CS 577: Introduction to Algorithms	Fall 2022	
	Homework 4	
Instructor: Dieter van Melkebeek		TA: Nicollas Mocelin Sdroievski

This homework covers dynamic programming. Problem 3 must be submitted for grading by $\mathbf{2 : 2 9 p m}$ on $\mathbf{1 0} / \mathbf{1 1}$. Please refer to the homework guidelines on Canvas for detailed instructions.

Warm-up problems

1. Consider the sequence alignment problem from class, but instead of maximizing the numbe of matches we minimize the number of non-matches, i.e., the total number of mismatches and gaps.
For example, consider the sequences $A=a a b c d e$ and $B=b f g h a a$. An alignment that maximizes the number of matches is:
```
A: - - - - a a a blllll
B: lllllll
```

It has 2 matches and 8 non-matches (all 8 gaps).
An alignment that minimizes the number of non-matches is

$$
\begin{array}{lllllllllll}
A: & a & a & b & c & d & e & - & - \\
& & & \mid & X & X & X & & \\
B: & - & - & b & f & g & h & a & a
\end{array}
$$

It has 1 match and 7 non-matches (3 mismatches and 4 gaps).
Design an algorithm that takes as input two sequences $A[1 \ldots n]$ and $B[1 \ldots m]$, and output the minimum number of non-matches in an alignment of A and B. Your algorithm should un in time $O(m \cdot n)$.
2. Consider the multiplication defined in Table 1. For example, $a b=b$ and $b a=c$. Note that his multiplication is neither associative nor commutative.

Table 1: Multiplication Table

You want to know, given a string of n symbols a, b, c, with $n \geq 1$, whether or not it is possible to parenthesize the string in such a way that the value of the resulting expression is a. Fo xample, the string $b b b b a c$ can be parenthesized as $((b(b b))(b a)) c$, and that evaluates to a. Design an algorithm to solve this problem in time polynomial in n.

Regular problems

3. [Graded] A lab in the Chemistry department was running some experiments with some highly reactive liquid chemicals. Now that the experiments have ended (successfully), the lab assistant needs to place the n chemical substances into k bottles, which will then be shipped to facility for safe destruction. The chemicals are numbered 1 through n, and need to be place in the k bottles in this order. We know that $k<n$ so we have to mix some of the chemical ogether. The problem is that when some substances are mixed, chemical reactions betwee produce $e_{i j}$ units of energy In order to reduce the risk of explosion during transportation, we want to minimize the total amount of energy produced.
More formally, you are given a number k of bottles, a number n of substances, and nonnegative umbers $e_{i j}$ for every pair of substances. We need to determine integers $0 \leq t_{1} \leq t_{2} \leq \ldots \leq$ $t_{k-1}<n$ (indicating the last substances put in bottles 1 through $k-1$) such that

$$
\sum_{i=1}^{k} \sum_{t_{i-1}<\ell<m \leq t_{i}} e_{\ell m}
$$

is minimized, where $t_{0}=0$ and $t_{k}=n$. The inner sum in this expression represents the energy produced in bottle i
For example, consider the instance with $k=2, n=3$, and energies $e_{12}=10, e_{13}=5$, and $\epsilon_{32}=42$. Observe that there are 4 possible ways to split the 3 substances into the 2 bottles:

- Split 1: $\{1,2,3\}\}$

Split 2: $\{1\}\{2,3\}$

- Split 3: $\{1,2\}\{3\}$
- Split 3: $\}\{1,2,3\}$

The first and last ones are equivalent and yield a total energy of $42+5+10=57$. The second as energy 42 , and the third has energy 10 , so the answer is 10 . Note that if we could change he order of the substances, the energy could be reduced even further (bottle I contains $\{1,3\}$ and bottle 2 contains \{2\}, for a total energy of 5), but this is not allowed
(a) Design an $O\left(n^{2}\right)$ algorithm that outputs the (minimum) energies for the subinstances consisting of substances i through j for all $1 \leq i \leq j \leq n$ and $k=1$.
(b) Design an $O\left(k n^{2}\right)$ algorithm to solve the problem for a given instance with n substance and a given k. Your algorithm should output the minimum total energy.
4. In modern origami (the Japanese art of paper folding), one typically starts with a square shee paper and attempts to transform this square into a three-dimensional animal, geometric bject, or any other sculpture one can think of, using nothing but a sequence of folds. In raditional 17 th-18th century origami, however, the starting shape of the paper was les strictly prescribed.
Hiro has stumbled across a book containing instructions for n origami sculptures from this early period, each of which starts from rectangular paper of size $a_{i} \times b_{i}$ where a_{i} and b_{i} re positive integers. He would like to make a diorama containing as many of these (not necessarily distinct) sculptures as possible, but he only has access to a single sheet of paper
of size $A \times B$ (where A and B are also positive integers) and no scissors. By folding the paper carefully and tearing along the crease, Hiro is confident that he can make perfect horizont and vertical cuts across an entire sheet of paper, splitting the sheet into two.
Design an algorithm that on input $A, B, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$, computes the maximum numbe f sculptures that can be made from the starting sheet of paper. Your algorithm should run in time polynomial in A, B, and n
5. Gerrymandering is the practice of carving up electoral districts in very careful ways so as o lead to outcomes that favor a particular political party. Recent court challenges to the practice have argued that through this calculated redistricting, large numbers of voters are being effectively (and intentionally) disenfranchised.
Computers, as it turns out, have been implicated as some of the main "villains" in much of he news coverage on this topic: it is only thanks to powerful software that gerrymanderin rew from an activity carried out by a bunch of people with maps, pencil, and paper int the industrial-strength process it is today. Why is gerrymandering a computational problem? Partly it is the database issues involved in tracking voter demographics down to the level of individual streets and houses; and partly it is the algorithmic issues involved in grouping voters into districts. Let's think a bit about what these latter issues look like.
Suppose we have a set of precincts $P_{1}, P_{2}, \ldots, P_{n}$, each containing m registered voters. We'r supposed to group these precincts into two districts, each consisting of $n / 2$ of the precincts. ow, for each precinct, we have information on how many voters are registered to each of tw political parties. (Suppose for simplicity that every voter is registered to one of these two. We say that the set of precincts is susceptible to gerrymandering if it is possible to perform the division in such a way that the same party holds a majority in both districts. Design an algorithm to determine whether a given set of precincts is susceptible to gerryman dering. The running time of your algorithm should be polynomial in n and m.
Example Suppose we have $n=4$ precincts, and the following information on registered voters. Party A has $55,43,60$, and 47 voters in districts $P_{1}, P_{2}, P_{3}, P_{4}$ respectively, and party B has $45,57,40$, and 53 . This set of precincts is susceptible, since if we groupe precincts P_{1} and P_{4} into one district, and precincts P_{2} and P_{3} into the other, then party ould have a majority in both districts. (Presumably, the "we" who are doing the grouping ere are members of party A) This example is a quick illustration of the basic unfairness in errymandering: although party A holds only a slim majority in the overall population (205 to 195), it ends up with a majority in not one but both districts.

Challenge problem

6. Design an algorithm for problem 3(b) that runs in time $O(k n \log n)$ when given access to the one-bottle energies computed in part (a).

Programming problem

7. SPOJ problem Square Brackets (problem code SQRBR).
CS 577: Introduction to Algorithms
Homework 4 Solutions to Warm-up Problems
Instructor: Dieter van Melkebeek \quad TA: Nicollas Mocelin Sdroievski

Problem 1

Consider the sequence alignment problem from class, but instead of maximizing the number of matches we minimize the number of non-matches, i.e., the total number of mismatches and gaps. Design an algorithm that takes as input two sequences $A[1 \ldots n]$ and $B[1 \ldots, m]$, and outputs the minimum number of non-matches in an alignment of A and B. Your algorithm should run in time $O(m \cdot n)$.

The process of computing an alignment of A and B can be interpreted as a sequence of decisions ndicating which pairs of symbols from A and B are (mis-)matched or whether we skip a symbol by introducing a gap. Consider the last such decision: we can choose to match $A[n]$ and $B[m]$ ncurring a penalty if $A[n] \neq B[m]$, or we can choose to skip either $A[n]$ or $B[m]$, which alway ncurs a penalty. In each of these cases, what remains is to find an alignment between prefixes o the original sequences A and B. In doing so, we should choose the option that leads to the fewest penalties, or equivalently to the fewest non-matche

Applying this reduction recursively leads to subproblems of the following form: for $0 \leq i \leq n$ and $0 \leq j \leq m$, we define $\operatorname{OPT}[i, j]$ to be the minimum number of non-matches in an alignment of $A[1, \ldots, i]$ and $B[1, \ldots, j]$. Per the discussion above, $\mathrm{OPT}[i, j]$ can be computed as follows for $1 \leq i \leq n$ and $1 \leq j \leq m$

$$
\mathrm{OPT}[i, j]=\min \left\{\begin{array}{l}
1-\delta_{A[i], B[j]}+\mathrm{OPT}[i-1, j-1] \\
1+\mathrm{OPT}[i-1, j] \\
1+\mathrm{OPT}[i, j-1]
\end{array}\right.
$$

where $\delta_{a, b} \doteq 1$ if $a=b$ and 0 otherwise. Moreover, we have $\operatorname{OPT}[i, 0]=i, \operatorname{OPT}[0, j]=j$ and $\mathrm{PT}[0,0]=0$.
The final output for the algorithm is $\mathrm{OPT}[n, m]$, which can be computed by a recursive algorithn that implements the recurrence. As the number of possibilities for i and j are small (n and m respectively), memoization will make this implementation efficient

We can also compute the recurrence iteratively. Computation of OPT $[i, j]$ depends only on subproblems where i and/or j is one smaller. There are many ways to iterate through these. One s to iterate over choices of $i=0,1, \ldots$, and for each i, iterate through choices of $j=0,1, \ldots$ Visually, this amounts to filling the OPT table row by row, from left to right and top to bottom Done this way, one need only remember the output of subproblems for the most recent value of (and all j) ie remember the last row in the OPT table to compute the current one. Anoter ption is to iterate over choices of j first, and for each of those, to iterate over choices of i. This mounts to filling the OPT table column by column, from top to bottom and left to right It lso possible to compute the values by diagonal by-diasonal more precisely for increasing value of $+j$, and compute the entries in a given diagonal in any order; for this process it suffices to keep track of the previous two diagonals.

Correctness Correctness essentially follows from the above discussion. Formally, we argue that the recurrence for $\operatorname{OPT}[i, j]$ correctly computes the definition of $\operatorname{OPT}[i, j]$. We do this by induction on $i+j$, starting with the cases where $i=0$ or $j=0$ and working up from there.
Base case ($i=j=0$): When $i=j=0$, both $A[1, \ldots, 0]$ and $B[1, \ldots, 0]$ are both empty sequences so the minimum number of non-matches in an alignment of $A[1, \ldots, 0]$ and $B[1, \ldots, 0]$ is 0 .

Base case ($i=0, j>0$): When $i=0, A[1, \ldots, 0]$ is empty, so the only choice there is is to introduce j gaps in $B[j]$, incurring a cost of j.
Base case ($i>0, j=0$): This case is symmetric with the previous one
Inductive step $(i>0, j>0)$: An alignment of $A[1, \ldots, i]$ and $B[1, \ldots, j]$ that minimizes the numbe of non-matches either matches $A[i]$ with $B[j]$, skips $A[i]$ or skips $B[j]$. Thus, we need only consider the following cases:

- If the alignment matches $A[i]$ with $B[j]$, its number of non-matches is $1-\delta_{A[i], B[j]}$ plus the number of non-matches in the alignment that minimizes the number of non-matche between $A[1, \ldots, i-1]$ and $B[1, \ldots, j-1]$.
- If the alignment skips $A[i]$, its number of non-matches is 1 plus the number of non $1]$ and $B[1, \ldots, j]$.
- If the alignment skips $B[j]$, its number of non-matches is 1 plus the number of nonmatches in the alignment that minimizes the number of non-matches between $A[1, \ldots, i$ and $B[1, \ldots, j-1]$.

By the inductive hypothesis, $1-\delta_{A[i], B[j]}+\mathrm{OPT}[i-1, j-1], 1+\mathrm{OPT}[i-1, j]$, and $1+\mathrm{OPT}[i, j-1]$ compute the minimum number of non-matches in an alignment of the first, second, and third type, respectively. Taking the minimum of these computes the minimum number of nonmatches in an alignment of $A[1, \ldots, i]$ and $B[1, \ldots, j]$.
Correctness of the recurrence for OPT now follows by induction. This also proves correctnes of a recursive implementation of OPT. Correctness of an iterative version follows as well since it computes OPT using the recurrence and only computes a value OPT $[i, j]$ once it has alread computed the values of $\operatorname{OPT}[i-, j-1], \mathrm{OPT}[i-1, j]$, and $\mathrm{OPT}[i, j-1]$.

Time and space analysis There are $m n$ subproblems and each update takes $O(1)$ time, so ecursive implementation with memoization takes $O(m n)$ time. It likewise uses $O(m n)$ space.
An iterative implementation as discussed above also takes time $O(m n)$, since it has two nested for loops computing the recurrence, one iterating over $0 \leq i \leq n$ and another over $0 \leq j \leq m$. Depending on the choice of iterative implementation, we are able to obtain a space complexity of $O(n)$ (if we just remember the last row) or $O(m)$ (if we remember the last column). By choosing the better of the two options we obtain an overall space complexity of $O(\min (m, n))$, which is also the space complexity of the diagonal-by-diagonal computation order.

Problem 2
You want to know, given a string of n symbols $\mathrm{a}, \mathrm{b}, \mathrm{c}$, with $n \geq 1$, whether or not it is possible to parenthesize the string in such a way that the value of the resulting expression is a
Design an algorithm to solve this problem in time polynomial in n
Our plan is to write a dynamic program that recursively determines the last multiplication to erform in order to obtain the value a, if one exists at all. If the second operand is a, then the first operand must be c. We do not have to consider b as the second operand, because there is no way t ight multiply by b and obtain a . If the second operand is c , then there are two possibilities for the first operand: either a or b . We need to consider all possibilities for where the last multiplication performed and for its two operands. In each case, the resulting subproblem looks nearly identic o our given problem, except that we may be trying to get a different output letter than a. We ca handle other letters following the same principle, just with different possibilities for the operand.
The subproblems that arise are parametrized by a contiguous portion of the input expressio target letter among $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ Let the input string be $S[1, \ldots, n]$. We define for $1 \leq i \leq k \leq n$ to indicate whether $S[i, \ldots, k]$ can be parenthesized to compute ℓ. We wis to know $\operatorname{CanMult}(1, n, \mathbf{a})$. Following the above discussion, we can compute it with the following recurrence:

$$
\operatorname{CanMult}(i, k, \ell)= \begin{cases}\text { True } & \text { if } i=k \text { and } S[i]=\ell \\ \text { False } & \text { if } i=k \text { and } S[i] \neq \ell \\ \bigvee_{\substack{i \leq j<k \\ \ell_{1}, \ell_{2}, \ell_{1} \ell_{2}=\ell}} \operatorname{CanMult}\left(i, j, \ell_{1}\right) \wedge \operatorname{CanMult}\left(j+1, k, \ell_{2}\right) & \text { if } i<k\end{cases}
$$

Here, ℓ_{1} and ℓ_{2} range over all choices of letters such that $\ell_{1} \ell_{2}$ multiply to ℓ. The \vee represents a Boolean OR (। I in Java), and \wedge represents a Boolean AND (\&\& in Java).
We can compute this recurrence with a recursive algorithm. As the number of possibilities for $, k, \ell$ is small, memoization will make this implementation efficient.
We can also compute the recurrence iteratively. Computation of CanMult (i, k, ℓ) depends on its values where $k-i$ is strictly smaller. So as long as we compute the subproblems in order of ncreasing value of $k-i$, the subproblems required for $\operatorname{CanMult}(i, k, \ell)$ will have been computed by the time we need them. Pseudocode is given in Algorithm 1. For each i and k, the recurrence for CanMult (i, k, ℓ) is evaluated for all ℓ simultaneously, as this makes the code more concise.

Correctness Correctness of the recurrence for CanMult follows from the above discussion. We leave a detailed proof by induction on $k-i$ as an exercise. Correctness of a recursive computation of CanMult follows immediately, as does correctness of the above iterative implementation.

Time and space analysis There are $O\left(n^{2}\right)$ possibilities for $1 \leq i \leq k \leq n$ and ℓ, and we compute CanMult (i, k, ℓ) for each one. For a fixed subproblem, we need to consider up to $O(n)$ values for j, ℓ_{1}, ℓ_{2}, it takes constant work for each. So the local work is $O(n)$. Adding all the local work together, the total rumning time of recursive computation with memoization is $O\left(n^{3}\right)$. Its space usage is dominated by the memoization table, so is $O\left(n^{2}\right)$.

As for Algorithm 1, direct inspection reveals that it runs in $O\left(n^{3}\right)$ time and $O\left(n^{2}\right)$ space.

Algorithm 1 Multiplication Problem
Input: $S[1, \ldots, n]$ a string of letters from $\{\mathbf{a}, \mathrm{b}, \mathrm{c}\}$.
Output: Yes/No, whether S can be parenthesized such that the result of multiplication is a
1: procedure MultiplyToA $(S[1, \ldots, n])$
2: \quad CanMult $[1, \ldots, n][1, \ldots, n][\mathrm{a}, \mathrm{b}, \mathrm{c}] \leftarrow$ fresh $n \times n \times 3$ array
3: \quad for $i=1$ to n do
CanMult $[i][i][\ell] \leftarrow \begin{cases}\text { True } & \text { if } S[i]=\ell \\ \text { Fals }\end{cases}$
for $s=1$ to $n-1$ do $\quad(s$ is $k-i)$
for $i=1$ to $n-s$ do
$k \leftarrow i+s$
CanMult $[i][k][\ell] \leftarrow$ False \quad for each $\ell \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
for $j=i$ to $k-1$ do
$\ell \leftarrow \ell_{1} \ell_{2}$ (using multiplication table)
if CanMult $[i][j]\left[\ell_{1}\right] \wedge \operatorname{CanMult}[j+1][k]\left[\ell_{2}\right]$ then
CanMult $[i][k][\ell] \leftarrow$ True
return CanMult [1][n][a]

CS 577: Introduction to Algorithms	Fall 2022
Homework 4 Solutions to Regular Problems	
Instructor: Dieter van Melkebeek	TA: Nicollas Mocelin Sdroievski

Problem 3

You are given a number k of bottles, a number n of substances, and nonnegative numbers $e_{i j}$ You are given a number k of bottles, a number n of substances, and nonnegative numbers $e_{i j}$
for every pair of substances. We need to determine integers $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{k-1} \leq n$ (indicating the last substances put in bottles 1 through $k-1$) such that

$$
\sum_{i=1}^{k} \sum_{t_{i-1}<\ell<m \leq t_{i}} e_{\ell m}
$$

is minimized, where $t_{0}=0$ and $t_{k}=n$.
(a) Design an $O\left(n^{2}\right)$ algorithm that outputs the (minimum) energies for the subinstances consisting of substances i through j for all $1 \leq i \leq j \leq n$ and $k=1$.
(b) Design an $O\left(k n^{2}\right)$ algorithm to solve the problem for a given instance with n substances and a given k. Your algorithm should output the minimum total energy.

Part (a)
We show how to efficiently calculate all the possible sums $\sum_{i \leq \ell<m \leq j} e_{\ell m}$ for any i, j. We think of the energies $e_{i j}$ as being organized in an (upper-triangular) 2-dimensional array. In the example array below, for six substances, the energy produced between 2 and 5 is the sum $e_{23}+e_{24}+e_{25}+$ $e_{34}+e_{35}+e_{45}$, so we need to add the entries of the highlighted triangle in Figure 1 shown below.

Figure 1: Example sum of energies
In general, for every two substances i, j we need the sum of the values inside such a triangle. Let TotalEnergy be an $n \times n$ array such that

$$
\text { TotalEnergy }[i, j]=\sum_{i \leq \ell<m \leq j} e_{\ell m}
$$

As there are $O\left(n^{2}\right)$ entries, it suffices to compute each entry in time $O(1)$ in order to guarantee an overall running time of $O\left(n^{2}\right)$. Let us look back at our example. We want to com-
pute TotalEnergy[2,5], so let us look at other entries that could help us compute this value TotalEnergy $[2,4]$ contains many of the values we need to consider, but it is missing the pair that end with 5, as shown in Figure 2. If we also consider TotalEnergy [3,5], then we will only be missing e_{25}, as shown in Figure 3. Note, however, that we end up adding e_{34} twice, so we need to subtract it to get the sum we want. This way, we can compute TotalEnergy $[2,5]=$ $e_{25}+$ TotalEnergy $[2,4]+$ TotalEnergy $[3,5]-$ TotalEnergy $[3,4]$. We write TotalEnergy $[3,4]$ instead of just e_{34} because for larger intervals we may add more than one value twice.

Figure 2: Values whose sum equals TotalEnergy[2,4]

Figure 3: Values whose sum equals TotalEnergy[3,5]
This idea can be generalized to compute TotaEnergy $[i, j]$ for any $1 \leq i<j \leq n$. In this case our final recurrence is

TotalEnergy $[i, j]=\left\{\begin{array}{l}0 \\ e_{i} \\ e_{i}\end{array}\right.$ $=\left\{\begin{array}{l}0 \\ e_{i j} \\ e_{i j}+\text { TotalEnergy }[i, j-1]+\text { TotalEnergy }[i+1, j]-\text { TotalEnergy }[i+1, j-1]\end{array}\right.$ f $i=j-1$

Even though we need to compute TotalEnergy $[i, j]$ for all $1 \leq i \leq j \leq n$, a recursive imple mentation with memoization (where we make $O\left(n^{2}\right)$ calls to the recursive function) suffices for ou purposes. If we wish to compute these values iteratively, we can do so by filling in the TotalEnergy able diagonal-by-diagonal, more precisely for increasing value of $j-i$, and compute the values in the diagonal in any order.

Correctness Correctness follows by arguing that the recurrence for TotalEnergy correctly computes its definition. The key step here is the equality

$$
\sum_{i \leq \ell<m \leq j} e_{\ell m}=e_{i j}+\sum_{i \leq \ell<m \leq j-1} e_{\ell m}+\sum_{i+1 \leq \ell<m \leq j} e_{\ell m}-\sum_{i+1 \leq \ell<m \leq j-1} e_{\ell m},
$$

where an inductive hypothesis on $j-i$ allows us to replace each of the three sums in the right-hand side by a position in the TotalEnergy table

Time and space analysis TotalEnergy has $O\left(n^{2}\right)$ entries to fill in. Each entry takes constan time, so a recursive implementation with memoization uses an overall $O\left(n^{2}\right)$ time and $O\left(n^{2}\right)$ space If we compute these values iteratively diagonal-by-diagonal, then we only need $O(n)$ space to keep track of the previous two diagonals. However, if we take the space of the output into account, we need $O\left(n^{2}\right)$ space (and that is the best we can hope for).

Part (b)
We are given n chemical substances and k bottles and we need to divide the chemicals into the k bottles. Since we are given fewer bottles than substances $(k<n)$ we essentially need to decide which substances will be put in the same bottle. Remember that we cannot change the order of he substances given. What we need to decide is in which $k-1$ indices we will place a "separator" to minimize the amount of energy produced, where a "separator" is the point at which we stop sing the i^{\prime} 'th bottle and start putting chemicals in the next one. Essentially determine integer $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{k-1} \leq n$ indicating the last substances put in bottles 1 through $k-1$.

Subproblems The problem is trivial for 1 bottle, as there is no choice to be made and the minimum energy is the sum of all pairwise energies
Let's say we have 2 bottles. In that case we need to find an index t such that all substance fom 1 to t are in the first bottle, and all substances from $t+1$ until n are in the second one And we want the sum $\sum_{1 \leq \ell<m \leq t} e_{\ell m}+\sum_{t+1 \leq \ell<m \leq n} e_{\ell m}$ to be the minimum possible. We try all possibilities for $t \in\{0, \ldots, n\}$ and select the one that minimizes the above sum
If we have $k>2$ bottles, we consider the last decision that we need to make, i.e., the choice f $t_{k-1} \in\{0, \ldots, n\}$. We do not know which choice is optimal, so we try all possibilities. Given hoice for $t_{\text {, }}$ what remains is to find an optimal break-up of the substances 1 through $t_{k=1}$ int -1 bottles, i.e., to solve the problem for the instance defined by the substances 1 through t_{k-1} with the given energies $e_{f m}$ for $1<\ell<m<t_{k-1}$, and $k-1$ bottles. We recursively solve tho instances, and then select the value of t_{k-1} that minimizes the sum of the minimum energy for the subinstance and the energy in the last bottle.

The recursive calls that arise during this recursion all have the following form: Solve the problem for the subinstance consisting of substances 1 through i using j bottles, where $i \in\{0, \ldots, n\}$ and $j \in\{1, \ldots, k\}$. We denote the minimum energy achievable for that subinstance by $\operatorname{OPT}(i, j)$.

Recurrence and correctness Generalizing the above approach, we obtain that the following recurrence correct computes $\operatorname{OPT}(i, j)$ for $i \in\{0, \ldots, n\}$ and $j \in\{2, \ldots, k\}$:

$$
\mathrm{OPT}(i, j)=\min _{0 \leq t \leq i}\left\{\mathrm{OPT}(t, j-1)+\sum_{t+1 \leq \ell<m \leq i} e_{\ell m}\right\},
$$

where the sum is the total amount of energy produced in the j-th bottle, which contains substance from $t+1$ to j. This expression says that for bottle j we find the substance t to stop the previous bottle with such that the total energy is minimized, where the total energy is the minimum possible

Problem 4
Design an algorithm that on input $A, B, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$, computes the maximum number of sculptures that can be made from the starting sheet of paper. Your algorithm should run in time polynomial in A, B, and n.

In this problem, Hiro has to choose a sequence of horizontal or vertical cuts to make in the starting rectangular paper in order to maximize the number of sculptures he is left with at the end

Subproblems and recurrence Since any strategy is a sequence of cuts, let us consider what happens to the paper after a single cut-regardless of whether the paper is cut horizontally or vertically, Hiro is left with two rectangular sheets of paper afterwards. Each of these new rectangl an be independently sliced into its own set of sculptures, so maximizing the total number of culptures for the original paper means maximizing the total number of sculptures for each of these new ones

This observation suggests the following specification for our subproblems
$\mathrm{OPT}(i, j)=\max$ number of sculptures that can be created from starting paper of size $i \times j$,
where $1 \leq i \leq A$ and $1 \leq j \leq B$. Given any paper of size $i \times j$, we can then determine the maximum number of sculptures it can produce by using the solutions to subproblems corresponding to smalle paper sizes to evaluate every reasonable possibility for the first cut (including no cut). Since the starting paper and all sculptures have integral dimensions, it suffices to try only cuts that produce rectangles with integral dimensions.

The recurrence for OPT is then as follows, where $\operatorname{sculpt}(i, j)$ is a function that returns 1 if $i=a_{x}, j=b_{x}$ or $i=b_{x}, j=a_{x}$ for some $x \in[n]$, and 0 otherwise:

OPT $(i, j)=\max \{\max$ for no cut, \max for horizontal cut, max for vertical cut $\}$

$$
=\max \left\{\operatorname{sculpt}(i, j), \max _{k \in[i-1]}[\mathrm{OPT}(k, j)+\mathrm{OPT}(i-k, j)], \max _{\ell \in[j-1]}[\mathrm{OPT}(i, \ell)+\mathrm{OPT}(i, j-\ell)]\right\},
$$

where the maximum over an empty set is defined here as 0 . An example horizontal cut in a $i \times j$ heet of paper is depicted in Figure 4.

Correctness and running time analysis Correctness follows from the discussion above. For un-time, note that sculpt takes $O(n)$ time to compute, while the remaining two maximums ar over at most A elements and at most B elements, respectively. Hence, each entry of the table take t most $O(n+A+B)$ time to compute, so with $A B$ els, this comes out to a total time of $O(A B(n+A+B))$, which is polynomial in n, A, and B
As an aside, note that this time complexity can be improved to $O(n+A B(A+B))$. Currently we are computing sculpt for each entry of OPT, but we could instead perform a preprocessing step where for each of the n sculptures $\left(a_{i}, b_{i}\right)$ we set $\mathrm{OPT}\left(a_{i}, b_{i}\right)$ and $\mathrm{OPT}\left(b_{i}, a_{i}\right)$ to 1 . This takes $O(n)$ time, and we automatically know that sculpt will return 0 for any other entry, so we avoid having to compute sculpt every time. Still, we may need to update the values for OPT (a_{i}, b_{i}) later in case there is a better way of solving that subproblem (cutting two smaller rectangles instead of a larger ne, for example), but this is taken care of by the recurrence. The total complexity then become $O(n)+O(A B(A+B))=O(n+A B(A+B))$.

Figure 4: Horizontal cut in a $i \times j$ sheet of paper, with edge labels.

Problem 5
Suppose we have a set of precincts $P_{1}, P_{2}, \ldots, P_{n}$, each containing m registered voters. We're Suppose we have a set of precincts $P_{1}, P_{2}, \ldots, P_{n}$, each containing m registered voters. We're
supposed to group these precincts into two districts, each consisting of $n / 2$ of the precincts. For supposed to group these precincts into two districts, each consisting of $n / 2$ of the precincts. For each precinct, we have information on how many voters are registered to each of two political parties. We say that the set of precincts is susceptible to gery a majority in both districts.

Design an algorithm to determine whether a given set of precincts is susceptible to gerry-
Design an algorithm to determine whether a given set of precincts is susceptible
andering. The running time of your algorithm should be polynomial in n and m.
Before we start implementing an algorithm to find whether a given set of precincts is susceptible gerrymandering, let us make the following observation. If our input is susceptible to gerrymandering, we should be able to divide the set of precincts into two districts each composed of $n / 2$ precincts such that some party has more than $m n / 4$ votes in both districts. That party has to have he overall majority of the $m n$ votes

We can calculate which party has the largest number of voters by looping over all precinct. and counting the number of votes. W.l.o.g. we assume that A has the largest number of voters ay $m n / 2+d$. The question now becomes whether we can equipartition the precincts in such way that the 'extra' d votes are distributed over the two districts. If we can find such a division then we know that district one has $\lfloor m n / 4\rfloor+d_{1}$ votes and district 2 has $\lfloor m n / 4\rfloor+d_{2}$ votes where $=d_{1}+d_{2}$ for some $d_{1}, d_{2}>0$
Let us denote by a_{i} the number of voters for party A in precinct i. Since we know all the a_{i} s, we can look at the problem as follows: Does there exist a subset of $n / 2$ of the numbers a_{i} such that their sum is at least $\lfloor m n / 4\rfloor+1$ and at most $\lfloor m n / 4\rfloor+d-1$.

Subproblems This sounds a lot like the knapsack problem we discussed in class but there is an extra requirement which demands that the knapsack must contain exactly $n / 2$ items. To handle his issue, we extend the subproblems we considered in our knapsack algorithm with one extra ariable that keeps track of the number of items in the knapsack. We define OPI (i, j, k) as the naximal sum less than or equal to k of the form $\sum_{\ell \in I} a_{\ell}$ where $I \subseteq\{1,2, \ldots, i\}$ and $|I|=j$, or $-\infty$ if there are no such subsets I. The value we are interested in is $\operatorname{OPT}(n, n / 2,\lfloor\mathrm{mn} / 4\rfloor+d-1)$ The input is susceptible to gerrymandering iff this value is at least $\lfloor m n / 4\rfloor+1$.

Recurrence and correctness What does the recurrence for OPT (i, j, k) look like? Consider an optimal solution \mathcal{O} for $\operatorname{OPT}(i, j, k)$. For $i>0$ and $j>0$, we have the following:

- If $i \notin \mathcal{O}$ then $\operatorname{OPT}(i, j, k)=\operatorname{OPT}(i-1, j, k)$.
- If $i \in \mathcal{O}$ then $\operatorname{OPT}(i, j, k)=a_{i}+\operatorname{OPT}\left(i-1, j-1, k-a_{i}\right)$

Note that the latter case can only happen if $k \geq a_{i}$. This analysis shows that the following recurrence will correctly compute $\operatorname{OPT}(i, j, k)$

- If $a_{i} \leq k$ then $\operatorname{OPT}(i, j, k)=\max \left(\mathrm{OPT}(i-1, j, k), a_{i}+\operatorname{OPT}\left(i-1, j-1, k-a_{i}\right)\right)$.
- Otherwise, $\operatorname{OPT}(i, j, k)=\operatorname{OPT}(i-1, j, k)$.

The base cases are those where $i=0$. For j also zero we have $\operatorname{OPT}(0,0, k)=0$ for every $k \geq 0$ as witnessed by $I=\emptyset$. For $j>0$ there is no way to pick exactly j elements from the empty set, so $\operatorname{OPT}(0, j, k)=-\infty$ for $j>0$ and $k \geq 0$

Running time analysis The resulting algorithm computes the values $\mathrm{OPT}(i, j, k)$ for $0 \leq i \leq n$ $0 \leq j \leq n / 2$ and $0 \leq k \leq\lfloor m n / 4\rfloor+d-1$ in the order of increasing values of $i+j$. Since one evaluation of the recurrence only involves a constant amount of work and our 3D array contains $O(n \cdot n \cdot m n)$ cells, our algorithm runs in $O\left(m n^{3}\right)$ time

