Outline

Paradigm

1. Break up given instance into considerably smaller ones.
2. Recursively solve those.

3. Combine their solutions into one for the given instance.

Examples of common pattern

» Sorting (Mergesort)
» Counting inversions

» Finding a closest pair of points in the plane

Lower bound for sorting

Sorting

Problem specification
Input: array A[l...n] of integers with n > 1
Output: Sort(A), i.e., A sorted from smallest to largest

Mergesort

procedure MERGE-SORT(A)

if n =1 then
return A

else
m < |n/2|
L+ A[l,...,m]
R+ Am+1,....n|
return MERGE(MERGE-SORT(L), MERGE-SORT(R))

Sorting Lower Bound

Theorem
Every comparison-based sorting algorithm takes Q(nlog n)
comparisons on arrays of length n.

Proof

» Every such algorithm for a given n can be modeled as a binary
decision tree T.

Counting Inversions

Definition
An inversion in an array A[l...n] is a pair (i, /) € [n] x [n] with
i < jand A[i] > A[j].

Example
A=1[3,54,7,3,1]

» Depth d of T is the maximum number of comparisons that A Bounds on Inv(A)
makes on arrays of length n. Between 0 (sorted) and (3) (reverse sorted).
» Number ¢ of leaves is at least n! =1-2-...-n. L
Problem specification
> L2 | AlL...n] of i ith n > 1
nput: arra ... n] of integers with n
> d > log(f) > log(n!) P y oL seers W =
) Output: Inv(A) = number of inversions in A
> (n/2)"2 < nl < n" so log(n!) = O(nlog n)
Count Improved Count

D&C approach

Counting cross inversions

» Problem specification

Input: sorted arrays L[1...n] and R[1...m] with
nm>1
Output: Inv(LR)

» Algorithm running in time O(n + m)

Running time of Count: O(n(log n)?)

Input: A[l---n], an array of length n > 1
Output: (Inv(A),Sort(A))
1: procedure COUNT-AND-SORT(A)
2 if n =1 then
3 return (0, A)
4 else
5: m < [n/2]
6 (cr, L) + COUNT-AND-SORT(AIL, ..., m])
7 (¢r, R) + COUNT-AND-SORT(A[m +1,...,n])
8 Ceross — COUNT-CROSS(L, R)
9: €<= [+ CR + Ccross
10: B + MERGE(L, R)
11: return (cg, + ¢r + Ceross, B)

Running time: O(nlog n)

Closest Pair of Points in the Plane

Problem specification
Input: (x;,y;) € R? for i € [n]
Output: 0 = min{d;; for i,j € [n] with i # j} where
8ij = /(i =)2 + (vi —)

D& C approach

Closest crossing pair in the plane

Closest Pair of Points in the Plane

Pseudocode for recursive case
1. Find x*, L, and R
. Recursively compute 6; and g
L 0F min(éL,(SR)
M« {i € [n] s.t. x; € (x* — 0%, x* 4+ %)}
. Sort M based on y-coordinate
om min{éM[,-]me for i <j<i+12}
. Return min(8*, dp)

~N o oA~ wN

Correctness

Running time
» Using local sorting: O(nlog n) locally and O(n(log n)?) overall
» Using presorting: O(n) locally and O(nlog n) overall

Polynomials
Coefficient representation
A(x) = Ao + Arx + Apx® + -+ Ap_ix™ = S0 A
Evaluation
> A(x) = Ao+ x (A1 + x(A2 + - - 4+ x(Ap—1) ...)) [Horner]
» O(n) arithmetic operations

Sum
> A(b) + B(x) = (X759 Aix') + (X7 Bix')
=270 (A + B)x’
» O(n) arithmetic operations

Product
> A() - B(x) = (X755 Ax') x (75 Bix)
= Zi(:,,(;l) Cka where Ck = Z::ol A,‘Bk_,‘
» O(n?) arithmetic operations trivially

Alternate Representation of Polynomials

Point-value representation
» No two polynomials of degree at most n — 1 can agree on n or
more points.
» For any fixed choice of n points xp, x1, ..., Xp—1, represent
Ax) = Z,'-’;Ol aix’ as (Yo, ¥1,- - -, Yn—1) where y; = A(x;).

Sum
» O(n) arithmetic operations

Product
» O(n) arithmetic operations

Evaluation
—1 —1 x—X; . .
> Ax) =20 v iz %= [Lagrange interpolation]
» O(n?) arithmetic operations trivially

Converting Between Representations

Relationship
2 n—1
Yo X0 Xy Xo Ao
)% 1 x X12 xl”fl Al
~1
vil=11 x X3 X3 Az
Yn—1 I xpo1 X2 x4 | Ana1

Conversions
» From coefficient to evaluations: O(n?)
» From evaluations to coefficients: O(n®)
» Can improve both to O(nlog n) by picking evaluations points
cleverly: Fast Fourier Transform (FFT)
» Implies that polynomial multiplication in the coefficient
representation can be done in time O(nlog n).

Point Set for Efficient Simultaneous Polynomial Evaluation

Splitting the coefficient array
> A(x) =20 A ,
= z:’ even Aix" + z:’ odd Aix!
= Aeven(X2) + x- Aodd(Xz)
> A(=x) = Aeven(x?) — X - Aogd(x?)

Divide & Conquer approach

» Pick xg, ..., Xn—1 such that x, /5, ; = —x; for i € [n/2] — 1.
» Evaluation of A(x) at xo, ..., Xxp—1 reduces to evaluation of
Aeven(x) and Aoga(x) at X3, ... 7X§/271' with O(n) local work.

» Recursive application requires use of complex numbers. Every
complex number z # 0 has two distinct square roots: +4/z.

» Xxp,...,Xp—1 need to be distinct n-th roots of some c € C
where n a power of 2. Can pick ¢ = 1.

Complex Numbers

Definition

C=R(vV-1)={x+yvV-1:x,y eR}

Representation of z = x + yv/—1
> Cartesian: (x,y)
» Polar: (r,0) where

z = r(cos(0) + sin(#)v/—1)

Arithmetic operations

» Sum:

Ca+y1vV-1)+ (e +y2vV—1) = (1 + x2) + (11 +y2)vV-1
» Product:

(x1+y1vV—=1)-(x2+y2v/—1) = (xax2—y1y2)+(x1y2+x2y1)vV -1

r=r-rnandf=>0;+ 0

Roots of Unity

Primitive n-th root of unity
» Definition: w € C such that (w) = {w* : k € N} consists of
all n-th roots of unity.
» Standard: w,

» If w is primitive n-th root of unity for even n, then w? is
primitive n/2-th root of unity.

Discrete Fourier Transform

Definition
Input: n€N; Ag,..., A1 €C

Output: (Yo, .., Y1) where y; = A(wi) for
A(x) = Ag+arx + -+ Ap_1x"1

Algorithm for n a power of 2
» D&C approach runs in time O(nlog n) assuming arithmetic
over C as elementary operations.
» Known as Fast Fourier Transform (FFT).
» w, used for specificity in definition of DFT.
» FFT works for arbitrary primitive n-th root.
» Extends to finite fields.

Fast Fourier Transform

Input: n: power of 2; w: primitive n-th root of 1;
AOa-“vAnfl eC
Output: (yo,...,Ys_1) where y; = A(w') for
A(X) = Ao =+ A]_X R A,,,]_anl

Pseudcode

procedure FFT (n,w, Ag,... A1)
if n =1 then return (Ao)
(60, e ,8,1/2,1) — FFT(YZ/Q,OJ2, Ag, AQ, ey An,,g)
(for - fujo1) < FFT(n/2,0°, A1, As, ..., Ani)
<1
for k=0ton/2—1do
Yk < ex + - fi
Ynj2+k < €k — T fi
T Tw
return (yo,...,Yn—1)

Note: Can be implemented iteratively in-line.

Inverting the Discrete Fourier Transform

Yo 1 1 12 1 . Ao

" 1 w, wh wh™ .

yo | = |1 &2 wh W21 Ao
Yn—1 1 w,’}fl wﬁ"71)2 ce ws,nil)(nil) Anfl

> DFT: 7 = F(w,)- A
> Fwyt)-Flws)=n-1
Proof: (F(wp™) - Flwn))i = Xizo F(wn)i (wn)ig
= Shpel "
_fn =y
a { 0 i#j
> Inverse DFT: A= F(w;1)-y/n

Applications of Fast Fourier Transform

Polynomial multiplication in coefficient representation

» Algorithm on input A(x) and B(x) of degree at most d
1. A FFT(n,wy,A) and B « FFT(n,w,, B)
where n is smallest power of 2 at least 2d + 1
2. C,‘PA,"B,‘ fori:O,...Lnfl
3. Return C = FFT(n,w,*,C)/n

» Running time: O(nlog n) assuming arithmetic on complex
numbers as elementary operations

Integer multiplication

> Integer a equals value of polynomial A(x) at x = 2.

» Compute C(x) = A(x) - B(x) and output ¢ = C(2).

» Runs in time O(nlog n) assuming complex arithmetic, and
time O(n - log n - log log n) using bit operations only.

» Best known: O(nlog n) bit operations.

Integer Multiplication

Problem
Input: nonnegative integers a and b in binary notation

Output: product a X b in binary notation

Grade school algorithm

Integer Multiplication

Improved D&C approach
» ax b= (a,_ X bL)-2"+ (a,_ X br + agr X b[_)~2n/2+ (aR X bR)

> ax b=(aL x by)-2"+ (ag x br) +
((aL+aR) X (bL+bR)—(aL X bL)—(aR X bR))~2n/2

Running time

10010 » Recursion tree: O ((Z?:_ol(%)i> . n) where d = log,(n)
X 111 1 .
10010 > Geometric sum with ratio r: Y291 r/ = ’:7—_11 =0(r4)
d
10010 > Forr=3ri=(3) =%
10010 » For d = log,(n)
+ 10010 > 24— 1
1 000O0O0O1O0T1O0 > 39 — 3loga(n) — (2lo82(3))loga(n) — (2loga(n))lor2(3) — ploga(3) = pa
» Conclusion: O("—: -n) = O(n?) where q = log,(3) ~ 1.585
Splitting Selection Schema
> Input: (A, p)
> array A[L,...,n] of integers procedure SELECT(A, k)
> integer p if n =1 then return A[l]
» Output: (L, R) pick a pivot p from A
> array L[1,...,|L|] consisting of all entries of A less than p (L, R) < SPLIT(A,p)
> array R[1,...,|R]] consisting of all entries of A larger than p if k < |L| then
> Algorithm: return SELECT(L,k)

procedure SPLIT(A, p)
L, R < empty lists
fori=1tondo
if Afi] < p then
append A[i] to L
else if A[i] > p then
append A[i] to R

return L and R as arrays

else if k > n —|R| then

return SELECT(R.k — (n — |R]))
else

return p

» Correctness

» Running time assuming linear-time median as pivot: O(n)

Approximate Median

Definition
A p-approximate median of A is an element p of A such that
Split(A, p) returns L and R with |L| < p-|A| and |R| < p-|A|.
Construction

1. Break up A into consecutive segments of length w.

2. Find the median of each segment.

3. A’ « subarray consisting of the segment medians.

4. Return the median of A'.

Key claim
The median of A’ is a p-approximate median of A with p = %

Linear-Time Selection

Algorithm
procedure FAST-SELECT(A, k)
if n =1 then return A[l]
A’ < array of medians of the n’/ = [%“
consecutive length-w segments of A
p < FAST-SELECT(A’,[n//2])
(L, R) < SpLIT(A,p)
if k <|L| then
return FAST-SELECT(L,k)
else if £k > n — |R| then
return FAST-SELECT(R,k — (n — |R|))
else
return p

Running time: O(n) for w > 5

