
COMP SCI 577 Homework 04 Problem 3
Dynamic Programming

Ruixuan Tu
rtu7@wisc.edu

University of Wisconsin-Madison

11 October 2022

Algorithm

Explanation
Denote input be k layers, n substances, and e(i, j) for energy produced between the pair

(i, j) of 2 substances for all 0≤ i≤ j < n.
For question (a), we want to calculate One(l,r) for every right half-open interval [l,r) such

that One(l,r) is the minimum energy for the substances consisting of substances sl through
sr for all 0≤ l ≤ r < n and k = 1. We observe that with the base case One(l, l) = 0, there is a
recursion One(l,r) = One(l,r−1)+∑r−1

m=l e(m,r−1). The sum part is O(n) for a trivial solution,
but we could further reduce the complexity to O(1) by prefix sum subroutine getPrefix-
Sum(iStart, iEnd, j) for ∑iend

i=istart e(i, j) = eprefix(iend, j)−eprefix(istart, j). For the prefix
sum, we need a preprocessing subroutine preparePrefixSum(left, right) to calcu-
late eprefix(i, j) = ∑i

k=0 e(k, j) = eprefix(i−1, j)+e(i, j) with base case eprefix(i, i) = e(i, i) = 0 for
every 0 ≤ i ≤ j < n with a complexity of O(n2), so [i, j] is a closed interval for eprefix that we
need to call with istart = l− 1, iend = r− 1, j = r− 1 to get the correct sum converted from
the right half-open interval [l,r). The calculation is done in the subroutine solveFirst-
Layer(left, right) with the left bound not moving for the constraint in the recursion,
so we should call this subroutine n times to calculate for all possible left bounds.

For question (b), we want to calculate OPT (l,k) = minl≤m≤r(One(l,m) + OPT (m,k− 1))
for every right half-open interval [l,k) such that OPT (l,k) is the minimum energy for the
substances sl through sn−1, with the base case OPT (l,1) =One(l,n), as the first layer is already
calculated in question (a). The equation is of two parts: the left divided part [l,m) with no
further division so the first layer is reached to use One(l,m), as well as the right divided part

1



[m,n) with still k−1 layers to divide into to use OPT (m,k−1), for every divider m to split the
interval [l,n) to [l,m) and [m,n). The calculation is done in the subroutine solve(left,
right, layers) with the right bound not moving which is not necessary for generating
all permutations. Thus, the result is OPT (0,k) for the largest interval.

For history versions, version 1 uses the trivial O(n3) version of the sum to calculate the
first layer OPT (l,r,1), and version 1 and 2 uses the O(kn3) to calculate further OPT (l,r,k) =
minl≤m≤r(OPT (l,m,1)+OPT (m,r,k−1)) which is replaced by the O(n2) calculation, as OPT (l,m,k−
1) is never used but causes a extra layer of calculation of O(n).

Code (Python) of O(n2)+O(kn2), Iterative (Version 3, Final)

1 import numpy as np
2 import input
3
4 def preparePrefixSum(left: int, right: int) -> None: # O(n^2) for

prefix sum preprocessing
5 for j in range(left, right, 1):
6 for i in range(left, right, 1):
7 if i == 0:
8 e_prefix[i][j] = e[i][j]
9 e_prefix[i][j] = e_prefix[i - 1][j] + e[i][j]

10
11 def getPrefixSum(iStart: int, iEnd: int, j: int) -> int:
12 if iStart > iEnd:
13 raise Exception("invalid interval")
14 low: int = 0 if iStart < 0 else e_prefix[iStart][j]
15 high: int = 0 if iEnd < 0 else e_prefix[iEnd][j]
16 return high - low
17
18 def solveFirstLayer(left: int, right: int) -> int: # O(n), [left,

right), left does not move
19 if left >= right - 1:
20 return 0
21 if one[left][right] != 0:
22 return one[left][right]

2



23 col_sum: int = getPrefixSum(left - 1, right - 1, right - 1) #
O(1) for prefix sum

24 one[left][right] = solveFirstLayer(left, right - 1) + col_sum
25 return one[left][right]
26
27 def solve(left: int, right: int, layers: int) -> int: # O(n^2*k):

k layers * n^2 ways to choose intervals per layer
28 for l in range(left, right, 1):
29 dp[l][1] = one[l][right]
30 for k in range(2, layers + 1, 1):
31 for l in range(left, right, 1):
32 candidates = []
33 for m in range(l, right + 1, 1): # divider: left [i, m

), right [m, right)
34 candidates.append(one[l][m] + dp[m][k - 1])
35 dp[l][k] = 0 if len(candidates) == 0 else min(

candidates)
36 return dp[left][layers]
37
38 if __name__ == "__main__":
39 k: int = input.nextInt()
40 n: int = input.nextInt()
41 e = np.zeros((n, n), dtype=int)
42 e_prefix = np.zeros((n, n), dtype=int)
43 one = np.zeros((n, n + 1), dtype=int)
44 dp = np.zeros((n + 1, k + 1), dtype=int)
45 for i in range(n):
46 for j in range(n - i - 1):
47 e[i][i + j + 1] = input.nextInt()
48 preparePrefixSum(0, n)
49 for i in range(n): # O(n^2)
50 solveFirstLayer(i, n) # O(n)
51 print("sol={}".format(solve(0, n, k))) # O(n^2*k)
52 for i in range(1, k + 1, 1):
53 print("k={}".format(i))

3



54 print(dp[:, i])

Proof

Question (a)
Induction

Claim: solveFirstLayer(left, right) calculate all One(l,m) with l < m≤ r for all
r− l ∈ N and l,r,m ∈ N.
Base Case: r− l = 0 i.e. One(l, l) = 0, the energy One(l, l) and e(l, l) must be 0, as a substance
cannot react with itself.
Inductive Step: Suppose the sub-problem One(l,r−1) is correct, and we want to prove that
One(l,r) is correct. From the induction hypothesis, we already have One(l,r− 1) = e(l, l)+
(e(l, l +1)+ e(l +1, l +1))+ [e(l, l +2)+ e(l +1, l +2)+ e(l +2, l +2)]+ · · ·+[e(l,r−1)+ e(l +
1,r− 1)+ · · ·+ e(r− 1,r− 1)], so that for One(l,r) we still need to add e(l,r)+ e(l + 1,r)+
· · ·+ e(r,r) which is the right part of the equation without transformation from right half-
open interval to closed interval for e(l,r). Therefore, the equation One(l,r) = One(l,r− 1)+
∑r−1

m=l e(m,r−1) holds.

Termination

The functions preparePrefixSum(left, right) and getPrefixSum(iStart,
iEnd, j) are iterative that must be terminated. The only recursive function solveFirst-
Layer(left, right) is terminated correctly, as it will return 0 for r− l ≤ 0 as there is
nothing to calculate on or further than the base case, and r− l is decreasing on the recursion
tree to reduce to the base case.

Complexity

As described in Explanation, solveFirstLayer(left, right) calculate all One(l,m)

with l < m≤ n. We should run it n = O(n) times to calculate for 0≤ l < n. A call to solve-
FirstLayer(left, right) costs O(n), as there is 1 recursion which decreases by 1 every
time with r− l = O(n) steps, and the prefix sum costs O(1) to get the value and O(n2) to pre-
process. Then the complexity of solveFirstLayer(left, right) is O(n2), and the
complexity of preparePrefixSum(left, right) is O(n2). Details of the prefix sum
are described in Explanation. Therefore, the overall complexity is O(n2).

4



Question (b)
Induction

Claim: This algorithm is correct for any layer k ∈ N+.
Base Case: k = 1 i.e. there is no further division, which is proved in Question (a), and
OPT (l,1) = One(l,n) is adherent to the definition, as described in Explanation.
Inductive Step: Suppose the sub-problem OPT (l,k−1) is correct, and we want to prove that
OPT (l,k) is correct. As described in Explanation, OPT (l,k)=minl≤m≤r(One(l,m)+OPT (m,k−
1)) for every right half-open interval [l,k) such that OPT (l,k) is the minimum energy for the
substances sl through sn−1. This iteration includes all possibilities for intervals starting with
all m such that l ≤m≤ n and ending with n. We do not want the right bound to be moved as
we only depend on different left bounds in finding the optimal solution.

Termination

The function solve(left, right, layers) is iterative that must be terminated.

Complexity

The function solve(left, right, layers) is iterative with 4 loops: a non-nested
for L≤ l < R (base case, L and R are bounds) and a 3-nested for 2≤ k≤K,L≤ l < R, l ≤m≤ R
(inductive step, K is total number of bottles). The complexity of the non-nested loop is O(n)
trivially, and the complexity of the nested loop is O(kn2) for the k layers and O(n2) intervals
for the left part without division bounded by [l,m).

Test Cases
Input: k← 2; n← 3; e1,2← 10, e1,3← 5, e2,3← 42;
Output: 10;
Explanation: Same as the example in the write-out of this problem.

Input: k← 3; n← 4; ei, j←





1 1 1
1 1

1




;

Output: 1;
Explanation: 3 bottles, 4 substances: we have at most 2 substances in 1 bottle,

resulting in minimum total energy of 1.

5



Input: k← 4; n← 6; ei, j←





5 5 5 5 5
5 5 5 5

1000 5 5
1 1

1





;

Output: 1;
Explanation: 4 bottles, 6 substances s0, . . .s5: we have the optimal solution as

{s0}{s1}{s2}{s3,s4,s5} with minimum total energy of
e3,4 + e3,5 + e4,5 = 3.

History Versions

Code (Python) of O(n2)+O(kn3), Iterative (Version 2)

1 import numpy as np
2 import input
3
4 def preparePrefixSum(left: int, right: int) -> None: # O(n^2) for

prefix sum preprocessing
5 for j in range(left, right, 1):
6 for i in range(left, right, 1):
7 if i == 0:
8 e_prefix[i][j] = e[i][j]
9 e_prefix[i][j] = e_prefix[i - 1][j] + e[i][j]

10
11 def getPrefixSum(iStart: int, iEnd: int, j: int) -> int:
12 if iStart > iEnd:
13 raise Exception("invalid interval")
14 low: int = 0 if iStart < 0 else e_prefix[iStart][j]
15 high: int = 0 if iEnd < 0 else e_prefix[iEnd][j]
16 return high - low
17
18 def solveFirstLayer(left: int, right: int) -> int: # O(n), [left,

right), left does not move
19 if left >= right - 1:

6



20 return 0
21 if dp[left][right][1] != 0:
22 return dp[left][right][1]
23 col_sum: int = getPrefixSum(left - 1, right - 1, right - 1) #

O(1) for prefix sum
24 dp[left][right][1] = solveFirstLayer(left, right - 1) +

col_sum
25 return dp[left][right][1]
26
27 def solve(left: int, right: int, layers: int) -> int: # O(n^3*k) k

layers + n^2 ways to choose intervals per layer, [left, right)
28 for layer in range(2, layers + 1, 1):
29 for i in range(left, right, 1):
30 for j in range(i, right + 1, 1):
31 candidates = []
32 for k in range(i, j, 1): # divider, left [i, k),

right [k, j)
33 candidates.append(dp[i][k][1] + dp[k][j][layer

- 1])
34 dp[i][j][layer] = 0 if len(candidates) == 0 else

min(candidates)
35 return dp[left][right][layers]
36
37 if __name__ == "__main__":
38 k: int = input.nextInt()
39 n: int = input.nextInt()
40 e = np.zeros((n, n), dtype=int)
41 e_prefix = np.zeros((n, n), dtype=int)
42 dp = np.zeros((n, n + 1, k + 1), dtype=int)
43 for i in range(n):
44 for j in range(n - i - 1):
45 e[i][i + j + 1] = input.nextInt()
46 preparePrefixSum(0, n)
47 for i in range(n): # O(n^2)
48 solveFirstLayer(i, n) # O(n)

7



49 print("sol={}".format(solve(0, n, k))) # O(n^3*k)
50 for i in range(1, k + 1, 1):
51 print("k={}".format(i))
52 print(dp[:, :, i])

Code (Python) of O(n3)+O(kn3), Recursive (Version 1)

1 import numpy as np
2 import input
3
4 def solveFirstLayer(left: int, right: int) -> int: # O(n^2), [left

, right)
5 if left >= right - 1:
6 return 0
7 if dp[left][right][1] != 0:
8 return dp[left][right][1]
9 col_sum: int = 0

10 for i in range(left, right, 1): # O(n): O(1) by prefix sum
with independent preprocessing O(n^2)

11 col_sum += e[i][right - 1]
12 dp[left][right][1] = solveFirstLayer(left, right - 1) +

col_sum
13 return dp[left][right][1]
14
15 def solve(left: int, right: int, k: int) -> int: # O(n^3*k): k

layers * O(n^2) ways to choose intervals per layer [left, right
) * O(n) local work

16 if left >= right - 1:
17 return 0
18 if k == 1:
19 return dp[left][right][1]
20 if dp[left][right][k] != 0:
21 return dp[left][right][k]
22 candidates = []
23 for divider in range(left, right + 1, 1): # O(n)

8



24 candidates.append(solve(left, divider, 1) + solve(
divider, right, k - 1))

25 dp[left][right][k] = min(candidates)
26 return dp[left][right][k]
27
28 if __name__ == "__main__":
29 k: int = input.nextInt()
30 n: int = input.nextInt()
31 e = np.zeros((n, n), dtype=int)
32 dp = np.zeros((n, n + 1, k + 1), dtype=int)
33 for i in range(n):
34 for j in range(n - i - 1):
35 e[i][i + j + 1] = input.nextInt()
36 for i in range(n): # O(n^3)
37 solveFirstLayer(i, n) # O(n^2)
38 print("sol={}".format(solve(0, n, k))) # O(n^3*k)
39 for i in range(1, k + 1, 1):
40 print("k={}".format(i))
41 print(dp[:, :, i])

Code (Python) for utility input

1 from typing import List, Optional
2
3 file = None
4 queue = []
5
6 def openFile(filename: Optional[str]):
7 global file
8 if filename != None:
9 file = open(filename, "r")

10 else:
11 file = None
12
13 def next() -> Optional[str]:

9



14 while len(queue) == 0:
15 if file == None:
16 line: str = input()
17 else:
18 line: str = file.readline()
19 if len(line) == 0:
20 return None
21 lineArr: List[str] = line.split(" ")
22 for lineElem in lineArr:
23 queue.append(lineElem)
24 return queue.pop(0)
25
26 def nextInt() -> int:
27 result = next()
28 if result != None:
29 return int(result)
30 raise Exception("no input")

10


