
COMP SCI 577 Homework 01
Divide and Conquer

Ruixuan Tu
rtu7@wisc.edu

University of Wisconsin-Madison

20 September 2022

3 [Graded]

Algorithm
Explanation

With an input of array of integers Arr, we want to calculate the inversion number of the
sorted tree InvM with the swapping property, the sorted array SortedM without the swapping
property, and the tree itself TreeM. We first break Arr which is the original tree, or array to
sort from the middle into two identical pieces ArrL and ArrR. Then we recursively call the
function itself on the separated pieces to get the Inv, Sorted, and Tree values for both sides
(L and R). After that, we first call Merge to merge SortedL and SortedR to form SortedM, as
well as counting the cross inversion number CrossInvL<R if there is no swap between the left
and right subtrees. Then we call Merge to merge it in a reverse direction to see if the cross
inversion number decreases for CrossInvR<L if the two sides are swapped; the Sorted returned
is not used and ignored. If CrossInvR<L is smaller, then we should swap the two subtrees so
that TreeM is formed by the original right part at left, and the original left part at right;
otherwise, TreeM should have the original left part at left, and the original right part at right,
as unmodified. Finally, we return InvM = InvL+ InvR+min(CrossInvL<R,CrossInvR<L), SortedM,
and TreeM.

The subroutine Merge(SortedL,SortedR) is the combination of the functions Count-Cross
and Merge introduced in the lecture on September 13 [1] without modification compared to
the function used in counting inversions with two sorted sub-arrays.

1

Pseudo Code

1 Function MergeSort(Arr):
2 Mid← Size(Arr)/2;
3 ArrL← Arr[0 : Mid);
4 ArrR← Arr[Mid : Size(Arr));
5 InvL,SortedL,TreeL← MergeSort(ArrL);
6 InvR,SortedR,TreeR← MergeSort(ArrR);
7 CrossInvL<R,SortedM← Merge(SortedL,SortedR);
8 CrossInvR<L, None ← Merge(SortedR,SortedL);
9 if CrossInvL<R <CrossInvR<L then

10 TreeM← [ArrL . . .ArrR];
11 else
12 TreeM← [ArrR . . .ArrL];
13 InvM← InvL + InvR +min(CrossInvL<R,CrossInvR<L);
14 return InvM,SortedM,TreeM;
15 Function Merge (SortedL,SortedR):
16 CrossInv, IndexL, IndexR← 0;
17 SortedM← [];
18 while IndexL < Size(SortedL) and IndexR < Size(SortedR) do
19 if SortedL[IndexL]> SortedR[IndexR] then
20 CrossInv←CrossInv+(Size(SortedL)− IndexL);
21 SortedM← [SortedM . . .SortedR[IndexR]];
22 IndexR← IndexR +1;
23 else
24 SortedM← [SortedM . . .SortedL[IndexL]];
25 IndexL← IndexL +1;

26 while IndexL < Size(SortedL) do
27 SortedM← [SortedM . . .SortedL[IndexL]];
28 IndexL← IndexL +1;
29 while IndexR < Size(SortedR) do
30 SortedM← [SortedM . . .SortedR[IndexR]];
31 IndexR← IndexR +1;
32 return CrossInv,SortedM;

2

Code (Python)

1 from typing import List, Tuple
2
3 def merge(left_sorted: List[int], right_sorted: List[int]):
4 left_ptr: int = 0
5 right_ptr: int = 0
6 cross_inv: int = 0
7 sorted: List[int] = list()
8 while left_ptr < len(left_sorted) and right_ptr < len(

right_sorted):
9 if left_sorted[left_ptr] > right_sorted[right_ptr]:

10 cross_inv += len(left_sorted) - left_ptr
11 sorted.append(right_sorted[right_ptr])
12 right_ptr += 1
13 else:
14 sorted.append(left_sorted[left_ptr])
15 left_ptr += 1
16 while left_ptr < len(left_sorted):
17 sorted.append(left_sorted[left_ptr])
18 left_ptr += 1
19 while right_ptr < len(right_sorted):
20 sorted.append(right_sorted[right_ptr])
21 right_ptr += 1
22 return cross_inv, sorted
23
24 def mergesort(to_sort: List[int]) -> Tuple[int, List[int], List[

int]]:
25 n: int = len(to_sort)
26 if n <= 1:
27 return 0, to_sort, to_sort
28 mid: int = int(n / 2)
29 left_arr: List[int] = to_sort[0: mid]
30 right_arr: List[int] = to_sort[mid: n]
31 left_inv, left_sorted, left_tree = mergesort(left_arr)
32 right_inv, right_sorted, right_tree = mergesort(right_arr)

3

33 cross_inv_lr, sorted = merge(left_sorted, right_sorted)
34 cross_inv_rl, _ = merge(right_sorted, left_sorted)
35 if cross_inv_lr < cross_inv_rl:
36 tree = left_tree + right_tree
37 else:
38 tree = right_tree + left_tree
39 inv = left_inv + right_inv + min(cross_inv_lr, cross_inv_rl)
40 return inv, sorted, tree
41
42 if __name__ == "__main__":
43 A: List[int] = list(int(x) for x in input().split(" "))
44 inv, sorted, tree = mergesort(A)
45 print("inv:", inv)
46 print("sorted:", sorted)
47 print("tree:", tree)

Test Cases

Input: [4,2,1,3]
Output: Inv← 1; Sorted← [1,2,3,4]; Tree← [1,3,2,4]

Input: [1,4,2,8,5,7,3,6]
Output: Inv← 7; Sorted← [1,2,3,4,5,6,7,8]; Tree← [1,4,2,8,3,6,5,7]

Correctness
Induction

Claim: The algorithm is correct for any array with a size of 2n with n ∈ N.
Base Case: n = 0. As an array with a size of 1 is already sorted without any other integer
to compare, the inversion number InvM is 0, and the sorted array and the tree array SortedM

and TreeM are kept unmodified. Thus, the algorithm is correct for any array with a size of 1.
Inductive Step: Assume that the algorithm is correct for n = k−1. For n = k, what we can
swap is only the whole left part and the whole right part which are both with a size of 2k−1.
To argue the correctness of the merged tree TreeM and the inversion number InvM, we should

4



arrange TreeL and TreeR in a way so that the merged [TreeL . . .TreeR] or [TreeR . . .TreeL] has the
minimal inversion number InvM which is counted by InvL+InvR+min(CrossInvL<R,CrossInvR<L).
The correctness of Merge(SortedL,SortedR) yielding CrossInvM and SortedM has been proved
in the lecture [1]. This counting technique could still apply, as the sorted properties of SortedL

and SortedR are kept, as well as that a parent node could only switch its two subtrees, instead
of modifying the nodes in the subtrees. Then we only need to compare the inversion numbers
in two situations: the original order of TreeL and TreeR, and the reversed order of TreeL and
TreeR, which should only rely on CrossInvL<R and CrossInvR<L yielded in these two situa-
tions (as InvL and InvR are immutable). As we want the minimal inversion number, we should
only swap the two subtrees if CrossInvR<L is smaller than CrossInvL<R. Thus, the algorithm is
correct for any array with a size of 2k.

Termination

The size of 2n of the array is halved in each recursion, namely that we deduct the power by
1 every time, for all n > 0. Then the size of the array should always converge to 20 = 1, and
the base case will be reached. Thus, the algorithm terminates after log2n = n recursions.

Complexity
For the subroutine Merge(SortedL,SortedR), its complexity introduced in the lecture [1] is

O(n) with n = Size(L)+Size(R), which is also stated in Theorem 2 and Theorem 5 of [2].
For the main function MergeSort(Arr), according to Master Theorem, the recurrence is

of the form T (n) = 2T (n
2)+ f (n) with f (n) = O(n), as there is there are two recursive calls

for ArrL and ArrR respectively, as well as one O(n) call to Merge. Then we can see that the
function’s recurrence is the same as the original Merge Sort introduced in the lecture [1] and
Theorem 3 of [2], whose run time complexity is O(n logn).

References
[1] Dieter van Melkebeek (2022) COMP SCI 577 Lecture Note, 13 September 2022, University

of Wisconsin-Madison. https://canvas.wisc.edu/courses/308877/files/27719231.

[2] Deeparnab Chakrabarty (2020) CS31 (Algorithms), Spring 2020 : Lecture 3, Dartmouth
College. https://www.cs.dartmouth.edu/ ̃deepc/Courses/S20/lecs/lec3.pdf.

5


