
COMP SCI 577 Homework 02 Problem 3
Divide and Conquer

Ruixuan Tu
rtu7@wisc.edu

University of Wisconsin-Madison

26 September 2022

Algorithm

Explanation
We have the main subroutine fast_select to get the pair (am,wm) for ∑ai<am wi < k and

∑ai≤am wi ≥ k from the inputs A = [ai], W = [wi], and k, with k = 1
2 at initial. Denote [0,n) be

the range of [i]. The base case is that n = 1 so that there is nothing to select except for the
only element. Then we calculate the array of medians Am and Wm of the n′ =

⌈ n
w
⌉

with w = 5
consecutive length-w segments of A and W by the subroutine call get_median_arr(A, W,
5). By the inspiration from the lecture, we want to get the median of the medians, i.e., the me-
dian of Am and Wm; and this is done by the subroutine call fast_select(compress(A_m,
W_m), sum(W_m) / 2). We use the median of medians as the pivot as in the lecture. After
that, we split A and W by the pivot Ap, just as in the quick sort, to get the left part AL and WL

in L; the middle part in M; and the right part in R. We know from the split subroutine that
∑ai<am wi = ∑WLi and ∑ai≤am wi = ∑WLi +∑WMi with the needed sums in variables L_Wsum
and M_Wsum. If the pivot p satisfies the two conditions of k, then p is the correct median
of this subroutine without further calculation. If not, then the pivot is either too low or too
high, and we need to search in the inverse interval (i.e., search in right if too low, or left if too
high). While searching in right, we need to have new k′ = k−∑WLi−∑WMi to ensure that we
do not want to find the sum of weights that are not in the right in the search.

The subroutines compress and extract are compressing/extracting lists A and W to/from
one list of tuples [(Ai,Wi)] for code readability. Hence, the subroutines split and get_median_arr
are almost identical to the versions introduced in the lecture, with get_median be a helper
function.

1

Code (Python)

1 from math import ceil
2 from typing import List, Tuple
3
4 def readline_floats(s: str) -> List[float]:
5 return list(float(x) for x in s.split(" "))
6
7 def compress(A: List[float], W: List[float]) -> List[Tuple[float,

float]]:
8 return list(zip(A, W))
9

10 def extract(D: List[Tuple[float, float]]) -> Tuple[List[float],
List[float]]:

11 A: List[float] = [x for x, _ in D]
12 W: List[float] = [x for _, x in D]
13 return A, W
14
15 def split(D: List[Tuple[float, float]], p: float) -> Tuple[List[

Tuple[float, float]], List[Tuple[float, float]], List[Tuple[
float, float]], float, float, float]:

16 A, W = extract(D)
17 L: List[Tuple[float, float]] = []
18 M: List[Tuple[float, float]] = []
19 R: List[Tuple[float, float]] = []
20 L_Wsum: float = 0.0
21 M_Wsum: float = 0.0
22 R_Wsum: float = 0.0
23 for i in range(len(A)):
24 if A[i] < p:
25 L.append((A[i], W[i]))
26 L_Wsum += W[i]
27 elif A[i] > p:
28 R.append((A[i], W[i]))
29 R_Wsum += W[i]
30 else:

2

31 M.append((A[i], W[i]))
32 M_Wsum += W[i]
33 return L, M, R, L_Wsum, M_Wsum, R_Wsum
34
35 def get_median(D: List[Tuple[float, float]]) -> Tuple[float, float

]:
36 S: List[Tuple[float, float]] = sorted(D, key=lambda x: x[0])
37 A_s, W_s = extract(S)
38 W_Lsum: float = 0.0
39 W_scale: float = sum(W_s)
40 for i in range(len(D)):
41 if W_Lsum < 0.5 * W_scale and W_Lsum + W_s[i] >= 0.5 *

W_scale:
42 return (A_s[i], W_s[i])
43 W_Lsum += W_s[i]
44 return (None, None)
45
46 def get_median_arr(A: List[float], W: List[float], w: int) ->

Tuple[List[float], List[float]]:
47 n_A: int = len(A)
48 n_median_arr: int = ceil(n_A / w)
49 M_A_splited: List[float] = []
50 M_A_merged: List[float] = []
51 M_W_splited: List[float] = []
52 M_W_merged: List[float] = []
53 for i in range(n_median_arr):
54 m_A: List[float] = []
55 m_W: List[float] = []
56 r: int = w
57 if i == n_median_arr - 1 and n_A % w != 0:
58 r = n_A % w
59 for j in range(r):
60 m_A.append(A[i * w + j])
61 m_W.append(W[i * w + j])
62 M_A_splited.append(m_A)

3

63 M_W_splited.append(m_W)
64 for i in range(n_median_arr):
65 m_A, m_W = get_median(compress(M_A_splited[i], M_W_splited

[i]))
66 M_A_merged.append(m_A)
67 M_W_merged.append(m_W)
68 return M_A_merged, M_W_merged
69
70 def fast_select(D: List[Tuple[float, float]], k: float) -> Tuple[

float, float]:
71 A, W = extract(D)
72 n = len(A)
73 if n == 1:
74 return (A[0], W[0])
75 A_m, W_m = get_median_arr(A, W, 5)
76 p = fast_select(compress(A_m, W_m), sum(W_m) / 2)
77 L, _, R, L_Wsum, M_Wsum, _ = split(compress(A, W), p[0])
78 L_A, L_W = extract(L)
79 R_A, R_W = extract(R)
80 if L_Wsum < k and L_Wsum + M_Wsum >= k:
81 return p
82 elif L_Wsum < k:
83 return fast_select(compress(R_A, R_W), k - L_Wsum - M_Wsum

)
84 else: # L_Wsum >= k
85 return fast_select(compress(L_A, L_W), k)
86
87 if __name__ == "__main__":
88 F = open("hw02.in", "r")
89 L = F.readlines()
90 A = readline_floats(L[0]) # 40 -5 4 0 2.5 6 -2
91 W = readline_floats(L[1]) # .25 .1 .05 .18 .15 .2 .07
92 print(fast_select(compress(A, W), sum(W) / 2)[0])

4

Correctness

Induction
Claim: The algorithm is correct for any array with a size of n with n ∈ N+.
Base Case: n = 1. There is nothing to select except for the only element.
Inductive Step: Assume that the algorithm is correct for n = j for all j < s by strong
induction. For n = s, we have an approximate pivot Ap which is the guaranteed median of
medians, and we have proved in the lecture that it is the ρ-approximate median with ρ = 3

4 of
A with weights in W . Then we do the proof by cases with Am being the true median at some
percentile indicated by the parameter k.

For Ap = Am, we have already done with the result, and it could be verified by split as
we have mentioned in Explanation. For Ap < Am, the split function would check for the
wrong median which violates the condition ∑ai≤am wi = ∑WLi +∑WMi ≥ k, and we can get the
correct result by calling the subroutine as described in Explanation which is guaranteed by
the induction hypothesis. For Ap > Am, the split function would check for the wrong median
which violates the condition ∑ai<am wi = ∑WLi < k, and similarly, we can get the correct result
by calling the subroutine as described in Explanation which is guaranteed by the induction
hypothesis.
Note: The helper subroutine get_median is not affected by ∑Wi &= 1 as the sum of weights
are normalized by Wscale = ∑Wi that should compare with 0.5∗Wscale instead of just 0.5. The
main subroutine fast_select is also not affected, as we have used percentile k instead
of 0.5 to split the array, which could also solve the searching problem in the right part as
discussed in Explanation. Also, the situation with duplicate values of pivot is considered that
∑WMi is introduced to calculate all weights of the current pivot value.

Termination
The algorithm is diminishing the problem size, as after executing split, there must be at

least 1 element (i.e., the median) excluded from the original list, as we could only continue
searching in the left sub-list or the right sub-list. Hence, the base case should cover all n ∈N+,
as from the base case, there must be at least one |AL|> 0 or |AR|> 0, and then we can continue
to split in the middle in the other part even if one of |AL or AR is empty.

5

Complexity
The helper subroutine get_median has the time complexity of O(1), as there is always n=

w= 5 tuples to sort with one time of n<w= 5 tuples. The complexities of get_median_arr
and split are both O(n) as introduced in the lecture without the increase in the most
significant term in complexity from the implementation.

For the main subroutine fast_select, from Master Theorem (at Page 11 of this UCSD
slide), we have the recurrence of fast_select in the form T (n) = T (3n

4)+2n in the worst
case with 2n∈O(n), then with a = 1 and bd = (4

3)
1 = 4

3 > a, T (n)∈O(n1) = O(n). The proof of
both 3

4 and the complexity of O(n) with w≥ 5 in fast_select is introduced in the lecture,
as well as that the structure of fast_select does not change in complexity (i.e., there is
no new call to any function).

Appendix

Code (Python) of O(n log(n)) for Reference

1 from typing import List, Tuple
2
3 def readline_floats() -> List[float]:
4 return list(float(x) for x in input().split(" "))
5
6 def solve(A: List[float], W: List[float]) -> float:
7 S: List[Tuple[float, float]] = sorted(zip(A, W), key=lambda x:

x[0])
8 A_s: List[float] = [x for x, _ in S]
9 W_s: List[float] = [x for _, x in S]

10 W_scale = sum(W)
11 W_sum: float = 0.0
12 for i in range(len(A)):
13 if W_sum < 0.5 * W_scale and W_sum + W_s[i] >= 0.5 *

W_scale:
14 return A_s[i]
15 W_sum += W_s[i]
16 return -1
17

6

18 if __name__ == "__main__":
19 A = readline_floats() # 40 -5 4 0 2.5 6 -2
20 W = readline_floats() # .25 .1 .05 .18 .15 .2 .07
21 print(solve(A, W))

Code (Python) for Test Cases Generation

1 import cyaron
2 import correct # reference program above
3 import numpy as np
4
5 if __name__ == "__main__":
6 for data_id in range(2):
7 io = cyaron.IO("test" + str(data_id) + ".in", "test" + str

(data_id) + ".ans")
8 n = cyaron.randint(1, 100)
9 W_raw = np.random.rand(n).tolist()

10 W_sum = sum(W_raw)
11 W = [w / W_sum for w in W_raw]
12 A = np.random.randint(-100, 100, size=n).tolist()
13 io.input_writeln(A)
14 io.input_writeln(W)
15 io.output_writeln(correct.solve(A, W))

Test Cases

Input: A← [40.0,−5.0,4.0,0.0,2.5,6.0,−2.0]; W ← [0.25,0.1,0.05,0.18,0.15,0.2,0.07]
Output: 2.5

7

Input: A← [-62.0, -59.0, -80.0, 64.0, -93.0, -11.0, -70.0, 2.0, -99.0, 60.0, -65.0, 22.0, 7.0,
77.0, -75.0, 75.0, -45.0, -45.0, 42.0, -49.0, 95.0, 54.0, 54.0, 31.0, 2.0, -32.0, -37.0,
-70.0, -20.0, 31.0, -3.0, -20.0, 92.0, 99.0, 34.0, 89.0, 66.0, 36.0, 99.0, -7.0, 83.0,
-31.0, 75.0, -50.0, 27.0, -89.0, -93.0, -39.0, -28.0, -13.0, -15.0, -80.0, 4.0, -19.0];
W ← [0.009635088510133326, 0.01730005414042247, 0.02205677079879268,
0.02037726477755056, 0.023309273988243534, 0.0020798175336173234,
0.00646417831224761, 0.01440650755439465, 0.029622716607202865,
0.005088972287934939, 0.02917462263618285, 0.009359093492039219,
0.02840509054872456, 0.0034666670373809183, 0.017105965508466214,
0.007954253637394796, 0.010931245263376382, 0.024797288149057933,
0.02927029514042684, 0.014964927952948305, 0.030544887305412625,
0.0061719533271399965, 0.028780346395749192, 0.014494666008948831,
0.004884289444556541, 0.022578017782974833, 0.01876316887585921,
0.01999550468439874, 0.0023745843458433027, 0.03436804250114482,
0.014978248692100479, 0.03304836667207052, 0.007752614318740494,
0.017687473374281594, 0.015500061550499624, 0.010520516206031446,
0.030807729492458854, 0.013576018263922247, 0.02759272950897091,
0.02913873838234767, 0.012867570369263876, 0.022035106390367726,
0.003634433211453344, 0.025695598581046, 0.03203468856922726,
0.018508760024377784, 0.03646994329808107, 0.025424496112484707,
0.022800855532513948, 0.008121468814818945, 0.01168070992222032,
0.011188343835430242, 0.02763261403225525, 0.03257736029646955]

Output: −15.0

8

