Outline

Paradigm

- 1. Break up given instance into considerably smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Examples of common pattern

- Sorting (Mergesort)
- Counting inversions
- Finding a closest pair of points in the plane

Lower bound for sorting

Sorting

Problem specification

Input: array A[1...n] of integers with $n \ge 1$ Output: Sort(A), i.e., A sorted from smallest to largest

Mergesort

```
procedure MERGE-SORT(A)

if n = 1 then

return A

else

m \leftarrow \lfloor n/2 \rfloor

L \leftarrow A[1, \dots, m]

R \leftarrow A[m + 1, \dots, n]

return MERGE(MERGE-SORT(L), MERGE-SORT(R))
```

Sorting Lower Bound

Theorem

Every comparison-based sorting algorithm takes $\Omega(n \log n)$ comparisons on arrays of length n.

Proof

- Every such algorithm for a given n can be modeled as a binary decision tree T.
- Depth d of T is the maximum number of comparisons that A makes on arrays of length n.
- Number ℓ of leaves is at least $n! \doteq 1 \cdot 2 \cdot \ldots \cdot n$.
- ℓ ≤ 2^d
- ▶ $d \ge \log(\ell) \ge \log(n!)$
- $(n/2)^{n/2} \leq n! \leq n^n$ so $\log(n!) = \Theta(n \log n)$

Counting Inversions

Definition

An inversion in an array $A[1 \dots n]$ is a pair $(i, j) \in [n] \times [n]$ with i < j and A[i] > A[j].

Example A = [3, 5, 4, 7, 3, 1]

Bounds on Inv(A)Between 0 (sorted) and $\binom{n}{2}$ (reverse sorted).

Problem specification

Input: array A[1...n] of integers with $n \ge 1$ Output: Inv $(A) \doteq$ number of inversions in A

Count D&C approach Counting cross inversions ► Problem specification Input: sorted arrays L[1...n] and R[1...m] with n, m ≥ 1 Output: Inv(LR) ► Algorithm running in time O(n + m) Running time of Count: O(n(log n)²)

Improved Count

```
Input: A[1 \cdots n], an array of length n \ge 1
Output: (Inv(A), Sort(A))
 1: procedure COUNT-AND-SORT(A)
         if n = 1 then
 2:
             return (0, A)
 3:
         else
 4.
             m \leftarrow \lfloor n/2 \rfloor
 5:
             (c_L, L) \leftarrow \text{COUNT-AND-SORT}(A[1, \dots, m])
 6:
             (c_R, R) \leftarrow \text{COUNT-AND-SORT}(A[m+1, \dots, n])
 7:
             c_{\text{cross}} \leftarrow \text{COUNT-CROSS}(L, R)
 8:
 9:
             c \leftarrow c_L + c_R + c_{\text{cross}}
             B \leftarrow \text{MERGE}(L, R)
10:
11:
             return (c_L + c_R + c_{cross}, B)
```

Running time: $O(n \log n)$

Closest Pair of Points in the Plane

Problem specification

 $\begin{array}{ll} \text{Input:} & (x_i, y_i) \in \mathbb{R}^2 \text{ for } i \in [n] \\ \text{Output:} & \delta = \min\{\delta_{i,j} \text{ for } i, j \in [n] \text{ with } i \neq j\} \text{ where} \\ & \delta_{i,j} \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \end{array}$

D&C approach

Closest crossing pair in the plane

Closest Pair of Points in the Plane

Pseudocode for recursive case

- 1. Find x^* , L, and R
- 2. Recursively compute δ_L and δ_R
- 3. $\delta^* \leftarrow \min(\delta_L, \delta_R)$
- 4. $M \leftarrow \{i \in [n] \text{ s.t. } x_i \in (x^* \delta^*, x^* + \delta^*)\}$
- 5. Sort M based on y-coordinate
- 6. $\delta_M \leftarrow \min{\{\delta_{M[i],M[j]} \text{ for } i < j < i+12\}}$
- 7. Return min (δ^*, δ_M)

Correctness

Running time

- ▶ Using local sorting: $O(n \log n)$ locally and $O(n(\log n)^2)$ overall
- Using presorting: O(n) locally and $O(n \log n)$ overall

Polynomials	Alternate Representation of Polynomials
Coefficient representation $A(x) = A_0 + A_1 x + A_2 x^2 + \dots + A_{n-1} x^{n-1} = \sum_{i=0}^{n-1} A_i x^i$ Evaluation $A(x) = A_0 + x (A_1 + x(A_2 + \dots + x(A_{n-1}) \dots)) \text{ [Horner]}$ $O(n) \text{ arithmetic operations}$ Sum	 Point-value representation No two polynomials of degree at most n − 1 can agree on n or more points. For any fixed choice of n points x₀, x₁,, x_{n-1}, represent A(x) = ∑_{i=0}ⁿ⁻¹ a_ixⁱ as (y₀, y₁,, y_{n-1}) where y_i = A(x_i). Sum
► $A(b) + B(x) = (\sum_{i=0}^{n-1} A_i x^i) + (\sum_{i=0}^{n-1} B_i x^i)$ $= \sum_{i=0}^{n-1} (A_i + B_i) x^i$ ► $O(n)$ arithmetic operations Product ► $A(x) \cdot B(x) = (\sum_{i=0}^{n-1} A_i x^i) \times (\sum_{j=0}^{n-1} B_j x^j)$ $= \sum_{k=0}^{2(n-1)} C_k x^k$ where $C_k = \sum_{i=0}^{n-1} A_i B_{k-i}$ ► $O(n^2)$ arithmetic operations trivially	 <i>O</i>(<i>n</i>) arithmetic operations Product <i>O</i>(<i>n</i>) arithmetic operations Evaluation <i>A</i>(<i>x</i>) = ∑_{i=0}ⁿ⁻¹ y_i · ∏_{i≠j=0}ⁿ⁻¹ x_{i-x_j} [Lagrange interpolation] <i>O</i>(<i>n</i>²) arithmetic operations trivially

Converting Between Representations

Relationship

[y ₀]		Γ1	<i>x</i> 0	x_{0}^{2}		x_0^{n-1}	$\begin{bmatrix} A_0 \end{bmatrix}$
<i>y</i> ₁		1	x_1	x_{1}^{2}		x_1^{n-1}	A_1
<i>y</i> ₂	=	1	<i>x</i> ₂	x_{2}^{2}		x_2^{n-1}	A2
:					:		
y_{n-1}		1	x_{n-1}	x_{n-1}^2		x_{n-1}^{n-1}	A_{n-1}

Conversions

- From coefficient to evaluations: $O(n^2)$
- From evaluations to coefficients: $O(n^3)$
- Can improve both to O(n log n) by picking evaluations points cleverly: Fast Fourier Transform (FFT)
- Implies that polynomial multiplication in the coefficient representation can be done in time O(n log n).

Point Set for Efficient Simultaneous Polynomial Evaluation

Splitting the coefficient array

$$A(x) = \sum_{i=0}^{n-1} A_i x^i$$

= $\sum_i e_{\text{ven}} A_i x^i + \sum_{i \text{ odd}} A_i x^i$
= $A_{\text{even}}(x^2) + x \cdot A_{\text{odd}}(x^2)$

$$A(-x) = A_{\text{even}}(x^2) - x \cdot A_{\text{odd}}(x^2)$$

Divide & Conquer approach

- ▶ Pick $x_0, ..., x_{n-1}$ such that $x_{n/2+i} = -x_i$ for $i \in [n/2] 1$.
- Evaluation of A(x) at x_0, \ldots, x_{n-1} reduces to evaluation of $A_{\text{even}}(x)$ and $A_{\text{odd}}(x)$ at $x_0^2, \ldots, x_{n/2-1}^2$, with O(n) local work.
- Recursive application requires use of complex numbers. Every complex number z ≠ 0 has two distinct square roots: ±√z.
- ▶ $x_0, ..., x_{n-1}$ need to be distinct *n*-th roots of some $c \in \mathbb{C}$ where *n* a power of 2. Can pick c = 1.

Discrete Fourier Transform

Definition

Input: $n \in \mathbb{N}$; $A_0, \dots, A_{n-1} \in \mathbb{C}$ Output: (y_0, \dots, y_{n-1}) where $y_i = A(\omega_n^i)$ for $A(x) = A_0 + a_1 x + \dots + A_{n-1} x^{n-1}$

Algorithm for n a power of 2

- D&C approach runs in time O(n log n) assuming arithmetic over C as elementary operations.
- Known as Fast Fourier Transform (FFT).
- ω_n used for specificity in definition of DFT.
- FFT works for arbitrary primitive n-th root.
- Extends to finite fields.

Fast Fourier Transform

```
Input: n: power of 2; \omega: primitive n-th root of 1;

A_0, \ldots, A_{n-1} \in \mathbb{C}

Output: (y_0, \ldots, y_{n-1}) where y_i = A(\omega^i) for
```

```
A(x) = A_0 + A_1 x + \dots + A_{n-1} x^{n-1}
```

Pseudcode

```
 \begin{array}{l} \textbf{procedure } \mathrm{FFT}(n, \omega, A_0, \ldots A_{n-1}) \\ \textbf{if } n = 1 \textbf{ then return } (A_0) \\ (e_0, \ldots, e_{n/2-1}) \leftarrow \mathrm{FFT}(n/2, \omega^2, A_0, A_2, \ldots, A_{n-2}) \\ (f_0, \ldots, f_{n/2-1}) \leftarrow \mathrm{FFT}(n/2, \omega^2, A_1, A_3, \ldots, A_{n-1}) \\ x \leftarrow 1 \\ \textbf{for } k = 0 \text{ to } n/2 - 1 \textbf{ do} \\ y_k \leftarrow e_k + x \cdot f_k \\ y_{n/2+k} \leftarrow e_k - x \cdot f_k \\ x \leftarrow x \cdot \omega \\ \textbf{return } (y_0, \ldots, y_{n-1}) \end{array}
```

Note: Can be implemented iteratively in-line.

Applications of Fast Fourier Transform

Polynomial multiplication in coefficient representation

- Algorithm on input A(x) and B(x) of degree at most d
 - 1. $\tilde{A} \leftarrow \mathsf{FFT}(n, \omega_n, A)$ and $\tilde{B} \leftarrow \mathsf{FFT}(n, \omega_n, B)$ where *n* is smallest power of 2 at least 2d + 1
 - 2. $\tilde{C}_i \leftarrow \tilde{A}_i \cdot \tilde{B}_i$ for $i = 0, \dots, n-1$
 - 3. Return $C = \text{FFT}(n, \omega_n^{-1}, \tilde{C})/n$
- Running time: O(n log n) assuming arithmetic on complex numbers as elementary operations

Integer multiplication

- lnteger *a* equals value of polynomial A(x) at x = 2.
- Compute $C(x) = A(x) \cdot B(x)$ and output c = C(2).
- Runs in time O(n log n) assuming complex arithmetic, and time O(n · log n · log log n) using bit operations only.
- Best known: O(n log n) bit operations.

Integer Multiplication

Problem

Input: nonnegative integers a and b in binary notation Output: product $a \times b$ in binary notation

Grade school algorithm

Integer Multiplication

Improved D&C approach

- ► $a \times b = (a_L \times b_L) \cdot 2^n + (a_L \times b_R + a_R \times b_L) \cdot 2^{n/2} + (a_R \times b_R)$
- ► $a \times b = (a_L \times b_L) \cdot 2^n + (a_R \times b_R) + ((a_L + a_R) \times (b_L + b_R) (a_L \times b_L) (a_R \times b_R)) \cdot 2^{n/2}$

Running time

- Recursion tree: $O\left(\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot n\right)$ where $d = \log_2(n)$
- Geometric sum with ratio r: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- For r = ³/₂: r^d = (³/₂)^d = ^{3^d}/_{2^d}
 For d = log₂(n)
 2^d = n
 3^d = 3<sup>log₂(n) = (2^{log₂(3)})^{log₂(n)} = (2^{log₂(n)})^{log₂(3)} = n^{log₂(3)} = n^q
 Conclusion: O(ⁿ/_n · n) = O(n^q) where q = log₂(3) ≈ 1.585</sup>

Splitting	Selection Schema
 Input: (A, p) array A[1,,n] of integers integer p Output: (L, R) array L[1,, L] consisting of all entries of A less than p array R[1,, R] consisting of all entries of A larger than p Algorithm: procedure SPLIT(A, p) L, R ← empty lists for i = 1 to n do if A[i] append A[i] to L else if A[i] > p then append A[i] to R return L and R as arrays 	procedure SELECT (A, k) if $n = 1$ then return $A[1]$ pick a pivot p from A $(L, R) \leftarrow \text{SPLIT}(A, p)$ if $k \leq L $ then return SELECT (L,k) else if $k > n - R $ then return SELECT $(R,k - (n - R))$ else return p • Correctness • Running time assuming linear-time median as pivot: $O(n)$

Approximate Median

Definition

A ρ -approximate median of A is an element p of A such that Split(A, p) returns L and R with $|L| \le \rho \cdot |A|$ and $|R| \le \rho \cdot |A|$.

Construction

- 1. Break up A into consecutive segments of length w.
- 2. Find the median of each segment.
- 3. $A' \leftarrow$ subarray consisting of the segment medians.
- 4. Return the median of A'.

Key claim

The median of A' is a $\rho\text{-approximate median of }A$ with $\rho=\frac{3}{4}.$

Linear-Time Selection

Algorithm

procedure FAST-SELECT(A, k) **if** n = 1 **then return** A[1] $A' \leftarrow \text{array of medians of the <math>n' \doteq \left\lceil \frac{n}{w} \right\rceil$ consecutive length-w segments of A $p \leftarrow \text{FAST-SELECT}(A', \lceil n'/2 \rceil)$ $(L, R) \leftarrow \text{SPLIT}(A, p)$ **if** $k \leq |L|$ **then return** FAST-SELECT(L, k) **else if** k > n - |R| **then return** FAST-SELECT(R, k - (n - |R|)) **else return** p

Running time: O(n) for $w \ge 5$