Outline

Paradigm

1. Break up given instance into considerably smaller ones.
2. Recursively solve those.
3. Combine their solutions into one for the given instance.

Examples of common pattern

- Sorting (Mergesort)
- Counting inversions
- Finding a closest pair of points in the plane

Lower bound for sorting

Sorting

Problem specification
Input: array $A[1 \ldots n]$ of integers with $n \geq 1$
Output: $\operatorname{Sort}(A)$, i.e., A sorted from smallest to largest

Mergesort
procedure MERGE-Sort (A)
if $n=1$ then
return A
else
$m \leftarrow\lfloor n / 2\rfloor$
$L \leftarrow A[1, \ldots, m]$
$R \leftarrow A[m+1, \ldots, n]$
return Merge(Merge-Sort(L), Merge-Sort (R))

Counting Inversions

Definition

An inversion in an array $A[1 \ldots n]$ is a pair $(i, j) \in[n] \times[n]$ with $i<j$ and $A[i]>A[j]$.

Example
$A=[3,5,4,7,3,1]$
Bounds on $\operatorname{Inv}(A)$
Between 0 (sorted) and ($\left.\begin{array}{l}n \\ 2\end{array}\right)$ (reverse sorted).
Problem specification
Input: array $A[1 \ldots n]$ of integers with $n \geq 1$
Output: $\operatorname{Inv}(A) \doteq$ number of inversions in A

Count

D\&C approach

Counting cross inversions

- Problem specification

Input: sorted arrays $L[1 \ldots n]$ and $R[1 \ldots m]$ with $n, m \geq 1$
Output: $\operatorname{Inv}(L R)$

- Algorithm running in time $O(n+m)$

Running time of Count: $O\left(n(\log n)^{2}\right)$

Improved Count

```
Input: \(A[1 \cdots n]\), an array of length \(n \geq 1\)
Output: \((\operatorname{Inv}(A), \operatorname{Sort}(A))\)
    procedure Count-And-Sort \((A)\)
        if \(n=1\) then
            return \((0, A)\)
        else
            \(m \leftarrow\lfloor n / 2\rfloor\)
            \(\left(c_{L}, L\right) \leftarrow \operatorname{Count}-\operatorname{And}-\operatorname{Sort}(A[1, \ldots, m])\)
            \(\left(c_{R}, R\right) \leftarrow\) COUNT-AND-Sort \((A[m+1, \ldots, n])\)
            \(c_{\text {cross }} \leftarrow \operatorname{Count}-\operatorname{Cross}(L, R)\)
            \(c \leftarrow c_{L}+c_{R}+c_{\text {cross }}\)
            \(B \leftarrow \operatorname{Merge}(L, R)\)
            return \(\left(c_{L}+c_{R}+c_{\text {cross }}, B\right)\)
```

Running time: $O(n \log n)$

Closest Pair of Points in the Plane

Problem specification
Input: $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$ for $i \in[n]$
Output: $\delta \doteq \min \left\{\delta_{i, j}\right.$ for $i, j \in[n]$ with $\left.i \neq j\right\}$ where
$\delta_{i, j} \doteq \sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$

D\&C approach

Closest crossing pair in the plane

Closest Pair of Points in the Plane
Pseudocode for recursive case

1. Find x^{*}, L, and R
2. Recursively compute δ_{L} and δ_{R}
3. $\delta^{*} \leftarrow \min \left(\delta_{L}, \delta_{R}\right)$
4. $M \leftarrow\left\{i \in[n]\right.$ s.t. $\left.x_{i} \in\left(x^{*}-\delta^{*}, x^{*}+\delta^{*}\right)\right\}$
5. Sort M based on y-coordinate
6. $\delta_{M} \leftarrow \min \left\{\delta_{M[i], M[j]}\right.$ for $\left.i<j<i+12\right\}$
7. Return $\min \left(\delta^{*}, \delta_{M}\right)$

Correctness

Running time

- Using local sorting: $O(n \log n)$ locally and $O\left(n(\log n)^{2}\right)$ overall
- Using presorting: $O(n)$ locally and $O(n \log n)$ overall

Polynomials

Coefficient representation
$A(x)=A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{n-1} x^{n-1}=\sum_{i=0}^{n-1} A_{i} x^{i}$
Evaluation

- $A(x)=A_{0}+x\left(A_{1}+x\left(A_{2}+\cdots+x\left(A_{n-1}\right) \ldots\right)\right)$ [Horner]
- $O(n)$ arithmetic operations

Sum

$$
\text { - } \begin{aligned}
A(b)+B(x) & =\left(\sum_{i=0}^{n-1} A_{i} x^{i}\right)+\left(\sum_{i=0}^{n-1} B_{i} x^{i}\right) \\
& =\sum_{i=0}^{n-1}\left(A_{i}+B_{i}\right) x^{i}
\end{aligned}
$$

- $O(n)$ arithmetic operations

Product

- $A(x) \cdot B(x)=\left(\sum_{i=0}^{n-1} A_{i} x^{i}\right) \times\left(\sum_{j=0}^{n-1} B_{j} x^{j}\right)$

$$
=\sum_{k=0}^{2(n-1)} C_{k} x^{k} \text { where } C_{k}=\sum_{i=0}^{n-1} A_{i} B_{k-i}
$$

- $O\left(n^{2}\right)$ arithmetic operations trivially

Alternate Representation of Polynomials

Point-value representation

- No two polynomials of degree at most $n-1$ can agree on n or more points.
- For any fixed choice of n points $x_{0}, x_{1}, \ldots, x_{n-1}$, represent $A(x)=\sum_{i=0}^{n-1} a_{i} x^{i}$ as $\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ where $y_{i}=A\left(x_{i}\right)$.

Sum

- $O(n)$ arithmetic operations

Product

- $O(n)$ arithmetic operations

Evaluation

- $A(x)=\sum_{i=0}^{n-1} y_{i} \cdot \prod_{i \neq j=0}^{n-1} \frac{x-x_{j}}{x_{i}-x_{j}}$ [Lagrange interpolation]
- $O\left(n^{2}\right)$ arithmetic operations trivially

Converting Between Representations

Relationship

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
& & & \vdots & \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
A_{1} \\
A_{2} \\
\vdots \\
A_{n-1}
\end{array}\right]
$$

Conversions

- From coefficient to evaluations: $O\left(n^{2}\right)$
- From evaluations to coefficients: $O\left(n^{3}\right)$
- Can improve both to $O(n \log n)$ by picking evaluations points cleverly: Fast Fourier Transform (FFT)
- Implies that polynomial multiplication in the coefficient representation can be done in time $O(n \log n)$.

Point Set for Efficient Simultaneous Polynomial Evaluation

Splitting the coefficient array

$$
\text { - } \begin{aligned}
A(x) & =\sum_{i=0}^{n-1} A_{i} x^{i} \\
& =\sum_{i \text { even }} A_{i} x^{i}+\sum_{i \text { odd }} A_{i} x^{i} \\
& =A_{\text {even }}\left(x^{2}\right)+x \cdot A_{\text {odd }}\left(x^{2}\right) \\
-A(-x) & =A_{\text {even }}\left(x^{2}\right)-x \cdot A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

Divide \& Conquer approach

- Pick x_{0}, \ldots, x_{n-1} such that $x_{n / 2+i}=-x_{i}$ for $i \in[n / 2]-1$.
- Evaluation of $A(x)$ at x_{0}, \ldots, x_{n-1} reduces to evaluation of $A_{\text {even }}(x)$ and $A_{\text {odd }}(x)$ at $x_{0}^{2}, \ldots, x_{n / 2-1}^{2}$, with $O(n)$ local work.
- Recursive application requires use of complex numbers. Every complex number $z \neq 0$ has two distinct square roots: $\pm \sqrt{z}$.
- x_{0}, \ldots, x_{n-1} need to be distinct n-th roots of some $c \in \mathbb{C}$ where n a power of 2 . Can pick $c=1$.

Complex Numbers

Definition
$\mathbb{C}=\mathbb{R}(\sqrt{-1})=\{x+y \sqrt{-1}: x, y \in \mathbb{R}\}$
Representation of $z=x+y \sqrt{-1}$

- Cartesian: (x, y)
- Polar: (r, θ) where $z=r(\cos (\theta)+\sin (\theta) \sqrt{-1})$

Arithmetic operations

- Sum:
$\left(x_{1}+y_{1} \sqrt{-1}\right)+\left(x_{2}+y_{2} \sqrt{-1}\right)=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) \sqrt{-1}$
- Product:
$\left(x_{1}+y_{1} \sqrt{-1}\right) \cdot\left(x_{2}+y_{2} \sqrt{-1}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) \sqrt{-1}$ $r=r_{1} \cdot r_{2}$ and $\theta=\theta_{1}+\theta_{2}$

Roots of Unity

Primitive n-th root of unity

- Definition: $\omega \in \mathbb{C}$ such that $\langle\omega\rangle \doteq\left\{\omega^{k}: k \in \mathbb{N}\right\}$ consists of all n-th roots of unity.
- Standard: ω_{n}
- If ω is primitive n-th root of unity for even n, then ω^{2} is primitive $n / 2$-th root of unity.

Discrete Fourier Transform

Definition

$$
\begin{aligned}
\text { Input: } & n \in \mathbb{N} ; A_{0}, \ldots, A_{n-1} \in \mathbb{C} \\
\text { Output: } & \left(y_{0}, \ldots, y_{n-1}\right) \text { where } y_{i}=A\left(\omega_{n}^{i}\right) \text { for } \\
& A(x)=A_{0}+a_{1} x+\cdots+A_{n-1} x^{n-1}
\end{aligned}
$$

Algorithm for n a power of 2

- D\&C approach runs in time $O(n \log n)$ assuming arithmetic over \mathbb{C} as elementary operations.
- Known as Fast Fourier Transform (FFT).
- ω_{n} used for specificity in definition of DFT.
- FFT works for arbitrary primitive n-th root.
- Extends to finite fields.

Fast Fourier Transform

Input: n : power of 2 ; ω : primitive n-th root of 1 ;

$$
\begin{aligned}
& A_{0}, \ldots, A_{n-1} \in \mathbb{C} \\
\text { Output: } & \left(y_{0}, \ldots, y_{n-1}\right) \text { where } y_{i}=A\left(\omega^{i}\right) \text { for } \\
& A(x)=A_{0}+A_{1} x+\cdots+A_{n-1} x^{n-1}
\end{aligned}
$$

Pseudcode

$$
\begin{aligned}
& \text { procedure } \operatorname{FFT}\left(n, \omega, A_{0}, \ldots A_{n-1}\right) \\
& \text { if } n=1 \text { then return }\left(A_{0}\right) \\
& \left(e_{0}, \ldots, e_{n / 2-1}\right) \leftarrow \operatorname{FFT}\left(n / 2, \omega^{2}, A_{0}, A_{2}, \ldots, A_{n-2}\right) \\
& \left(f_{0}, \ldots, f_{n / 2-1}\right) \leftarrow \operatorname{FFT}\left(n / 2, \omega^{2}, A_{1}, A_{3}, \ldots, A_{n-1}\right) \\
& x \leftarrow 1 \\
& \text { for } k=0 \text { to } n / 2-1 \text { do } \\
& \quad y_{k} \leftarrow e_{k}+x \cdot f_{k} \\
& \quad y_{n / 2+k} \leftarrow e_{k}-x \cdot f_{k} \\
& \quad x \leftarrow x \cdot \omega \\
& \quad \text { return }\left(y_{0}, \ldots, y_{n-1}\right)
\end{aligned}
$$

Note: Can be implemented iteratively in-line.

Applications of Fast Fourier Transform

Polynomial multiplication in coefficient representation

- Algorithm on input $A(x)$ and $B(x)$ of degree at most d

1. $\tilde{A} \leftarrow \operatorname{FFT}\left(n, \omega_{n}, A\right)$ and $\tilde{B} \leftarrow \operatorname{FFT}\left(n, \omega_{n}, B\right)$
where n is smallest power of 2 at least $2 d+1$
2. $\tilde{C}_{i} \leftarrow \tilde{A}_{i} \cdot \tilde{B}_{i}$ for $i=0, \ldots, n-1$
3. Return $C=\operatorname{FFT}\left(n, \omega_{n}^{-1}, \tilde{C}\right) / n$

- Running time: $O(n \log n)$ assuming arithmetic on complex numbers as elementary operations

Integer multiplication

- Integer a equals value of polynomial $A(x)$ at $x=2$.
- Compute $C(x)=A(x) \cdot B(x)$ and output $c=C(2)$.
- Runs in time $O(n \log n)$ assuming complex arithmetic, and time $O(n \cdot \log n \cdot \log \log n)$ using bit operations only.
- Best known: $O(n \log n)$ bit operations.

Integer Multiplication

Problem

Input: nonnegative integers a and b in binary notation
Output: product $a \times b$ in binary notation
Grade school algorithm

					1	0	0	1
\times					1	1	1	0
\times					1			
						1	0	0

Integer Multiplication
Improved D\&C approach
$-a \times b=\left(a_{L} \times b_{L}\right) \cdot 2^{n}+\left(a_{L} \times b_{R}+a_{R} \times b_{L}\right) \cdot 2^{n / 2}+\left(a_{R} \times b_{R}\right)$

- $a \times b=\left(a_{L} \times b_{L}\right) \cdot 2^{n}+\left(a_{R} \times b_{R}\right)+$
$\left(\left(a_{L}+a_{R}\right) \times\left(b_{L}+b_{R}\right)-\left(a_{L} \times b_{L}\right)-\left(a_{R} \times b_{R}\right)\right) \cdot 2^{n / 2}$
Running time
- Recursion tree: $O\left(\left(\sum_{i=0}^{d-1}\left(\frac{3}{2}\right)^{i}\right) \cdot n\right)$ where $d=\log _{2}(n)$
- Geometric sum with ratio $r: \sum_{i=0}^{d-1} r^{i}=\frac{r^{d}-1}{r-1}=\Theta\left(r^{d}\right)$
- For $r=\frac{3}{2}: r^{d}=\left(\frac{3}{2}\right)^{d}=\frac{3^{d}}{2^{d}}$
- For $d=\log _{2}(n)$
- $2^{d}=n$
$-3^{d}=3^{\log _{2}(n)}=\left(2^{\log _{2}(3)}\right)^{\log _{2}(n)}=\left(2^{\log _{2}(n)}\right)^{\log _{2}(3)}=n^{\log _{2}(3)} \doteq n^{q}$
- Conclusion: $O\left(\frac{n^{q}}{n} \cdot n\right)=O\left(n^{q}\right)$ where $q=\log _{2}(3) \approx 1.585$

Splitting

- Input: (A, p)
- array $A[1, \ldots, n]$ of integers
- integer p
- Output: (L, R)
- array $L[1, \ldots,|L|]$ consisting of all entries of A less than p
- array $R[1, \ldots,|R|]$ consisting of all entries of A larger than p
- Algorithm:
procedure $\operatorname{Split}(A, p)$
$L, R \leftarrow$ empty lists
for $i=1$ to n do
if $A[i]<p$ then append $A[i]$ to L
else if $A[i]>p$ then append $A[i]$ to R return L and R as arrays

Selection Schema

procedure $\operatorname{Select}(A, k)$
if $n=1$ then return $A[1]$
pick a pivot p from A
$(L, R) \leftarrow \operatorname{Split}(A, p)$
if $k \leq|L|$ then
return $\operatorname{Select}(L, k)$
else if $k>n-|R|$ then
return $\operatorname{Select}(R, k-(n-|R|))$
else
return p

- Correctness
- Running time assuming linear-time median as pivot: $O(n)$

Approximate Median

Definition
A ρ-approximate median of A is an element p of A such that $\operatorname{Split}(A, p)$ returns L and R with $|L| \leq \rho \cdot|A|$ and $|R| \leq \rho \cdot|A|$.

Construction

1. Break up A into consecutive segments of length w.
2. Find the median of each segment.
3. $A^{\prime} \leftarrow$ subarray consisting of the segment medians.
4. Return the median of A^{\prime}.

Key claim

The median of A^{\prime} is a ρ-approximate median of A with $\rho=\frac{3}{4}$.

Linear-Time Selection

Algorithm
procedure FAST-SELECT (A, k)
if $n=1$ then return $A[1]$
$A^{\prime} \leftarrow$ array of medians of the $n^{\prime} \doteq\left\lceil\frac{n}{w}\right\rceil$
consecutive length- w segments of A
$p \leftarrow \operatorname{FAST}-\operatorname{SELECT}\left(A^{\prime},\left\lceil n^{\prime} / 2\right\rceil\right)$
$(L, R) \leftarrow \operatorname{Split}(A, p)$
if $k \leq|L|$ then
return FAST-SELECT (L, k)
else if $k>n-|R|$ then
return $\operatorname{FAST}-\operatorname{SELECT}(R, k-(n-|R|))$
else
return p
Running time: $O(n)$ for $w \geq 5$

