
Outline

Paradigm

1. Break up given instance into considerably smaller ones.

2. Recursively solve those.

3. Combine their solutions into one for the given instance.

Examples of common pattern

I Sorting (Mergesort)

I Counting inversions

I Finding a closest pair of points in the plane

Lower bound for sorting

Sorting

Problem specification

Input: array A[1 . . . n] of integers with n � 1

Output: Sort(A), i.e., A sorted from smallest to largest

Mergesort

Sorting Lower Bound

Theorem

Every comparison-based sorting algorithm takes ⌦(n log n)

comparisons on arrays of length n.

Proof

I Every such algorithm for a given n can be modeled as a binary

decision tree T .

I Depth d of T is the maximum number of comparisons that A

makes on arrays of length n.

I Number ` of leaves is at least n!
.
= 1 · 2 · . . . · n.

I `  2
d

I d � log(`) � log(n!)

I (n/2)n/2  n!  n
n
so log(n!) = ⇥(n log n)

Counting Inversions

Definition

An inversion in an array A[1 . . . n] is a pair (i , j) 2 [n]⇥ [n] with

i < j and A[i] > A[j].

Example

A = [3, 5, 4, 7, 3, 1]

Bounds on Inv(A)

Between 0 (sorted) and
�n
2

�
(reverse sorted).

Problem specification

Input: array A[1 . . . n] of integers with n � 1

Output: Inv(A)
.
= number of inversions in A

Count

D&C approach

Counting cross inversions

I Problem specification

Input: sorted arrays L[1 . . . n] and R[1 . . .m] with

n,m � 1

Output: Inv(LR)

I Algorithm running in time O(n +m)

Running time of Count: O(n(log n)
2
)

Improved Count

Running time: O(n log n)

Closest Pair of Points in the Plane

Problem specification

Input: (xi , yi) 2 R2
for i 2 [n]

Output: �
.
= min{�i ,j for i , j 2 [n] with i 6= j} where

�i ,j
.
=

p
(xi � xj)

2 + (yi � yj)
2

D&C approach

Closest crossing pair in the plane

Closest Pair of Points in the Plane

Pseudocode for recursive case

1. Find x
⇤
, L, and R

2. Recursively compute �L and �R

3. �⇤ min(�L, �R)

4. M {i 2 [n] s.t. xi 2 (x
⇤ � �⇤, x⇤ + �⇤)}

5. Sort M based on y-coordinate

6. �M min{�M[i],M[j] for i < j < i + 12}
7. Return min(�⇤, �M)

Correctness

Running time

I Using local sorting: O(n log n) locally and O(n(log n)
2
) overall

I Using presorting: O(n) locally and O(n log n) overall

Polynomials

Coe�cient representation

A(x) = A0 + A1x + A2x
2 + · · ·+ An�1x

n�1 =
Pn�1

i=0 Aix
i

Evaluation

I A(x) = A0 + x (A1 + x(A2 + · · ·+ x(An�1) . . .)) [Horner]

I O(n) arithmetic operations

Sum

I A(b) + B(x) = (
Pn�1

i=0 Aix
i) + (

Pn�1
i=0 Bix

i)
=

Pn�1
i=0 (Ai + Bi)x i

I O(n) arithmetic operations

Product

I A(x) · B(x) = (
Pn�1

i=0 Aix
i)⇥ (

Pn�1
j=0 Bjx

j)

=
P2(n�1)

k=0 Ckx
k where Ck =

Pn�1
i=0 AiBk�i

I O(n2) arithmetic operations trivially

Alternate Representation of Polynomials

Point-value representation

I No two polynomials of degree at most n� 1 can agree on n or
more points.

I For any fixed choice of n points x0, x1, . . . , xn�1, represent
A(x) =

Pn�1
i=0 aix

i as (y0, y1, . . . , yn�1) where yi = A(xi).

Sum

I O(n) arithmetic operations

Product

I O(n) arithmetic operations

Evaluation

I A(x) =
Pn�1

i=0 yi ·
Qn�1

i 6=j=0
x�xj
xi�xj

[Lagrange interpolation]

I O(n2) arithmetic operations trivially

Converting Between Representations

Relationship

2

666664

y0

y1

y2
...

yn�1

3

777775
=

2

666664

1 x0 x
2
0 . . . x

n�1
0

1 x1 x
2
1 . . . x

n�1
1

1 x2 x
2
2 . . . x

n�1
2

...
1 xn�1 x

2
n�1 . . . x

n�1
n�1

3

777775

2

666664

A0

A1

A2
...

An�1

3

777775

Conversions

I From coe�cient to evaluations: O(n2)

I From evaluations to coe�cients: O(n3)

I Can improve both to O(n log n) by picking evaluations points
cleverly: Fast Fourier Transform (FFT)

I Implies that polynomial multiplication in the coe�cient
representation can be done in time O(n log n).

Point Set for E�cient Simultaneous Polynomial Evaluation

Splitting the coe�cient array

I A(x) =
Pn�1

i=0 Aix
i

=
P

i even Aix
i +

P
i odd Aix

i

= Aeven(x2) + x · Aodd(x2)

I A(�x) = Aeven(x2)� x · Aodd(x2)

Divide & Conquer approach

I Pick x0, . . . , xn�1 such that xn/2+i = �xi for i 2 [n/2]� 1.

I Evaluation of A(x) at x0, . . . , xn�1 reduces to evaluation of
Aeven(x) and Aodd(x) at x20 , . . . , x

2
n/2�1, with O(n) local work.

I Recursive application requires use of complex numbers. Every
complex number z 6= 0 has two distinct square roots: ±

p
z .

I x0, . . . , xn�1 need to be distinct n-th roots of some c 2 C
where n a power of 2. Can pick c = 1.

Complex Numbers

Definition

C = R(
p
�1) = {x + y

p
�1 : x , y 2 R}

Representation of z = x + y
p
�1

I Cartesian: (x , y)

I Polar: (r , ✓) where
z = r(cos(✓) + sin(✓)

p
�1)

x

y

r
z

✓

Arithmetic operations

I Sum:
(x1 + y1

p
�1) + (x2 + y2

p
�1) = (x1 + x2) + (y1 + y2)

p
�1

I Product:
(x1+y1

p
�1)·(x2+y2

p
�1) = (x1x2�y1y2)+(x1y2+x2y1)

p
�1

r = r1 · r2 and ✓ = ✓1 + ✓2

Roots of Unity

2⇡/n
!n

!�1
n

Primitive n-th root of unity

I Definition: ! 2 C such that h!i .
= {!k : k 2 N} consists of

all n-th roots of unity.

I Standard: !n

I If ! is primitive n-th root of unity for even n, then !2 is
primitive n/2-th root of unity.

Discrete Fourier Transform

Definition

Input: n 2 N; A0, . . . ,An�1 2 C
Output: (y0, . . . , yn�1) where yi = A(!i

n) for
A(x) = A0 + a1x + · · ·+ An�1x

n�1

Algorithm for n a power of 2

I D&C approach runs in time O(n log n) assuming arithmetic
over C as elementary operations.

I Known as Fast Fourier Transform (FFT).

I !n used for specificity in definition of DFT.

I FFT works for arbitrary primitive n-th root.

I Extends to finite fields.

Fast Fourier Transform

Input: n: power of 2; !: primitive n-th root of 1;
A0, . . . ,An�1 2 C

Output: (y0, . . . , yn�1) where yi = A(!i) for
A(x) = A0 + A1x + · · ·+ An�1x

n�1

Pseudcode

Note: Can be implemented iteratively in-line.

Inverting the Discrete Fourier Transform

2

666664

y0

y1

y2
...

yn�1

3

777775
=

2

6666664

1 1 1 . . . 1
1 !n !2

n . . . !n�1
n

1 !2
n !4

n . . . !2(n�1)
n

...

1 !n�1
n !(n�1)2

n . . . !(n�1)(n�1)
n

3

7777775

2

666664

A0

A1

A2
...

An�1

3

777775

I DFT: ~y = F (!n) · ~A
I F (!�1

n) · F (!n) = n · I
Proof: (F (!�1

n) · F (!n))ij =
Pn�1

k=0 F (!
�1
n)ikF (!n)kj

=
Pn�1

k=0 !
(j�i)k
n

=

⇢
n i = j

0 i 6= j

I Inverse DFT: ~A = F (!�1
n) · ~y/n

Applications of Fast Fourier Transform

Polynomial multiplication in coe�cient representation

I Algorithm on input A(x) and B(x) of degree at most d

1. Ã FFT(n,!n,A) and B̃ FFT(n,!n,B)
where n is smallest power of 2 at least 2d + 1

2. C̃i Ãi · B̃i for i = 0, . . . , n � 1
3. Return C = FFT(n,!�1

n , C̃)/n

I Running time: O(n log n) assuming arithmetic on complex
numbers as elementary operations

Integer multiplication

I Integer a equals value of polynomial A(x) at x = 2.

I Compute C (x) = A(x) · B(x) and output c = C (2).

I Runs in time O(n log n) assuming complex arithmetic, and
time O(n · log n · log log n) using bit operations only.

I Best known: O(n log n) bit operations.

Integer Multiplication

Problem

Input: nonnegative integers a and b in binary notation

Output: product a⇥ b in binary notation

Grade school algorithm

1 0 0 1 0

⇥ 1 1 1 0 1

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

+ 1 0 0 1 0

1 0 0 0 0 0 1 0 1 0

Integer Multiplication

Improved D&C approach

I a⇥ b = (aL ⇥ bL) · 2n+ (aL ⇥ bR + aR ⇥ bL) · 2n/2+ (aR ⇥ bR)

I a⇥ b = (aL ⇥ bL) · 2n + (aR ⇥ bR) +

((aL + aR)⇥ (bL + bR)� (aL ⇥ bL)� (aR ⇥ bR)) · 2n/2

Running time

I Recursion tree: O

⇣⇣Pd�1
i=0 (

3
2)

i
⌘
· n

⌘
where d = log2(n)

I Geometric sum with ratio r :
Pd�1

i=0 r
i
=

rd�1
r�1 = ⇥(r

d
)

I For r =
3
2 : r

d
= (

3
2)

d
=

3d

2d

I For d = log2(n)

I 2
d
= n

I 3
d
= 3

log2(n) = (2
log2(3))log2(n) = (2

log2(n))log2(3) = n
log2(3)

.
= n

q

I Conclusion: O(
nq

n · n) = O(n
q
) where q = log2(3) ⇡ 1.585

Splitting

I Input: (A, p)
I array A[1, . . . , n] of integers
I integer p

I Output: (L,R)
I array L[1, . . . , |L|] consisting of all entries of A less than p

I array R[1, . . . , |R |] consisting of all entries of A larger than p

I Algorithm:

Selection Schema

I Correctness

I Running time assuming linear-time median as pivot: O(n)

Approximate Median

Definition

A ⇢-approximate median of A is an element p of A such that

Split(A, p) returns L and R with |L|  ⇢ · |A| and |R |  ⇢ · |A|.

Construction

1. Break up A into consecutive segments of length w .

2. Find the median of each segment.

3. A
0 subarray consisting of the segment medians.

4. Return the median of A
0
.

Key claim

The median of A
0
is a ⇢-approximate median of A with ⇢ =

3
4 .

Linear-Time Selection

Algorithm

Running time: O(n) for w � 5

