) ;$
$\operatorname{Arr}_{R} \leftarrow \operatorname{Arr}[\operatorname{Mid}: \operatorname{Size}(A r r)) ;$
Inv $_{L}$, Sorted $_{L}$, Tree $_{L} \leftarrow$ MergeSort $\left(\right.$ Arr $\left._{L}\right)$;
Inv ${ }_{R}$, Sorted $_{R}$, Tree $_{R} \leftarrow$ MergeSort $\left(\right.$ Arr $\left._{R}\right)$;
CrossInv $_{L<R}$, Sorted $_{M} \leftarrow$ Merge $\left(\right.$ Sorted $_{L}$, Sorted $\left._{R}\right)$;
CrossInv $_{R<L}$, None $\leftarrow \operatorname{Merge}\left(\right.$ Sorted $_{R}$, Sorted $\left._{L}\right)$;
if CrossInv ${ }_{L<R}<$ CrossInv $_{R<L}$ then
\mid Tree $_{M} \leftarrow\left[\right.$ Arr $_{L} \ldots A$ Arr $\left._{R}\right] ;$
else
$\left\lfloor\right.$ Tree $_{M} \leftarrow\left[\right.$ Arr $_{R} \ldots$ Arr $\left._{L}\right] ;$
$\operatorname{Inv}_{M} \leftarrow \operatorname{Inv}_{L}+\operatorname{Inv}_{R}+\min \left(\right.$ CrossInv$_{L<R}$, CrossInv $\left._{R<L}\right) ;$
return Inv $_{M}$, Sorted $_{M}$, Tree $_{M}$;
15 Function Merge $\left(\right.$ Sorted $\left._{L}, \operatorname{Sorted}_{R}\right)$:
CrossInv, Index x_{L}, Index ${ }_{R} \leftarrow 0$;
Sorted $_{M} \leftarrow \square$;
while Index $_{L}<\operatorname{Size}\left(\right.$ Sorted $\left._{L}\right)$ and Index $x_{R}<\operatorname{Size}\left(\operatorname{Sorted}_{R}\right)$ do
if Sorted $_{L}\left[\right.$ Index $\left._{L}\right]>$ Sorted $_{R}\left[\right.$ Index $\left._{R}\right]$ then
CrossInv \leftarrow CrossInv $+\left(\operatorname{Size}\left(\right.\right.$ Sorted $\left._{L}\right)-$ Index $\left._{L}\right) ;$
Sorted $_{M} \leftarrow\left[\right.$ Sorted $_{M} \ldots$ Sorted $_{R}\left[\right.$ Index $\left.\left._{R}\right]\right] ;$
Index $_{R} \leftarrow$ Index $_{R}+1$;
else
$\operatorname{Sorted}_{M} \leftarrow\left[\right.$ Sorted $_{M} \ldots$ Sorted $_{L}\left[\right.$ Index $\left.\left._{L}\right]\right] ;$ Index $_{L} \leftarrow$ Index $x_{L}+1$;
while Index $_{L}<$ Size $\left(\right.$ Sorted $\left._{L}\right)$ do
Sorted $_{M} \leftarrow\left[\right.$ Sorted $_{M} \ldots$ Sorted $_{L}\left[\right.$ Index $\left.\left._{L}\right]\right]$;
Index $_{L} \leftarrow$ Index $_{L}+1$;
while Index $_{R}<\operatorname{Size}\left(\right.$ Sorted $\left._{R}\right)$ do
Sorted $_{M} \leftarrow\left[\right.$ Sorted $_{M} \ldots$ Sorted $_{R}\left[\right.$ Index $\left.\left._{R}\right]\right]$;
Index $_{R} \leftarrow$ Index $_{R}+1$;
return CrossInv,Sorted ${ }_{M}$;

Code (Python)

```
from typing import List, Tuple
```

def merge(left_sorted: List[int], right_sorted: List[int]):
left_ptr: int = 0
right_ptr: int $=0$
cross inv: int $=0$
right_ptr: int $=0$
cross_inv: int $=0$
sorted: List[int] = list()
while left_ptr < len(left_sorted) and right_ptr < len(
right_sorted):
if left_sorted[left_ptr] > right_sorted[right_ptr]:
cross_inv += len(left_sorted) - left_ptr
sorted.append(right_sorted[right_ptr])
right_ptr += 1
else:
sorted.append(left_sorted[left_ptr])
left_ptr += 1
while left_ptr < len(left_sorted):
sorted.append(left_sorted[left_ptr])
left_ptr $+=1$
while right_ptr
left_ptr += 1
while right_ptr
sorted.append(right_sorted[right_ptr])
right_ptr += 1
return cross_inv, sorted
def mergesort(to_sort: List[int]) \rightarrow Tuple[int, List[int], List[
int]]:
n : int $=$ len(to_sort)
if $n \leqslant 1$:
return 0, to_sort, to_sort
mid: int $=\operatorname{int}(n / 2)$
left_arr: List[int] = to_sort[0: mid]
right_arr: List[int] = to_sort[mid: n]
left_inv, left_sorted, left_tree = mergesort(left_arr)
right_inv, right_sorted, right_tree $=$ mergesort(right_arr)

```
    cross_inv_lr, sorted = merge(left_sorted, right_sorted)
    cross_inv_rl, _ = merge(right_sorted, left_sorted)
    if cross_inv_lr < cross_inv_rl:
    tree = left_tree + right_tree
    else:
    tree = right_tree + left_tree
    inv = left_inv + right_inv + min(cross_inv_lr, cross_inv_rl)
    return inv, sorted, tree
if __name__ = "__main__":
    A: List[int] = list(int(x) for x in input().split(" "))
    inv, sorted, tree = mergesort(A)
    print("inv:", inv)
    print("sorted:", sorted)
    print("tree:", tree)
```


Test Cases

Input: [4, 2, 1,3]
Output: Inv $\leftarrow 1 ;$ Sorted $\leftarrow[1,2,3,4]$; Tree $\leftarrow[1,3,2,4]$

Input: $[1,4,2,8,5,7,3,6]$
Output: Inv $\leftarrow 7 ;$ Sorted $\leftarrow[1,2,3,4,5,6,7,8] ;$ Tree $\leftarrow[1,4,2,8,3,6,5,7]$

Correctness

Induction

Claim: The algorithm is correct for any array with a size of 2^{n} with $n \in \mathbb{N}$.
Base Case: $n=0$. As an array with a size of 1 is already sorted without any other integer to compare, the inversion number Inv_{M} is 0 , and the sorted array and the tree array Sorted $_{M}$ and Tree $_{M}$ are kept unmodified. Thus, the algorithm is correct for any array with a size of 1 . Inductive Step: Assume that the algorithm is correct for $n=k-1$. For $n=k$, what we can swap is only the whole left part and the whole right part which are both with a size of 2^{k-1}. To argue the correctness of the merged tree Tree $_{M}$ and the inversion number InvM, we should
arrange Tree $_{L}$ and Tree $_{R}$ in a way so that the merged $\left[\right.$ Tree $_{L} \ldots$ Tree $\left._{R}\right]$ or $\left[\right.$ Tree $_{R} \ldots$ Tree $\left._{L}\right]$ has the minimal inversion number Inv_{M} which is counted by $\operatorname{Inv}_{L}+\operatorname{Inv}_{R}+\min \left(\operatorname{Cross}^{\operatorname{Inv}}{ }_{L<R}, \operatorname{CrossInv}_{R<L}\right)$ The correctness of Merge $\left(\right.$ Sorted $_{L}$, Sorted $\left._{R}\right)$ yielding CrossInv M and Sorted $_{M}$ has been proved in the lecture [1]. This counting technique could still apply, as the sorted properties of Sorted d_{L} and $\operatorname{Sorted}_{R}$ are kept, as well as that a parent node could only switch its two subtrees, instead of modifying the nodes in the subtrees. Then we only need to compare the inversion numbers in two situations: the original order of Tree L_{L} and Tree $_{R}$, and the reversed order of Tree $_{L}$ and Tree $_{R}$, which should only rely on CrossInv ${ }_{L<R}$ and $\operatorname{CrossInv}_{R<L}$ yielded in these two situations (as $I n v_{L}$ and $I n v_{R}$ are immutable). As we want the minimal inversion number, we should only swap the two subtrees if $\operatorname{CrossInv}_{R<L}$ is smaller than CrossInv$v_{L<R}$. Thus, the algorithm is correct for any array with a size of 2^{k}.

Termination

The size of 2^{n} of the array is halved in each recursion, namely that we deduct the power by 1 every time, for all $n>0$. Then the size of the array should always converge to $2^{0}=1$, and the base case will be reached. Thus, the algorithm terminates after $\log 2^{n}=n$ recursions.

Complexity

For the subroutine Merge $\left(\right.$ Sorted $_{L}$, Sorted $\left._{R}\right)$, its complexity introduced in the lecture [1] is $O(n)$ with $n=\operatorname{Size}(L)+\operatorname{Size}(R)$, which is also stated in Theorem 2 and Theorem 5 of [2]. For the main function MergeSort (Arr), according to Master Theorem, the recurrence is of the form $T(n)=2 T\left(\frac{n}{2}\right)+f(n)$ with $f(n)=O(n)$, as there is there are two recursive calls for $A r r_{L}$ and $A r r_{R}$ respectively, as well as one $O(n)$ call to Merge. Then we can see that the function's recurrence is the same as the original Merge Sort introduced in the lecture [1] and Theorem 3 of [2], whose run time complexity is $O(n \log n)$

References

[1] Dieter van Melkebeek (2022) COMP SCI 577 Lecture Note, 13 September 2022, University of Wisconsin-Madison. https://canvas.wisc.edu/courses/308877/files/27719231.
[2] Deeparnab Chakrabarty (2020) CS31 (Algorithms), Spring 2020: Lecture 3, Dartmouth College. https://www.cs.dartmouth.edu/ deepc/Courses/S20/lecs/lec3.pdf.

