COMP SCI 577 Homework 03 Problem 3

Dynamic Programming
Ruixuan Tu
rtu70wisc.edu
University of Wisconsin-Madison
4 October 2022

Algorithm

Explanation

The entry point of this program is the subroutine main() to read the input (number of books N, all books $\left[B_{i}\right]=\left[\left(W_{i}, H_{i}\right)\right]$ (for width and height) with $i \in[0, N)$, and maximum of shelf width $W_{\text {lim }}$), the main subroutine is minHeightShelves(books, shelfWidth), and we want to solve the problem recursively using the subroutine solve(firstBook). We assume the subroutine solve(firstBook) for sub-problems returns the minimal height for books $\left[B_{i}\right]$ with $i \in[j, N)$ as the books are on some previous shelves that we do not care. Thus, the solution for all the books is solve (0) as B_{0} is the first of all books.
For the solve(firstBook) subroutine, we define the base cases solve $(n)=0$ (as there is no B_{n} be counted in height) and solve $(n-1)=H_{n-1}$ (as there is only one shelf $\left[B_{n-1}\right]$ for this situation, and its height is H_{n-1}). If some other situations are already solved, we just yield the solution instead of solving again. Then for any situation $\operatorname{solve}(j)$ which is not yet solved, we convert it into several sub-problems which are already solved (i.e., strong induction for all m such that $j<m \leq n$). For solve (j), we try to build a new shelf starting with B_{j} whose width does not exceed $W_{\text {lim }}$. If we attempt all possible, consecutive B_{m} 's as long as the width constraint is not violated, then for any B_{m} we have attempted, the next shelf must be starting with $B_{m}+1$, so that the solution for B_{j} is the sum of current height and the total height in the sub-problem, i.e., solve $(j)=\min _{0 \leq i \leq M}\left(\right.$ solve $\left.(j+i+1)+\max _{0 \leq k \leq i}\left(H_{j+k}\right)\right)$ with M be the maximum number of books on any shelf starting with B_{j}

```
Code (Python)
from typing import List
import numpy as np
class Solution:
    solutions: np.ndarray = None # solution[j] := height for
        books [j, N) on previous shelves
        n: int = None
        shelfWidth: int = None
        books: List[List[int]] = None # books [0, N)
        def solve(self, firstBook: int):
            if firstBook = self.n:
                return 0
            if self.solutions[firstBook] }\not=np.inf
            return self.solutions[firstBook]
            candidates = list()
            shelfw = 0
            shelfH = np.zeros(self.shelfWidth)
            shelfMaxBooks = 0
            for i in range(self.shelfWidth):
            if firstBook + i \geqslant self.n:
                break
            shelfW += self.books[firstBook + i][0]
            if shelfW > self.shelfWidth:
                    break
            if i = 0:
                    shelfH[i] = self.books[firstBook + i][1]
            else:
                shelfH[i] = max(shelfH[i - 1], self.books[
                    firstBook + i][1])
            shelfMaxBooks += 1
        for i in range(shelfMaxBooks):
            candidates.append(self.solve(firstBook + i + 1) +
                shelfH[i])
```

```
self.solutions[firstBook] = min(candidates)
        return self.solutions[firstBook]
    def minHeightShelves(self, books: List[List[int]], shelfWidth:
        int) }->\mathrm{ int:
        self.n = len(books)
        self.solutions = np.ones(self.n) * np.inf
        self.books = books
        self.solutions[self.n - 1] = self.books[self.n - 1][1]
        self.shelfWidth = shelfWidth
        return(int(self.solve(0)))
    def main(self):
        n, shelfWidth = tuple(int(x) for x in input().split(" "))
        w = list(int(x) for x in input().split(" "))
        h = list(int(x) for x in input().split(" "))
        books = list()
        for i in range(n):
            books.append([w[i], h[i]])
        print(self.minHeightShelves(books, shelfWidth))
if __name__ = "__main__":
    S = Solution()
    S.main()
```


Correctness

Induction

Claim: The algorithm is correct for all sub-problems starting with book B_{n} with $n \in \mathbb{N}$ and $n \leq N$.
Base Case: $n=N$ and $n=N-1$ as described in Explanation.
Inductive Step: Assume that the algorithm is correct for all m such that $n<m \leq N$ by strong induction. For $n=j$, we have the calculation correct, as we have attempted all combinations of possible consecutive book sequences starting from B_{j}, based on the correct results from the
induction hypothesis, which is stated in Explanation. The min and max equation for solve(j) holds, as all combinations are enclosed by the outmost min with the max just for counting the maximum height as the shelf height for any book sequence, and we optimize the max to be parallel to min to be $O(n)$ instead of $O\left(n^{2}\right)$, as the function max is monotonic that we can just compare the last one with the current one.

Termination

The algorithm must terminate, as the attempt on one shelf stops when either the $W_{\text {lim }}$ constraint or the $i+j \geq N$ constraint is reached so that $i+j$ is always in the range $[i, N]$ without violating the base case. The latter constraint does not affect the correctness, as there is no book to count for height on and after B_{N}.

Complexity

For one shelf starting with j, the worst case is $n-j=O(n)$ attempts to construct the shelf, ignoring the width constraint, as we retrieve, calculate, and select the values from subproblems with the retrieval complexity $O(1)$ for one sub-problem as they are memorized by calculation in other shelves with different starting books. Hence, there are $n=O(n)$ subproblems, as $j \in[0, N)$ for the starting book. Therefore, the time complexity of this algorithm is $n * O(n)=O\left(n^{2}\right)$.
We have one list solutions of length N and two temporary lists shelfH and candidates of length no greater than $N-j=O(n)$. As $N+2 * O(n)=O(n)$, the space complexity of this algorithm is $O(n)$.

Appendix

Code (Python) of Slower but Correct Version (Draft)
Because we do not care how many shelves we have used, so the first dimension shelf should be removed to reduce the complexity, and the second dimension firstBook be kept for the final solution.
1 from typing import List
2 import numpy as np
lass Solution:
solutions: np.ndarray $=$ None
n : int $=$ None
shelfwidth: int = None
books: List[List[int]] = None
def solve(self, shelf: int, firstBook: int): if firstBook $=$ self.n: return 0
if shelf \geqslant self.n or firstBook \geqslant self.n: return np.inf
if self.solutions[shelf][firstBook] $\neq n \mathrm{n}$.inf: return self.solutions[shelf][firstBook] candidates $=$ list()
shelfw = 0
shelfH = np.zeros(self.shelfWidth)
shelfMaxBooks = 0
for i in range(self.shelfWidth):
if firstBook $+i \geqslant$ self.n:
break
shelfw += self.books[firstBook + i][0]
if shelfW > self.shelfWidth:
break
if $i=0$:
shelfH[i] = self.books[firstBook + i][1]
else:
shelfH[i] $=\max ($ shelfH[i - 1], self.books[firstBook + i][1])

$$
\text { shelfMaxBooks }+=1
$$

for i in range(shelfMaxBooks):
candidates.append(self.solve(shelf +1 , firstBook + i + 1) + shelfH[i])
self.solutions[shelf][firstBook] = min(candidates) return self.solutions[shelf][firstBook]
def minHeightShelves(self, books: List[List[int]], shelfwidth: int) \rightarrow int:
self.n = len(books)
self.solutions $=n p$. ones $((s e l f . n$, self.n) $) * n p . i n f$
self.books = books
self.solutions[self.n - 1][self.n - 1] = self.books[self.n - 1][1]
self.shelfwidth = shelfwidth
return(int(self.solve(0, 0)))
def main(self):
n, shelfWidth $=$ tuple(int(x) for x in input().split(" "))
w = list(int(x) for x in input().split(" "))
$h=\operatorname{list}(i n t(x)$ for x in input().split(" "))
books = list()
for i in range(n): books.append([w[i], h[i]])
print(self.minHeightShelves(books, shelfWidth))

```
if __name__ = "__main__":
    --
    S.main()
```

Code (C++) for Incorrect Greedy Approach (Draft)

```
#include <iostream>
#include <climits>
using namespace std;
#define INF INT_MAX
struct State {
    int currentW;
    int currentH;
    int totalH;
```

```
1 };
```

int main() \{
int n, shelfwidth;
cin >> n >> shelfwidth;
int $w[n], h[n]$;
State dp[n][2];
for (int $i=0$; $i<n$; $i+$) cin > $w[i]$;
for (int $i=0$; $i<n$; $i++$) cin $\gg h[i]$;
$\mathrm{dp}[0][0]$. totalH $=$ INF;
$\mathrm{dp}[0][1]$. current $\mathrm{H}=\mathrm{h}[0] ; \mathrm{dp}[0][1]$. currentW $=\mathrm{w}[0] ; \mathrm{dp}[0][1]$.
totalh = h[0];
for (int $i=1$; $i<n$; i++) \{
State last;
if (dp[i - 1][0].totalH \leqslant dp[i - 1][1].totalH) last $=d p[$
i - 1][0];
else last = dp[i - 1][1];
dp[i][0].currentW = last.currentW + w[i]; dp[i][0].
currentH $=\max ($ last.currenth, h[i]);
$\mathrm{dp}[\mathrm{i}][0]$. totalH $=$ last.totalH - last.currenth $+\mathrm{dp}[\mathrm{i}][0]$.
currentH;
if (dp[i][0].currentW > shelfWidth) dp[i][0].totalH = INF;
dp[i][1].currentW $=\mathrm{w}[\mathrm{i}]$; dp[i][1].currentH = h[i]; dp[i
][1].totalH = last.totalH + h[i];
\}
if (dp[n-1][0].totalH \leqslant dp[n - 1][1].totalH) cout $\ll d p[n-$
$\begin{gathered}1][0] . t o t a l H\end{gathered}<$ endl;
1][0].totalH \ll endl;
else cout $\ll d p[n-1][1] . t o t a l H ~ \ll ~ e n d l ; ~$
33 \}

Test Cases

Input: $N \leftarrow 3 ; W_{\lim } \leftarrow 2 ; W \leftarrow[1,1,1] ; H \leftarrow[1,2,2]$
Output: 3
Input: $N \leftarrow 7 ; W_{\lim } \leftarrow 4 ; W \leftarrow[1,2,2,1,1,1,1] ; H \leftarrow[1,3,3,1,1,1,2]$
Output: 6

