Queens Problem
Specification (search version)

Input: n€ N
Output: Position of n queens on n x n board such that no two
queens threaten each other, i.e., no two queens are
on the same row, column, or diagonal.

W]

¥
wl L
W \
[

|

Model
» Components ~ queens. State space: [n] x [n]

> Components ~ rows. State space: [n].

Backtracking
Approach
» Check for violations of constraints by partial solutions.
» Backtrack if violation detected.

Queens problem

] W []
|
I
[] | | &] [T#
H| | ‘% @ | %‘
7 ®| | 7]
] wl []
¥ Eln ¥ ¥
W |
[[e il]
v ¥
k4 i

Generating All Solutions — backtracking

Extended specification

Input: instance | with solutions of length n
leNwithé<n
S[1...4] satisfying all constraints involving first ¢
components only

Output: all valid solutions for / that start with S[1.../]

procedure GENALLEXTENSION(I, n, £, S[1...(])
if £ =n then output S[1...n]
else
for each possible setting v do
S[+1] v
if setting of S[¢ + 1] induces no constraint violations then
GENALLEXTENSION(I, n, £ +1, S[1...0+1])

Common Problem Type

Setting
» System consisting of n components.
» Each component can be in a finite number of states.

» Certain constraints defining which combinations of states are
valid.
» Objective function f from settings to R

Goal
Decision: Decide whether a solution exists.
Search: Find a solution.
Generation: Output all solutions.
Count: Output the number of solutions.
Optimal solution: Output solution that maximizes or minimizes f.

Optimal value: Output max or min value of f over valid solutions.

Interval Scheduling

Problem specification (value version)
Input: intervals I; = [s;, f;) and values v; € R for i € [n].

Output: maximum of)7, s v; over all S C [n] such that no
intervals /; and /; for distinct i,j € S overlap

Subproblems
Input: J C [n]

Output: OPT(J) = maximum of)7, s v; over all S C J such
that no intervals /; and /; for distinct i, j € S overlap

procedure MAXVAL(.J)
if J =0 then return 0
else
J* < min(J)
C—{jeJ:IinI#0}
return max(MAXVAL(J \ {7*}), v+ + MAXVAL(J \ C))

Analysis

Correctness

Running time
» Aggregate local work over all subproblems
» Work per subproblem: O(n)
» Number of subproblems
» Number of subsets of [n] equals 2".

» Example where number of distinct subproblems is at least 2"/2.
» Can be improved by considering intervals in appropriate order.

Improved Algorithm

Idea
Sort the intervals I; = [s;, ;) by smallest s; first, then run prior
algorithm.

Subproblems
Suffixes of [n], i.e., subsets of the form {k,k+1,...,n}
where k € [n+1] ={1,2,...,n+ 1}
Recurrence
» OPT(k) = maximum total value achievable by intervals /;
with j € {k,k+1,...,n}.
» OPT(k) = max (OPT(k + 1), vk + OPT(next(k)))
where next(k) = min({j € {k+1,...,n} :5; > i} U{n+1})

Analysis

Correctness

Running time
» Sorting: O(nlog n)
» Number of subproblems: n+ 1

» Amount of work per subproblem: O(log n) for finding next(k)
using binary search.

> Total: O(nlogn)

Memory space

> Base case: OPT(n+1)=0 > O(n)
» Answer: OPT(1)
Retrieving the Solution Paradigm

Recursively
Return both the value and a solution achieving it.

Iteratively

procedure RETRIEVE-SOLUTION
S+ 0
k+1
while &k <n do
if OPT(k) = OPT(k + 1) then
k+k+1
else
S« Su{k}
k < next(k)

return S

Dynamic Programming
Recursive approach such that:

1. The number of distinct subproblems in the recursion tree
remains small.

2. Each of those subproblems is solved only once.

Realizing property 2
» Memoization

> |teration

Analyzing property 1
» Looking back: What information about backtracking history
suffices to continue the process? [state reduction]

» Looking forward: What set of parameters suffice to describe
all subproblems? [explicit description of subproblems]

Knapsack Problem

Problem
Input: items i € [n] specified by weight w; € ZT and value
vi € R; weight limit W € Z+
Ouput: S C [n] such that 7, csw; < W and } ;g v; is
maximized.

Principle of optimality

> Case i* ¢ S:
Remains to solve given instance with /* removed.

» Case i* € S (only an option if w;+ < W):
Remains to solve given instance with /* removed and weight
limit W — Wi .

» Informally, OPT(/) is the maximum of:

> OPT(/ without i*)
» v« + OPT(/ without i* and weight limit W — w;+).

Dynamic Program for Optimal Value

» Consider items in given order.

> State reduction: ©(n- W) states
last item considered, total weight thus far

» Subproblem specification:
OPT(k,w) = OPT(items {k,...,n} and weight limit w)
where 1< k<n+land0<w<W
» Recurrence: OPT(k,w) =
max (OPT(k + 1, w), vk + OPT(k + 1, w — wy) only if wx < w)
» Base cases (k =n+1): OPT(n+1,w) =0
Answer: OPT(1, W)

» Evaluation order for iterative implementation

v

Retrieving the Solution

Pseudocode

procedure RETRIEVE-SOLUTION
S0
w— W
for k =1 ton do
if wy <w cand OPT(k,w) = v, + OPT(k+1,w — wy)
then S < SU{k}; w w —wy

return S

Complexity analysis
» Time: O(n- W) with or without retrieval.
» Space: O(n- W) with retrieval; O(W) without.

Problem Specifications

Sequence alignment
Input: strings A[1,...,n] and B[1,...,m]
Ouput: alignment of A and B that maximizes the number of
matches
Longest common subsequence
Input: strings A[1,...,n] and B[1,...,m]

Ouput: subsequence of both A and B of maximum length

Principle of optimality

Consider alignment at the end.
» Case 1: Do not align A[n]
Contribution: 0
Remains to solve problem for A[1,...,n—1] and B[1,..., m]
» Case 2: Do not align B[m]
Contribution: 0
Remains to solve problem for A[1,...,n] and B[1,...,m—1]
» Case 3: Align A[n] and B[m)]
Contribution: 1 if A[n] = B[m], 0 otherwise
Remains to solve problem for A[1,...,n— 1] and
B[1’7m_1]

DP Approach

Subproblems

OPT(/,j) = length of a longest common subsequence of
AlL,...,iland B[1,...,j] (0<i<nand 0 <j<m)

Recursion
OPT(i,j) =
max(OPT(i — 1,j), OPT(i,j — 1), g8y + OPT(i — 1,j — 1))

where 6. = 1 ifa=b
€€ %ab =1 0 otherwise

Base cases
OPT(0,j) = 0 = OPT(/,0)

Answer: OPT(n, m)

Interpretation
Finding a longest path from (0, 0) to (n, m) in grid digraph

Complexity Analysis

Time
» O(nm) table entries
» O(1) time per entry
» O(nm) total time

Space

» O(min(n, m)) for length of longest common subsequence

» O(nm) for alignment / longest common subsequence

Reducing Space Complexity for Alignment / LCS

> Need to find longest simple path from (0,0) to (n, m).

» Path must be in column m/2 at least once, say in row /*.

» Once we know i*, remains to find:
(a) longest simple path from (0,0) to (i*, m/2), and
(b) longest simple path from (i*, m/2) to (n, m).

> Both (a) and (b) are significantly smaller instances of the
same problem.

» To find i* compute for each i € [n]:
(a) f(i): length of longest simple path from (0,0) to (i, m/2)
(b) g(i): length of longest simple path from (i, m/2) to (n, m)
Then set i* to an i € [n] that maximizes (i) + g(/).

> As f(i) = OPT(i,m/2), all of f can be computed in time
O(nm) and space O(n) using original algorithm.

> Same applies to g by symmetry (reverse direction of edges).

» Thus, i* can be computed in time O(nm) and space O(n).

Complexity Analysis

Space
» O(n+ m) for path [global]
» O(n) for computing i* [local, reused]
» O(1) per level of recursion [recursion stack]
» Total: O(n+ m)+ O(n) + O(logm) = O(n+ m)

Time
> local work: c-n-m
» dimension of children: i* x m/2 and (n— i*) x m/2
» local work at children:
c-i*-m/24+c-(n—i*)-m/2 = c-(i*+(n—i*))-m/2 = Lc-n-m
» Total: O(nm)

A Little Bio

DNA
» String over {A,C,G, T}
» Complementary strands: A~ T and C ~ G

RNA
» String over {A, C, G, U}
» Single strand
» Self-stabilizes forming bonds A~ U and C ~ G

RNA Secondary Structure

Input:
string R[1, ..., n] over alphabet {A, C, G, U}

Output:
set S of pairs (i,j) € [n] X [n] with i < j of maximum size |S| s.t.:
» [Matching] Each i € [n] appears in at most one pair of S.
» [Complementarity] For each (i,j) € S, R[i] ~ R[j].
» [No sharp turns] For each (i,j) € S, j > i+5.
» [No crossings] For no (i), (k,0) € S, i < k <j < L.

Algorithm

Principle of optimality
» Case position 1 is not matched:
Remains to solve problem for R[2,...,n].

» Case position 1 is matched with k
(only an option if kK > 5 and R[1] ~ R[k]):
Remains to solve problem for R[2,..., k — 1] and for
Rlk+1,...,n].

Subproblem specification
OPT(i,j) = OPT(R][i,...,j]) where 1 < i < j < n.

Recurrence (for i < j)
OPT(i,j) = max (OPT(i + 1,j),
max,-+55k<JyR[,-]NR[k](1 + OPT(I + 1,k — 1) + OPT(k + 1,])))

Base cases: OPT(i,i) =0 for i € [n]. Answer: OPT(1, n).

Analysis

Subproblem specification
OPT(i,j) = OPT(R[i,...,j]) where 1 < i <j < n.

Recurrence (for i < j)
OPT(/,j) = max (OPT(i + 1,j),
max;ys<k<jRij~RrK (1 + OPT(i+ 1,k — 1) + OPT(k +1,j)))
Time
> O(n?) table entries
» O(n) operations to evaluate recurrence for a given table entry
> O(n?) time overall

Space
O(n?) with or without retrieval.

Shortest Paths Problem

Input: (di)graph G = (V,E); lengths £ : E - R; s, t € V
Ouput: path P from s to t with minimum length
UP) =2 cept(e)
Variants based on source/target
» single pair
» single source
» single target
» all pairs

Variants based on edge lengths
P> unit
» nonnegative

> arbitrary

Shortest Paths Problem

Specification
Input: (di)graph G = (V,E); lengths £ : E = R; s, t € V
Ouput: path P from s to t with minimum length

U(P) =X ecp t(e)

Distance d(s, t)

= min{{(P) | P path from s to t}

= oo if there is no path from s to t

= —o0 if there is a path from s to t but no shortest one

Proposition
d(s,t) = —00 &
there exists cycle C with £(C) < 0 such that s ~ C and C ~ t.

Single Source — subproblems and recurrence

Subproblems

OPT(k,v) =
length of a shortest path from s to v using < k edges
o0 if no such path exists

(keNandveV)

Base case (k = 0)
OPT(0,s) =0 and OPT(0,v) = co for v # s

Recursive case (k > 1)

OPT(k, v) = min(
ming,v)ee(OPT(k — 1, u) + £(u, v))
OPT(k - 1,v))

Answer
d(s,v) = limg_oo OPT(k, v)

Single Source — number of Iterations

Observation 1
If (Vv) OPT(k,v) = OPT(k — 1, v)
then (¥v) OPT(k +1,v) = OPT(k, v).

Observation 2
If OPT(n,u) < OPT(n—1,u) then

there exists cycle C with £(C) < 0 such that s ~» C and C ~~ u.

Criterion
d(s,v) = —0 &
there exist u € V' s.t. u~ v and OPT(n,u) < OPT(n—1,u).

Single Source — algorithm

k<0
OPT(k, s) « 0
for v € V'\ {s} do OPT(k,v) + o0
repeat
k—k+1
for v € V do
d < ming, yep(OPT(k — 1,u) + £(u,v)))
OPT(k,v) + min(OPT(k — 1,v),d)
until £ = |V] or (Vv € V) OPT(k,v) = OPT(k — 1,v)
for v eV do
if (Jue V)u~»vand OPT(k,u) < OPT(k —1,u) then
d(s,v) + —oc0
else
d(s,v) + OPT(k,v)

Single Source — complexity analysis

Recurrence
» OPT(0,s) =0and OPT(0,v) = oo for v # s
> OPT(k,v) =
min (OPT(k — 1, v), min(, ,yee(OPT(k — 1, u) + £(u, v)))

Time
» O(n+ m) per row
» < n+1 rows
» O(n(n+ m)) total

Space
» For computing distances: O(n)
» For finding shortest paths: O(n?) — O(n)

All Pairs — subproblems

Subproblems
OPT(s, t, k) =
length of a shortest path from s to t
that only uses {k,...,n} as intermediate vertices

o0 if no such path exists

—oo if there is such a path but no shortest one
(s,t eV =[n]and k € [n+1])
Base case (k=n+1)

» OPT(s,t,n+1)=0ifs=t

» OPT(s,t,n+1)={(s,t)if (s, t) € E

» OPT(s,t,n+ 1) = oo otherwise

Answer
d(s,t) = OPT(s, t,1)

All Pairs — recurrence and analysis

Recursive case (k < n)
> OPT(s,t, k) =
min(OPT(s, t, k +1),0PT(s, k, k + 1) + OPT(k, t, k + 1))
» OPT(s,t, k) = —oc0
if OPT(s, k, k + 1) < 0o, OPT(k, t, k + 1) < o0, and
OPT(k, k,k+1) <0

Time
» O(n?) entries
» O(1) time per entry
> O(n?) time total

Space
O(n?) for distances and shortest paths

