
CS 577: Introduction to Algorithms Fall 2022

Homework 3

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

This homework covers dynamic programming. Problem 3 must be submitted for grading by
the start of class on 10/4, i.e., by 2:29pm. Please refer to the homework guidelines on Canvas
for detailed instructions. For this assignment, include a space complexity analysis in addition to
the usual time complexity analysis.

Warm-up problems

1. Suppose you are given a string of letters representing text in some foreign language, but with-
out any spaces or punctuation. You want to break this string into its individual constituent
words. For example, you might be given the following passage from Cicero’s famous oration
in defense of Lucius Licinius Mureta in 62bce, in the scriptia continua of classical Latin:

PRIMVSDIGNITASINTAMTENVISCIENTIANONPOTEST
ESSERESENIMSVNTPARVAEPROPEINSINGVLISLITTERIS
ATQVEINTERPVNCTIONIBUSVERBORVMOCCVPATAE1

A fluent Latin reader would parse this string (in modern orthography) as Primus dignitas
in tam tenui scientia non potest esse; res enim sunt parvae, prope in singulis litteris atque
interpunctionibus verborum occupatae.

Some strings can be parsed in multiple ways, but you are not concerned with that. You want
to know, given a string S of n characters, can it be segmented into words at all? Assume
you have access to a subroutine IsWord(i, j) that takes indices i, j with i  j as input and
indicates whether S[i . . . j] is a “word” in the foreign language, and that it takes constant
time to run.

Design an algorithm that solves this problem in O(n2) time.

2. Recall that a subsequence of an array is obtained by deleting any number of positions (possibly
none, possibly all). A subarray is a sequence in which the positions that are not deleted form
an interval (possibly empty). For example, consider the array (�1,�2,�3,�4,�5). A valid
subsequence is (�1,�3,�5); it is not a subarray. A valid subarray is (�2,�3).

You are given an array A[1 . . . n] of integers and want to find the maximum sum of the
elements of (a) any subsequence, and (b) any subarray. The sum of an empty subarray is 0.
For the example above, the maximum-sum subarray and subsequence has length zero.

Design an O(n) algorithm for both problems.

Regular problems

3. [Graded] The library has n books that must be stored in alphabetical order on adjustable-
height shelves. The i-th book has height h[i] and thickness t[i], i 2 [n]. The width of the

1“First of all, dignity in such paltry knowledge is impossible; this is trivial stu↵, mostly concerned with individual
letters and the placement of points between words.”
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shelf is fixed at w, and the sum of the thicknesses of books on a single shelf cannot exceed w.
The next shelf will be placed atop the tallest book on the shelf. You can assume the shelving
takes no vertical space.

Design an algorithm that minimizes the total height of shelves used to store all the books.
You are given the list of books in alphabetical order. Your algorithm should run in time
O(n2).

4. When you were little, every day on your way home from school you passed the house of your
grandmother. If you stop by for a chat on day i, Grandma would give you a number `[i] of
lollipops but also tell you that she won’t give you any more lollipops for the next k[i] days.
For example, if day 1 is a Monday and k[1] = 3, then if you visit her that day, you would
have to wait patiently until Friday to get your next lollipop.

Design an O(n) algorithm that takes as input the arrays `[1 . . . n] and k[1 . . . n], and outputs
the maximum number of lollipops you can get during those n days.

5. You want to go running and have n minutes to spare. You want to run as long a distance as
possible, but your exhaustion level cannot exceed a given limit e. Initially your exhaustion
level is zero. During each minute, you can choose to either run or rest for the whole minute.
When you choose to run the i-th minute, you run exactly d[i] feet during that minute, and
your exhaustion level increases by one. When you choose to rest, you run zero feet during
that minute, and your exhaustion level decreases by one (if your exhaustion level is already
zero, it will stay zero). Moreover, when you choose to rest, you must continue to rest until
your exhaustion level reaches zero; once it reaches zero, you can again choose to run or rest.
Finally, your exhaustion level at the end of your run must be zero.

For example, for e = 2 and d[1 . . . 5] = (500, 300, 400, 200, 1000), the best you can do is to run
during minutes 1 and 3, and rest the other minutes, so the answer is 500 + 400 = 900.

Design an algorithm that takes a positive integer e and an array d[1 . . . n] of n � 1 positive
integers as input, and ouputs the maximum distance you can run subject to the constraints
above. Your algorithm should run in time O(ne) and space O(e).

Challenge problem

6. There is a famous joke-riddle for children:

Three turtles are crawling along a road. One turtle says, “There are two turtles
ahead of me.” Another turtle says, “There are two turtles behind me.” The third
turtle says, “There are two turtles ahead of me and two turtles behind me.” How
could this have happened? Of course, the third turtle is lying!

In this problem you have n turtles crawling along a road. Some of them are crawling side-
by-side, so there may be turtles that are neither ahead nor behind one another. Each turtle
makes a statement of the form: “There are ai turtles ahead of me, and bi turtles behind me.”

Your task is to find the minimal number of turtles that must be lying. More formally, let xi
denote the position along the road of turtle i, 1  i  n. Some turtles may be at the same
position. Turtle i tells the truth if and only if ai is the number of turtles j such that xj > xi

and bi is the number of turtles j such that xj < xi. Otherwise, turtle i is lying.

Design an O(n log n) algorithm for this problem.
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Programming problem

7. SPOJ problem Coins Game (problem code MCOINS).
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CS 577: Introduction to Algorithms Fall 2022

Homework 1 Solutions to Warm-Up Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroieski

Problem 1

You want to know, given a string S of n characters, can it be segmented into words? Assume
you have access to a subroutine IsWord(i, j) that takes indices i, j with i  j as input and
indicates whether S[i, . . . , j] is a “word” in the foreign language, and that it takes constant
time to run.

Design an algorithm that solves this problem in O(n2) time.

Denote the input as an array S[1, . . . , n] of letters. Observe that, if S can be segmented, then
the last letter in S is the last letter of some word, and the prefix of S without that word can also
be segmented. In other words, there is some position j so that IsWord indicates S[j +1, . . . , n] is
a word, and a recursive computation on S[1, . . . , j] reveals that it can be segmented. We can, for
all possible j, check directly whether the former condition holds, and check the latter condition by
recursion. If any one of choice of j works, then S is segmentable; otherwise, it is not.

Over the course of such a computation, each recursive call to our procedure operates on a prefix
of S. This suggests to define the values CanSeg(i), i = 0, . . . , n, where CanSeg(i) is True or False
according to whether S[1, . . . , i] can be segmented. Here, S[1, . . . , 0] denotes the empty string; we
define it to be segmentable as this makes for a convenient base case below. The answer we seek
is precisely CanSeg(n). Following the above discussion, we can compute it using the following
recurrence:

CanSeg(i) =

8
<

:
True : i = 0
W

0j<i
CanSeg(j) ^ IsWord(j + 1, i) : i > 0 .

The _ represents a Boolean or (|| in Java), and ^ represents a Boolean and (&& in Java).
This recurrence can be implemented via a recursive algorithm that is made e�cient through

the use of memoization.
It can also be made iterative. Computing CanSeg(i) requires knowing CanSeg(j) only for j < i.

So starting from the base case of i = 0 and working up ensures that when we compute CanSeg(i),
all the required values of CanSeg(j) have already been computed. Pseudocode for this iterative
implementation is given in Algorithm 1.

Correctness Correctness essentially follows from the first paragraph above. More formally, we
argue that for all inputs S[1, . . . , n] and indices i = 0, . . . , n, the recurrence for CanSeg(i) correctly
computes the definition of CanSeg(i). We do this by induction on i.

Base case: The base case is when i = 0. CanSeg(0) is computed according to its definition.

Inductive step: In the inductive step, we have i > 1. S[1, . . . , i] can be segmented if and only if there
is an index 0  j < i so that S[1, . . . , j] is empty or can be segmented, and so that S[j+1, . . . , i]
is a word. For each fixed j, the inductive hypothesis implies that CanSeg(j)^IsWord(j+1, i)
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Algorithm 1 Text Segmentation

Input: string S[1, . . . , n], access to IsWord
Output: indicate whether S can be segmented into words
1: procedure Segment(A)
2: CanSeg[0, . . . , n] fresh array of Booleans
3: CanSeg[0] True

4: for i 1 to n do

5: CanSeg[i] 
W

0j<i
CanSeg[j] ^ IsWord(j + 1, i)

6: return CanSeg[n]

correctly tests whether j satisfies that condition. Therefore, S can be segmented if and only
if there is j so that the j-th term in the or in the recurrence for CanSeg evaluates to True;
that is, if and only if the or evaluates to True. This establishes the inductive step.

That the recurrence for CanSeg(i) correctly computes its specification now follows by induction.
This also proves that a recursive implementation with memoization is correct. Correctness of the
iterative version, Algorithm 1, follows, because it fills in CanSeg[i] = CanSeg(i) for i = 0, . . . , n
using the recurrence.

Time and space analysis There are n+1 = O(n) values of CanSeg(·) to compute. Each requires
examining O(n) values of j, and for each value of j, the work is constant. The overall work done
in the recursive implementation with memoization is therefore O(n2). The space is the number of
calls to memoize, which is O(n).

As for Algorithm 1, direct inspection reveals that it runs in O(n2) time and uses O(n) space.
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Problem 2

You are given an array A[1, . . . , n] of integers and want to find the maximum sum of the
elements of (a) any subsequence, and (b) any subarray. The sum of an empty subarray is 0.
For the example above, the maximum-sum subarray and subsequence has length zero.

Design an O(n) algorithm for both problems.

In the subsequence case, the maximum sum is exactly equal to the sum of all the positive
elements in A. This can be computed easily in linear time with a single sweep through A.

As for the maximum-sum subarray, we take a dynamic programming approach. We find, for
every position i in the array, the maximum sum of a subarray that is a su�x of A[1, . . . , i] (including
possibly the empty array). Since every subarray of A is the su�x of A[1, . . . , i] for some i, taking
the maximum of all those values gives the maximum sum among all subarrays of A.

Fix a position i. We partition the su�xes of A[1, . . . , i] into two cases: each su�x is either
the empty su�x (in which case its sum is 0), or A[k, . . . , i] for some k  i. In the latter case,
A[k, . . . , i] is a su�x of A[1, . . . , i� 1] plus A[i]; the maximum sum of such a subarray is A[i] plus
the maximum sum of a su�x of A[1, . . . , i � 1]. The maximum of the two cases gives us the best
value for subarrays ending at position i.

This reasoning implies that, given the maximum sum for subarrays that are su�xes ofA[1, . . . , i�
1], we can compute the maximum sum of subarrays that are su�xes of A[1, . . . , i] with a constant
number of operations. We define the quantity OPT(i) for 1  i  n as the maximum sum of a
subarray of A that ends at index i, including possibly the empty array. OPT satisfies the following
recurrence:

OPT(i) =

(
max(0, A[1]) : i = 1

max(0, A[i] + OPT(i� 1)) : i > 1

The final output is then max1inOPT(i).
The recurrence can be computed via a recursive algorithm that is made e�cient through mem-

oization. The final output can be computed by a wrapper procedure, where the memoization table
is re-used from one computation of OPT to the next.

OPT can also be computed iteratively. Computation of OPT(i) depends only on OPT(i � 1),
so starting from the base case of i = 1 and working up ensures that, when we compute OPT(i),
OPT(i� 1) has already been computed. The iterative algorithm moreover needs only to remember
the most recently-computed value of OPT at a time, and it can compute max1inOPT(i) on the
fly. This allows for a more economical use of space. Pseudocode for this iterative implementation
is given in Algorithm 2.

Correctness Correctness essentially follows from the above discussion. Formally, we argue that,
for all inputs A[1, . . . , n] and indices i = 1, . . . , n, the recurrence for OPT(i) correctly computes the
definition of OPT(i). We do this by induction on i.

Base case: The base case is when i = 1. There are only two subarrays that are su�xes of A[1, . . . , 1]:
their sums are 0 and A[1]. Thus OPT(1) is the maximum of these two.

Inductive step: For the inductive step, i > 1. Every subarray that is a su�x of A[1, . . . , i] is either
empty with sum zero or, for some k, the concatenation of a subarray A[k, . . . , i � 1] with
A[i]. In the latter case, the sum of the subarray is maximized by maximizing the sum of the

3

Algorithm 2 Maximum Sum Subarray

Input: array A[1...n] of integers
Output: maximum sum of a subarray of A
1: procedure MaximumSumSubarray(A)
2: OPT max(0, A[1])
3: M  OPT
4: for i 2 to n do

5: OPT max(0, A[i] + OPT)
6: M  max(M,OPT)

7: return M

subarray that is a su�x of A[1, . . . , i� 1]. By the inductive hypothesis, the maximum sum of
such a subarray is OPT(i�1). It follows that OPT(i) is the larger of 0 and OPT(i�1)+A[i].

That OPT(i) correctly computes its definition now follows by induction. This also proves that a
recursive implementation with memoization is correct. As for correctness of Algorithm 2, it can
be verified that before the for loop, OPT stores OPT(1) and M stores OPT(1), and that after
iteration i, OPT stores OPT(i) and M stores the maximum among OPT(1), . . . ,OPT(i). It follows
that the returned value of M coincides with the correct output.

Time and space analysis There are n entries of OPT to compute. Each requires only a constant
number of operations. So a recursive implementation with memoization would require overall linear
time. It uses linear space for the memoization table.

As for Algorithm 2, direct inspection reveals it runs in linear time and uses only constant space.
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CS 577: Introduction to Algorithms Fall 2022

Homework 1 Solutions to Regular Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroieski

Problem 3

The library has n books that must be stored in alphabetical order on adjustable-height shelves.
The i-th book has height h[i] and thickness t[i], i 2 [n]. The width of the shelf is fixed at w,
and the sum of the thicknesses of books on a single shelf cannot exceed w. The next shelf will
be placed atop the tallest book on the shelf. You can assume the shelving takes no vertical
space.

Design an algorithm that minimizes the total height of shelves used to store all the books.
You are given the list of books in alphabetical order. Your algorithm should run in time O(n2).

The input consist of n books b1, . . . , bn, where bi has height h[i] and thickness t[i]. Consider
the possibilities for the last level of books. Since we have to put the books on the shelf in order,
the last level must consist of a su�x of the books, i.e., bi, . . . , bn for some i 2 [n]. The books have
to fit on the shelf, so the choice of i has to satisfy

P
ijn t[j]  w. Any choice of i satisfying that

constraint is a valid possibility.
As for which choice of i is the best, first note that if all the books fit on one shelf (i.e., the case

i = 1 above), then doing that is the optimal way to shelve the books. This is because the total
height has to be at least the height of the tallest book, and this limit is attained with all the books
on the same shelf.

When not all the books fit on one shelf, the best choice of i is less clear. We can observe that
for a fixed choice of i, the height of the last level is fixed also: it is maxijn h[j]. So among
all shelvings of books that place bi, . . . , bn on the last shelf, the best one minimizes the height of
shelving for books b1, . . . , bi�1, and then places the last shelf atop that. Minimizing the height
of shelving for b1, . . . , bi�1 is a smaller instance of the same problem, so we can find a solution
recursively. In this way, we can find for each i the minimum-height shelving among those that
place books bi through bn on the last level. The overall best shelving for b1, . . . , bn can be found by
choosing for i the best among the valid possibilities

Subproblems and recurrence This intuition gives us a recursive solution. The subproblems
handled by recursive calls are parametrized by an index `, 1  `  n, where the `-th subproblem
is to minimize the total height of shelving for b1, . . . , b`. Let OPT (`) denote this minimum total
height; we want to know OPT (n). Per the above discussion, we can compute OPT (n) using the
following recurrence:

OPT (`) =

8
><

>:

max
1j`

h[j] : books 1 through ` fit on one shelf

min
i2S`

✓
OPT (i� 1) + max

ij`
h[j]

◆
: otherwise

where S` denotes the set of indices i  ` such that books bi, . . . , b` can fit on one shelf.
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This recurrence can be computed by a recursive algorithm. As the number of possibilities for `
is small (only n), memoization will make this recursive procedure e�cient. A näıve evaluation of
the recurrence performs ⇥(n2) local work giving ⇥(n3) running time overall; however, with some
care (see the paragraph after the next), the work local to a recursive call can be done in O(n) time.
This leads to an overall O(n2) running time.

We can also compute the recurrence iteratively. Computation of OPT (`) depends only on
knowledge of OPT (i) for i < `, so starting from ` = 1 and working up ensures that, when we
compute OPT (`), all requisite OPT (i) have already been computed.

It remains to say how to compute OPT (`) in O(n) time given OPT (i) for i < `. OPT (`) is
the minimum of OPT (i� 1) +maxij` h[j] as i ranges through those where

P
ij` t[j]  w. We

iterate through the choices of i, starting with i = ` and working downward. Along the way, we
maintain the values h = maxij` h[j] and t =

P
ij` t[j]. As long as t  w, i is in S`. OPT (`) is

the minimum value of OPT (i� 1) + h during the iteration. We can compute the initial values for
h and t in constant time, since when i = `, we have h = h[`] and t = t[`]. We can also update h
and t from one value of i to the next in constant time by using the update rules h max(h[i], h)
and t t[i] + t. As there are at most n values of i to try, there are at most n updates, so the total
work done is O(n), as desired.

For clarity, pseudocode, including the O(n)-time way to compute OPT (`), is given in Algo-
rithm 1.

Correctness Correctness essentially follows from the above discussion. More formally, we prove
for all ` that the recurrence for OPT (`) correctly computes its definition. We do this by induction
on `.

Base case: The base cases are when books b1, . . . , b` fit onto one shelf. As discussed above, the
minimum-height shelving is to put all the books on one shelf, in which case the height is the
height of the tallest book.

Inductive step: The inductive step needs only address when books b1, . . . , b` do not fit onto one shelf.
Given this, for every feasible shelving, there is some index i 2 S` so that books bi, . . . , b` go
onto the top shelf, and books b1, . . . , bi�1 are shelved optimally beneath them. The height
of the shelf for bi, . . . , b` is the largest height of those books. Also, the minimum-height of a
shelving for b1, . . . , bi�1 is OPT (i � 1), by the inductive hypothesis. So for each i 2 S`, the
optimal shelving placing books bi, . . . , b` on the top shelf has height OPT (i�1)+maxij` h[j].
As this accounts for all feasible shelvings, choosing i 2 S` to minimize this quantity correctly
minimizes the height of shelving for books b1, . . . , b`. This proves the inductive step.

That the recurrence for OPT (·) correctly computes the definition of OPT (·) now follows by induc-
tion. This also proves that a recursive implementation with memoization is correct.

Correctness of the iterative version, Algorithm 1, follows, because it fills in OPT [`] = OPT (`)
in an order such that the values OPT [i] needed to evaluate the recurrence for OPT (`) have already
been computed before they are needed.

Time and space analysis There are n values of OPT to compute. The local work required
to compute some OPT (`) is O(n). So the overall work done by a recursive implementation with
memoization is O(n2). It uses O(n) space for the memoization table.
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Algorithm 1

Input: arrays h[1 . . . n] and t[1 . . . n] of positive integers denoting the height and thickness of each
book; a positive integer w denoting the width of the shelf

Output: the minimum height of a shelving for the books
1: procedure ComputeMinimumHeight(h[1 . . . n, t[1 . . . n, w)
2: OPT [1 . . . n] fresh array

Here we fill in the base cases

3: ` 1
4: t t[1] . t tracks the thickness of the current shelf
5: h h[1] . h tracks the maximum height of the current shelf
6: OPT [1] h
7: while `+ 1  n and t+ t[`+ 1]  w do

8: ` `+ 1
9: t t+ t[`]

10: h max(h, h[`])
11: OPT [`] h

Here we compute the recursive cases

12: while `+ 1  n do

13: ` `+ 1
14: i ` . First consider i = ` . . .
15: t ti . t =

P
ij` t[j]

16: h h[i] . h = maxij` h[j]
17: OPT [`] OPT [i� 1] + h
18: while t+ t[i� 1]  w do . . . . then consider smaller i until books don’t fit
19: i i� 1
20: t t[i] + t
21: h max(h[i], h)
22: OPT [`] min(OPT [`], OPT [i� 1] + h)

Here we return the final answer

23: return OPT [n]

As for the iterative implementation in Algorithm 1, inspection reveals that each while loop
makes at most n iterations. They are nested two deep, so the running time is at most O(n2). Space
usage is dominated by the array OPT , and it takes O(n) space.

Alternate Solution

A natural way to approach the problem is to try keeping track of the remaining space in the last
shelf in addition to a prefix of the books that we want to organize. Note, however, that since the
remaining space is a real number, we can’t directly keep track of it in the indices of the subproblem
specification. To deal with this, we have the subproblem specification keep track of the first book
(and thus of all books) that are in the last shelf, as this gives us enough information to compute
the remaining space. This idea leads to a two-dimensional subproblem specification, that we define
next.
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Subproblems and recurrence For 1  i  j  n, OPT (i, j) is the minimum height required
to shelve books 1, . . . , j given that the last shelf contains books i, . . . , j. If this is not possible, then
OPT (i, j) =1. Given this subproblem specification, the final answer that the algorithm needs to
compute is min1in(OPT(i, n)).

Now, how do we compute OPT (i, j)? Let us start with the base case. If j = 1, then it must be
the case that i = 1 and we have OPT (1, 1) = h[1] by shelving the single book. For i < j, we can
use the value of OPT (i, j�1) to help: We check whether book j would fit together with the others
on the last shelf. If not, then the answer is 1, otherwise, the answer will be OPT (i, j � 1) plus
whatever extra height we get from book j (which may be 0 if it is shorter than the others). To write
out the recurrence, we introduce some notation that not only simplifies the expression but ends
up being necessary to obtain an e�cient solution (we get into more detail about this later). Let
W [`, k] be the sum of the widths of books `, . . . , k for 1  `  k  n and H[`, k] be the maximum
height among books `, . . . , k, again for 1  `  k  n. Then, our recurrence for i < j is

OPT (i, j) =

(
OPT (i, j � 1) + (H[i, j]�H[i, j � 1]) if W [i, j]  w,

1 otherwise.

What about OPT (i, i)? In this case, we know that we get a contribution of h[i] from the i-th
book, but then we need to shelve the remaining i � 1 books optimally as well, and to do this we
need to try all possibilities for the first book on the last shelf. This leads to the following recurrence
for 2  i  n

OPT (i, i) = h[i] + min
1`i�1

(OPT (`, i� 1))

Notice that, by setting OPT (i, j) = 1 when books i, . . . , j don’t fit on the same shelf, we don’t
need to worry about only considering values of ` such that the books `, . . . , i�1 fit in a single shelf.
Correctness essentially follows from the discussion above, and we leave a formal proof of correctness
as an exercise.

Time and space analysis Analyzing the running time for this recurrence is a little trickier
since it has two di↵erent formats depending on the values of i and j. Notice, however, that we have
O(n2) subproblems, so to get a running time of O(n2) we need to be able to compute individual
entries in H and W in constant time, which seems hard to do. However, we can use another layer
of dynamic programming to precompute all of those values in time O(n2). For table W , the base
cases are W [i, i] = w[i] for all i. For i < j, the recurrence is then

W [i, j] = W [i, j � 1] + w[j],

which leads to O(1) time per entry and a total of O(n2) for computing every entry. For H, we do
something similar. H[i, i] = h[i] for every i and

H[i, j] = max(H[i, j � 1], h[j])

for i < j. This again leads to O(1) time per entry and a total of O(n2) for computing every entry.
Finally, computing OPT [i, j] for i < j takes time O(1) per entry, while computing OPT [i, i]

takes time O(n) per entry. Thankfully, there are only O(n) entries of the second type, so the final
running time is still O(n2).
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As for the space complexity, a recursive solution with memoization requires space O(n2) for
storing the OPT table (as well as tables H and W ). Notice, however, that to compute column j of
OPT we only need to know the values of OPT at column j � 1. Therefore, an iterative implemen-
tation that only keeps two columns in memory improves the space complexity of computing OPT
to O(n), but we would still require space O(n2) to store H and W . To deal with this, we use a
similar strategy: To compute OPT for a column j, we just need to know the values of H and W
at column j, and these only depend on column j� 1 of the respective table. Therefore, we can just
keep two columns of H and W in memory and update these along the way, together with OPT .
This leads to an implementation with space complexity O(n).

Observation Note that, at its core, this solution ends up being almost the same as the previous
one: All of the actual decisions are made when computing the entries OPT [i, i], which essentially
amount to computing OPT [i� 1] + h[i] (where here OPT refers to the previous solution).
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Problem 4

When you were little, every day on your way home from school you passed the house of your
grandmother. If you stop by for a chat on day i, Grandma would give you a number `[i] of
lollipops but also tell you that she won’t give you any more lollipops for the next k[i] days.
For example, if day 1 is a Monday and k[1] = 3, then if you visit her that day, you would have
to wait patiently until Friday to get your next lollipop.

Design an O(n) algorithm that takes as input the arrays `[1 . . . n] and k[1 . . . n], and outputs
the maximum number of lollipops you can get during those n days.

We can reduce an instance of this problem to an easier instance of the same problem by con-
sidering the first decision we need to make: Do we get lollipops on the first day or not? If we do,
then we get `[1] lollipops the first day, and we additionally need to find the maximum number of
lollipops we can get during days 1+ k[1] + 1 through n. Otherwise, we do not get any lollipops the
first day, and need to find the maximum number of lollipops we can get during days 2 through n.
Overall, the maximum number of lollipops we can get during days 1 through n is the maximum of
the two possibilities.

Applying this idea recursively leads to subproblems of the following form: For 1  i  n,
OPT(i) denotes the maximum number of lollipops we can get during days i through n. The above
discussion yields the following recurrence:

OPT(i) = max

(
`[i] + OPT(i+ k[i] + 1),OPT(i+ 1)

)
,

where OPT(i) = 0 for i > n are convenient base cases. We use the recurrence to compute OPT(i)
for i = n, n� 1, . . . , 1, and return OPT(1).

Correctness To prove correctness of the recursive case of the recurrence for OPT, one divides
the possible lollipop-acquisition strategies into those that take the lollipops on day i, and those
that do not. The cases correspond to the two terms in the max above. We leave the remaining
details of a formal proof by induction on i as an exercise.

Time and space analysis There are O(n) subproblems, and each update takes constant time
and space. Therefore the total running time is O(n), and the total space is O(n).

Alternate solution As an alternate solution, we can e�ciently reduce this problem to weighted
interval scheduling. There is one interval for every day i, 1  i  n. The interval corresponding
to day i is [i, i + k[i]] and has weight `[i]. With this setup, a valid selection of days on which we
get lollipops corresponds to a valid interval schedule, and vice versa. Moreover, the total number
of lollipops we get equals the weight of the intervals scheduled.

Note that, apart from the initial sorting phase and the construction of the table p of predecessors,
the weighted interval scheduling algorithm from class takes time O(n). Also, while we sorted the
intervals by nondecreasing end time and went over them from back to front, we could as well sort
them by nondecreasing start time and go over them from the front to the back. (This is like reverting
the direction of the time axis.) Since we are given the intervals sorted by their start time, we do
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the latter as it obviates the need for the initial sorting. Moreover, we have that p(i) = i+ k[i] + 1,
so the table p can be computed in time O(n). With these provisos, the alternate solution also runs
in O(n) time.
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Problem 5

You want to go running and have n minutes to spare. You want to run as long a distance
as possible, but your exhaustion level cannot exceed a given limit e. Initially your exhaustion
level is zero. During each minute, you can choose to either run or rest for the whole minute.
When you choose to run the i-th minute, you run exactly d[i] feet during that minute, and
your exhaustion level increases by one. When you choose to rest, you run zero feet during that
minute, and your exhaustion level decreases by one (if your exhaustion level is already zero,
it will stay zero). Moreover, when you choose to rest, you must continue to rest until your
exhaustion level reaches zero; once it reaches zero, you can again choose to run or rest. Finally,
your exhaustion level at the end of your run must be zero.

Develop an algorithm that takes a positive integer e and an array d[1, . . . , n] of n � 1 positive
integers as input, and ouputs the maximum distance you can run subject to the constraints
above. Your algorithm should run in time O(ne) and space O(e).

The problem statement stipulates that whenever we start running, we can do so for at most e
minutes, after which we need to have an equal period of rest. The first decision we need to make is
(i) whether to run or rest during minute 1, and if run, then (ii) for how many consecutive minutes
m  e to run before starting to rest. In the rest case, it remains to solve the same problem for the
period starting from minute 2. In the run case, it remains to solve the same problem for the period
starting from minute 2m + 1 for each m 2 [e]. We pick the choice that leads to the longest total
distance run.

Subproblems and recurrence Recursive application leads to subproblems that correspond to
su�xes of the given array d[1, . . . , n]. We define OPT(i) for i 2 [n] to be the solution to the given
problem for exhaustion limit e and array d[i, . . . , n], and define OPT(n + 1)

.
= 0 as a convenient

base case. By the above reasoning, we have the recurrence

OPT(i) = max

0

@OPT(i+ 1), max
m2[e],i+2mn+1

0

@OPT(i+ 2m) +
i+m�1X

j=i

d[j]

1

A

1

A

for i = 1, . . . , n with OPT(n+ 1)
.
= 0 as the base case.

Correctness We formalize the case-work from the first paragraph to prove, by induction on i
(starting from i = n + 1 and working down), that the stated recurrence for OPT(i) computes the
definition of OPT(i).

Base case: The base case is i = n+ 1. OPT(n+ 1) is defined to be zero and is computed as such.

Inductive step: For the inductive step, i  n. Every solution for the su�x d[i, . . . , n] starts by
deciding to run or rest at minute i.

Among solutions that start by resting, the best we can do is given by OPT(i+1): when i < n
this follows from the definition of OPT(i+ 1); when i = n, resting at minute i concludes the
run after running 0

.
= OPT(i+ 1) distance.

Among solutions that start by running, each starts by running for some m minutes (minutes
i, . . . , i +m � 1), then rests for m minutes (minutes i +m, . . . , i + 2m � 1), and then either
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concludes (if i+ 2m = n+ 1) or else is a solution to the problem with su�x d[i+ 2m, . . . , n].
Here m is always at most e, and moreover must satisfy i+ 2m  n+ 1 in order to finish the
run with zero energy. For fixed m, the optimal distance covered is

Pi+m�1
j=i d[j] for the first

stretch plus OPT(i+ 2m) for the rest.

The maximum among all the possibilities (rest or run, and, if running, for how long) is there-
fore the optimal solution. This maximum is precisely what is computed by the recurrence.

Implementation and complexity We start with the entry OPT(n + 1)
.
= 0, and apply the

recurrence for i = n down to i = 1, which gives us the final answer OPT(1). We evaluate the term
for the run case by keeping track of a running sum s as in Algorithm 2. This way, the amount of
work per cell is O(e). As there are O(n) cells, this gives us a time complexity of O(ne).

Algorithm 2

1: OPT(i) OPT(i+ 1)
2: s 0
3: for m 1, . . . , e do

4: if i+ 2m  n+ 1 then

5: s s+ d[i+m� 1]
6: OPT(i) max(OPT(i),OPT(i+ 2m) + s)

Note that in order to apply the recurrence for OPT(i), we only need OPT(i+1) and OPT(i+2m)
for m  e. Thus, it su�ces to remember the last 2e cells computed. This gives a space complexity
of O(e).

Alternate solutions There are a number of natural alternate solutions:

• One may work with prefixes instead of su�xes of the array d[1, . . . , n].

• One may consider the above binary decision of run-or-walk only instead of also deciding on
the length m of the stretch to run. This idea can be developed by keeping track of two
additional pieces of information, namely the exhaustion level at the start, and if the level is
positive, whether we ended the previous minute by running or by resting. This results in two
two-dimensional tables with dimensions n⇥e, or one three-dimensional table with dimensions
n ⇥ e ⇥ 2, and constant work per table entry. A similar approach works for prefixes instead
of su�xes.

• Another way of developing this idea is to only keep track of the exhaustion level as additional
information, but in the case where we decide to rest during minute i with exhaustion level j,
to rest for j minutes and continue the process with minute i+j. This obviates the need for the
above n⇥ e table corresponding to ending the previous minute by resting, while maintaining
constant work per table entry. A similar approach works for prefixes instead of su�xes.
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