
COMP SCI 577 Homework 03 Problem 3
Dynamic Programming

Ruixuan Tu
rtu7@wisc.edu

University of Wisconsin-Madison

4 October 2022

Algorithm

Explanation
The entry point of this program is the subroutine main() to read the input (number

of books N, all books [Bi] = [(Wi,Hi)] (for width and height) with i ∈ [0,N), and maximum of
shelf width Wlim), the main subroutine is minHeightShelves(books,shel fWidth), and we want to
solve the problem recursively using the subroutine solve(f irstBook). We assume the subroutine
solve(f irstBook) for sub-problems returns the minimal height for books [Bi] with i ∈ [j,N) as
the books are on some previous shelves that we do not care. Thus, the solution for all the
books is solve(0) as B0 is the first of all books.

For the solve(f irstBook) subroutine, we define the base cases solve(n) = 0 (as there is no
Bn be counted in height) and solve(n− 1) = Hn−1 (as there is only one shelf [Bn−1] for this
situation, and its height is Hn−1). If some other situations are already solved, we just yield
the solution instead of solving again. Then for any situation solve(j) which is not yet solved,
we convert it into several sub-problems which are already solved (i.e., strong induction for
all m such that j < m ≤ n). For solve(j), we try to build a new shelf starting with B j whose
width does not exceed Wlim. If we attempt all possible, consecutive Bm’s as long as the width
constraint is not violated, then for any Bm we have attempted, the next shelf must be starting
with Bm + 1, so that the solution for B j is the sum of current height and the total height in
the sub-problem, i.e., solve(j) = min0≤i≤M(solve(j + i+ 1)+max0≤k≤i(Hj+k)) with M be the
maximum number of books on any shelf starting with B j.

1

Code (Python)

1 from typing import List
2 import numpy as np
3
4 class Solution:
5 solutions: np.ndarray = None # solution[j] := height for

books [j, N) on previous shelves
6 n: int = None
7 shelfWidth: int = None
8 books: List[List[int]] = None # books [0, N)
9

10 def solve(self, firstBook: int):
11 if firstBook == self.n:
12 return 0
13 if self.solutions[firstBook] != np.inf:
14 return self.solutions[firstBook]
15 candidates = list()
16 shelfW = 0
17 shelfH = np.zeros(self.shelfWidth)
18 shelfMaxBooks = 0
19 for i in range(self.shelfWidth):
20 if firstBook + i >= self.n:
21 break
22 shelfW += self.books[firstBook + i][0]
23 if shelfW > self.shelfWidth:
24 break
25 if i == 0:
26 shelfH[i] = self.books[firstBook + i][1]
27 else:
28 shelfH[i] = max(shelfH[i - 1], self.books[

firstBook + i][1])
29 shelfMaxBooks += 1
30 for i in range(shelfMaxBooks):
31 candidates.append(self.solve(firstBook + i + 1) +

shelfH[i])

2

32 self.solutions[firstBook] = min(candidates)
33 return self.solutions[firstBook]
34
35 def minHeightShelves(self, books: List[List[int]], shelfWidth:

int) -> int:
36 self.n = len(books)
37 self.solutions = np.ones(self.n) * np.inf
38 self.books = books
39 self.solutions[self.n - 1] = self.books[self.n - 1][1]
40 self.shelfWidth = shelfWidth
41 return(int(self.solve(0)))
42
43 def main(self):
44 n, shelfWidth = tuple(int(x) for x in input().split(" "))
45 w = list(int(x) for x in input().split(" "))
46 h = list(int(x) for x in input().split(" "))
47 books = list()
48 for i in range(n):
49 books.append([w[i], h[i]])
50 print(self.minHeightShelves(books, shelfWidth))
51
52 if __name__ == "__main__":
53 S = Solution()
54 S.main()

Correctness

Induction
Claim: The algorithm is correct for all sub-problems starting with book Bn with n ∈ N and
n≤ N.
Base Case: n = N and n = N−1 as described in Explanation.
Inductive Step: Assume that the algorithm is correct for all m such that n < m≤N by strong
induction. For n = j, we have the calculation correct, as we have attempted all combinations
of possible consecutive book sequences starting from B j, based on the correct results from the

3

induction hypothesis, which is stated in Explanation. The min and max equation for solve(j)
holds, as all combinations are enclosed by the outmost min with the max just for counting the
maximum height as the shelf height for any book sequence, and we optimize the max to be
parallel to min to be O(n) instead of O(n2), as the function max is monotonic that we can just
compare the last one with the current one.

Termination
The algorithm must terminate, as the attempt on one shelf stops when either the Wlim

constraint or the i+ j ≥ N constraint is reached so that i+ j is always in the range [i,N]

without violating the base case. The latter constraint does not affect the correctness, as there
is no book to count for height on and after BN .

Complexity
For one shelf starting with j, the worst case is n− j = O(n) attempts to construct the

shelf, ignoring the width constraint, as we retrieve, calculate, and select the values from sub-
problems with the retrieval complexity O(1) for one sub-problem as they are memorized by
calculation in other shelves with different starting books. Hence, there are n = O(n) sub-
problems, as j ∈ [0,N) for the starting book. Therefore, the time complexity of this algorithm
is n∗O(n) = O(n2).

We have one list solutions of length N and two temporary lists shel f H and candidates of
length no greater than N− j = O(n). As N + 2 ∗O(n) = O(n), the space complexity of this
algorithm is O(n).

Appendix

Code (Python) of Slower but Correct Version (Draft)
Because we do not care how many shelves we have used, so the first dimension shelf

should be removed to reduce the complexity, and the second dimension firstBook be kept
for the final solution.

1 from typing import List
2 import numpy as np
3

4

4 class Solution:
5 solutions: np.ndarray = None
6 n: int = None
7 shelfWidth: int = None
8 books: List[List[int]] = None
9

10 def solve(self, shelf: int, firstBook: int):
11 if firstBook == self.n:
12 return 0
13 if shelf >= self.n or firstBook >= self.n:
14 return np.inf
15 if self.solutions[shelf][firstBook] != np.inf:
16 return self.solutions[shelf][firstBook]
17 candidates = list()
18 shelfW = 0
19 shelfH = np.zeros(self.shelfWidth)
20 shelfMaxBooks = 0
21 for i in range(self.shelfWidth):
22 if firstBook + i >= self.n:
23 break
24 shelfW += self.books[firstBook + i][0]
25 if shelfW > self.shelfWidth:
26 break
27 if i == 0:
28 shelfH[i] = self.books[firstBook + i][1]
29 else:
30 shelfH[i] = max(shelfH[i - 1], self.books[

firstBook + i][1])
31 shelfMaxBooks += 1
32 for i in range(shelfMaxBooks):
33 candidates.append(self.solve(shelf + 1, firstBook + i

+ 1) + shelfH[i])
34 self.solutions[shelf][firstBook] = min(candidates)
35 return self.solutions[shelf][firstBook]
36

5

37 def minHeightShelves(self, books: List[List[int]], shelfWidth:
int) -> int:

38 self.n = len(books)
39 self.solutions = np.ones((self.n, self.n)) * np.inf
40 self.books = books
41 self.solutions[self.n - 1][self.n - 1] = self.books[self.n

- 1][1]
42 self.shelfWidth = shelfWidth
43 return(int(self.solve(0, 0)))
44
45 def main(self):
46 n, shelfWidth = tuple(int(x) for x in input().split(" "))
47 w = list(int(x) for x in input().split(" "))
48 h = list(int(x) for x in input().split(" "))
49 books = list()
50 for i in range(n):
51 books.append([w[i], h[i]])
52 print(self.minHeightShelves(books, shelfWidth))
53
54 if __name__ == "__main__":
55 S = Solution()
56 S.main()

Code (C++) for Incorrect Greedy Approach (Draft)

1 #include <iostream>
2 #include <climits>
3 using namespace std;
4
5 #define INF INT_MAX
6
7 struct State {
8 int currentW;
9 int currentH;

10 int totalH;

6

11 };
12
13 int main() {
14 int n, shelfWidth;
15 cin >> n >> shelfWidth;
16 int w[n], h[n];
17 State dp[n][2];
18 for (int i = 0; i < n; i++) cin >> w[i];
19 for (int i = 0; i < n; i++) cin >> h[i];
20 dp[0][0].totalH = INF;
21 dp[0][1].currentH = h[0]; dp[0][1].currentW = w[0]; dp[0][1].

totalH = h[0];
22 for (int i = 1; i < n; i++) {
23 State last;
24 if (dp[i - 1][0].totalH <= dp[i - 1][1].totalH) last = dp[

i - 1][0];
25 else last = dp[i - 1][1];
26 dp[i][0].currentW = last.currentW + w[i]; dp[i][0].

currentH = max(last.currentH, h[i]);
27 dp[i][0].totalH = last.totalH - last.currentH + dp[i][0].

currentH;
28 if (dp[i][0].currentW > shelfWidth) dp[i][0].totalH = INF;
29 dp[i][1].currentW = w[i]; dp[i][1].currentH = h[i]; dp[i

][1].totalH = last.totalH + h[i];
30 }
31 if (dp[n - 1][0].totalH <= dp[n - 1][1].totalH) cout << dp[n -

1][0].totalH << endl;
32 else cout << dp[n - 1][1].totalH << endl;
33 }

Test Cases
Input: N← 3; Wlim← 2; W ← [1,1,1]; H← [1,2,2]
Output: 3
Input: N← 7; Wlim← 4; W ← [1,2,2,1,1,1,1]; H← [1,3,3,1,1,1,2]
Output: 6

7

