Queens Problem

Specification (search version)
Input: $n \in \mathbb{N}$
Output: Position of n queens on $n \times n$ board such that no two queens threaten each other, i.e., no two queens are on the same row, column, or diagonal.

Model

- Components \sim queens. State space: $[n] \times[n]$
- Components \sim rows. State space: $[n]$.

Backtracking

Approach

- Check for violations of constraints by partial solutions.
- Backtrack if violation detected.

Queens problem

Generating All Solutions - backtracking

Extended specification
Input: instance / with solutions of length n $\ell \in \mathbb{N}$ with $\ell \leq n$ $S[1 \ldots \ell]$ satisfying all constraints involving first ℓ components only
Output: all valid solutions for I that start with $S[1 \ldots \ell]$
procedure GenAllExtension $(I, n, \ell, S[1 \ldots \ell])$
if $\ell=n$ then output $S[1 \ldots n]$
else
for each possible setting v do
$S[\ell+1] \leftarrow v$
if setting of $S[\ell+1]$ induces no constraint violations then $\operatorname{GenAlLExtension}(I, n, \ell+1, S[1 \ldots \ell+1])$

Common Problem Type

Setting

- System consisting of n components.
- Each component can be in a finite number of states.
- Certain constraints defining which combinations of states are valid.
- Objective function f from settings to \mathbb{R}

Goal
Decision: Decide whether a solution exists.
Search: Find a solution.
Generation: Output all solutions.
Count: Output the number of solutions.
Optimal solution: Output solution that maximizes or minimizes f.
Optimal value: Output max or min value of f over valid solutions.

Interval Scheduling

Problem specification (value version)
Input: intervals $I_{i}=\left[s_{i}, f_{i}\right)$ and values $v_{i} \in \mathbb{R}$ for $i \in[n]$.
Output: maximum of $\sum_{i \in S} v_{i}$ over all $S \subseteq[n]$ such that no intervals I_{i} and I_{j} for distinct $i, j \in S$ overlap

Subproblems
Input: $J \subseteq[n]$
Output: $\operatorname{OPT}(J) \doteq$ maximum of $\sum_{i \in S} v_{i}$ over all $S \subseteq J$ such that no intervals l_{i} and l_{j} for distinct $i, j \in S$ overlap
procedure $\operatorname{MaxVAL}(J)$
if $J=\emptyset$ then return 0
else
$j^{*} \leftarrow \min (J)$
$C \leftarrow\left\{j \in J: I_{j} \cap I_{j^{*}} \neq \emptyset\right\}$
return $m a x\left(\operatorname{MaxVAL}\left(J \backslash\left\{j^{*}\right\}\right), v_{j^{*}}+\operatorname{MaxVAL}(J \backslash C)\right)$

Analysis

Correctness

Running time

- Aggregate local work over all subproblems
- Work per subproblem: $O(n)$
- Number of subproblems
- Number of subsets of $[n]$ equals 2^{n}.
- Example where number of distinct subproblems is at least $2^{n / 2}$.
- Can be improved by considering intervals in appropriate order.

Improved Algorithm

Idea
Sort the intervals $l_{i}=\left[s_{i}, f_{i}\right)$ by smallest s_{i} first, then run prior
algorithm.
Subproblems
Suffixes of [n], i.e., subsets of the form $\{k, k+1, \ldots, n\}$
where $k \in[n+1] \doteq\{1,2, \ldots, n+1\}$
Recurrence

- $\operatorname{OPT}(k) \doteq$ maximum total value achievable by intervals I_{j} with $j \in\{k, k+1, \ldots, n\}$.
- $\operatorname{OPT}(k)=\max \left(\operatorname{OPT}(k+1), v_{k}+\operatorname{OPT}(\operatorname{next}(k))\right)$ where $\operatorname{next}(k) \doteq \min \left(\left\{j \in\{k+1, \ldots, n\}: s_{j} \geq f_{k}\right\} \cup\{n+1\}\right)$
- Base case: $\operatorname{OPT}(n+1)=0$
- Answer: OPT(1)

Analysis

Correctness

Running time

- Sorting: $O(n \log n)$
- Number of subproblems: $n+1$
- Amount of work per subproblem: $O(\log n)$ for finding next (k) using binary search.
- Total: $O(n \log n)$

Memory space

- $O(n)$

Retrieving the Solution

Recursively
Return both the value and a solution achieving it.
Iteratively

$$
\begin{aligned}
& \text { procedure Retrieve-Solution } \\
& S \leftarrow \emptyset \\
& k \leftarrow 1 \\
& \text { while } k \leq n \text { do } \\
& \text { if } \mathrm{OPT}(k)=\mathrm{OPT}(k+1) \text { then } \\
& k \\
& \text { else } \\
& \text { el } \\
& S \leftarrow S \cup 1 \\
& k \\
& k \leftarrow \operatorname{next}(k) \\
& \text { return } S
\end{aligned}
$$

Paradigm

Dynamic Programming

Recursive approach such that:

1. The number of distinct subproblems in the recursion tree remains small.
2. Each of those subproblems is solved only once.

Realizing property 2

- Memoization
- Iteration

Analyzing property 1

- Looking back: What information about backtracking history suffices to continue the process? [state reduction]
- Looking forward: What set of parameters suffice to describe all subproblems? [explicit description of subproblems]

Knapsack Problem

Problem

Input: items $i \in[n]$ specified by weight $w_{i} \in \mathbb{Z}^{+}$and value $v_{i} \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^{+}$
Ouput: $S \subseteq[n]$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is maximized.

Principle of optimality

- Case $i^{*} \notin S$:

Remains to solve given instance with i^{*} removed.

- Case $i^{*} \in S$ (only an option if $w_{i^{*}} \leq W$):

Remains to solve given instance with i^{*} removed and weight limit $W-w_{i^{*}}$.

- Informally, OPT(I) is the maximum of:
- OPT(I without $\left.i^{*}\right)$
- $v_{i^{*}}+\mathrm{OPT}\left(I\right.$ without i^{*} and weight limit $\left.W-w_{i^{*}}\right)$.

Dynamic Program for Optimal Value

- Consider items in given order.
- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification:
$\operatorname{OPT}(k, w)=\operatorname{OPT}$ (items $\{k, \ldots, n\}$ and weight limit w)
where $1 \leq k \leq n+1$ and $0 \leq w \leq W$
- Recurrence: $\operatorname{OPT}(k, w)=$ $\max \left(\mathrm{OPT}(k+1, w), v_{k}+\mathrm{OPT}\left(k+1, w-w_{k}\right)\right.$ only if $\left.w_{k} \leq w\right)$
- Base cases $(k=n+1): \operatorname{OPT}(n+1, w)=0$
- Answer: $\operatorname{OPT}(1, W)$
- Evaluation order for iterative implementation

Retrieving the Solution

Pseudocode
procedure Retrieve-Solution
$S \leftarrow \emptyset$
$w \leftarrow W$
for $k=1$ to n do
if $w_{k} \leq w$ cand $\operatorname{OPT}(k, w)=v_{k}+\operatorname{OPT}\left(k+1, w-w_{k}\right)$ then $S \leftarrow S \cup\{k\} ; w \leftarrow w-w_{k}$
return S

Complexity analysis

- Time: $O(n \cdot W)$ with or without retrieval.
- Space: $O(n \cdot W)$ with retrieval; $O(W)$ without.

Problem Specifications

Sequence alignment
Input: strings $A[1, \ldots, n]$ and $B[1, \ldots, m]$
Ouput: alignment of A and B that maximizes the number of matches

Longest common subsequence
Input: strings $A[1, \ldots, n]$ and $B[1, \ldots, m]$
Ouput: subsequence of both A and B of maximum length

Principle of optimality

Consider alignment at the end

- Case 1: Do not align $A[n]$

Contribution: 0
Remains to solve problem for $A[1, \ldots, n-1]$ and $B[1, \ldots, m]$

- Case 2: Do not align $B[m]$

Contribution: 0
Remains to solve problem for $A[1, \ldots, n]$ and $B[1, \ldots, m-1]$

- Case 3: Align $A[n]$ and $B[m]$

Contribution: 1 if $A[n]=B[m], 0$ otherwise
Remains to solve problem for $A[1, \ldots, n-1]$ and
$B[1, \ldots, m-1]$

DP Approach

Subproblems
$\operatorname{OPT}(i, j)=$ length of a longest common subsequence of
$A[1, \ldots, i]$ and $B[1, \ldots, j](0 \leq i \leq n$ and $0 \leq j \leq m)$
Recursion
$\operatorname{OPT}(i, j)=$
$\max \left(\operatorname{OPT}(i-1, j), \operatorname{OPT}(i, j-1), \delta_{A[i], B[j]}+\operatorname{OPT}(i-1, j-1)\right)$
where $\delta_{a, b} \doteq \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}$
Base cases
$\operatorname{OPT}(0, j)=0=\operatorname{OPT}(i, 0)$
Answer: $\operatorname{OPT}(n, m)$
Interpretation
Finding a longest path from $(0,0)$ to (n, m) in grid digraph

Complexity Analysis

Time

- $O(n m)$ table entries
- $O(1)$ time per entry
- $O(n m)$ total time

Space

- $O(\min (n, m))$ for length of longest common subsequence
- $O(n m)$ for alignment / longest common subsequence

Reducing Space Complexity for Alignment / LCS

- Need to find longest simple path from $(0,0)$ to (n, m).
- Path must be in column $m / 2$ at least once, say in row i^{*}.
- Once we know i^{*}, remains to find:
(a) longest simple path from $(0,0)$ to $\left(i^{*}, m / 2\right)$, and
(b) longest simple path from $\left(i^{*}, m / 2\right)$ to (n, m).
- Both (a) and (b) are significantly smaller instances of the same problem
- To find i^{*} compute for each $i \in[n]$
(a) $f(i)$: length of longest simple path from $(0,0)$ to $(i, m / 2)$
(b) $g(i)$: length of longest simple path from $(i, m / 2)$ to (n, m)

Then set i^{*} to an $i \in[n]$ that maximizes $f(i)+g(i)$.

- As $f(i)=\operatorname{OPT}(i, m / 2)$, all of f can be computed in time $O(n m)$ and space $O(n)$ using original algorithm.
- Same applies to g by symmetry (reverse direction of edges).
- Thus, i^{*} can be computed in time $O(n m)$ and space $O(n)$.

Complexity Analysis

Space

- $O(n+m)$ for path [global]
- $O(n)$ for computing i^{*} [local, reused]
- $O(1)$ per level of recursion [recursion stack]
- Total: $O(n+m)+O(n)+O(\log m)=O(n+m)$

Time

- local work: $c \cdot n \cdot m$
- dimension of children: $i^{*} \times m / 2$ and $\left(n-i^{*}\right) \times m / 2$
- local work at children:
$c \cdot i^{*} \cdot m / 2+c \cdot\left(n-i^{*}\right) \cdot m / 2=c \cdot\left(i^{*}+\left(n-i^{*}\right)\right) \cdot m / 2=\frac{1}{2} c \cdot n \cdot m$
- Total: $O(n m)$

A Little Bio

DNA

- String over $\{A, C, G, T\}$
- Complementary strands: $A \sim T$ and $C \sim G$

RNA

- String over $\{A, C, G, U\}$
- Single strand
- Self-stabilizes forming bonds $A \sim U$ and $C \sim G$

RNA Secondary Structure

Input:
string $R[1, \ldots, n]$ over alphabet $\{A, C, G, U\}$
Output:
set S of pairs $(i, j) \in[n] \times[n]$ with $i<j$ of maximum size $|S|$ s.t.:

- [Matching] Each $i \in[n]$ appears in at most one pair of S.
- [Complementarity] For each $(i, j) \in S, R[i] \sim R[j]$.
- [No sharp turns] For each $(i, j) \in S, j \geq i+5$.
- [No crossings] For no $(i, j),(k, \ell) \in S, i<k<j<\ell$.

Analysis

Subproblem specification
$\operatorname{OPT}(i, j)=\operatorname{OPT}(R[i, \ldots, j])$ where $1 \leq i \leq j \leq n$.
Recurrence (for $i<j$)
$\operatorname{OPT}(i, j)=\max (\mathrm{OPT}(i+1, j)$,
$\left.\max _{i+5 \leq k \leq j, R[i] \sim R[k]}(1+\mathrm{OPT}(i+1, k-1)+\mathrm{OPT}(k+1, j))\right)$
Time

- $\Theta\left(n^{2}\right)$ table entries
- $O(n)$ operations to evaluate recurrence for a given table entry
- $O\left(n^{3}\right)$ time overall

Space
$O\left(n^{2}\right)$ with or without retrieval.

Shortest Paths Problem

Input: (di)graph $G=(V, E)$; lengths $\ell: E \rightarrow \mathbb{R} ; s, t \in V$
Ouput: path P from s to t with minimum length

$$
\ell(P) \doteq \sum_{e \in P} \ell(e)
$$

Variants based on source/target

- single pair
- single source
- single target
- all pairs

Variants based on edge lengths

- unit
- nonnegative
- arbitrary

Shortest Paths Problem

Specification

Input: (di)graph $G=(V, E)$; lengths $\ell: E \rightarrow \mathbb{R} ; s, t \in V$
Ouput: path P from s to t with minimum length

$$
\ell(P) \doteq \sum_{e \in P} \ell(e)
$$

Distance $d(s, t)$
$=\min \{\ell(P) \mid P$ path from s to $t\}$
$=\infty$ if there is no path from s to t
$=-\infty$ if there is a path from s to t but no shortest one
Proposition
$d(s, t)=-\infty \Leftrightarrow$
there exists cycle C with $\ell(C)<0$ such that $s \rightsquigarrow C$ and $C \rightsquigarrow t$.

Single Source - number of Iterations

Observation 1
If $(\forall v) \operatorname{OPT}(k, v)=\operatorname{OPT}(k-1, v)$
then $(\forall v) \operatorname{OPT}(k+1, v)=\operatorname{OPT}(k, v)$.
Observation 2
If $\operatorname{OPT}(n, u)<\operatorname{OPT}(n-1, u)$ then
there exists cycle C with $\ell(C)<0$ such that $s \rightsquigarrow C$ and $C \rightsquigarrow u$.
Criterion
$d(s, v)=-\infty \Leftrightarrow$
there exist $u \in V$ s.t. $u \rightsquigarrow v$ and $\operatorname{OPT}(n, u)<\operatorname{OPT}(n-1, u)$.

Single Source - subproblems and recurrence
Subproblems
$\operatorname{OPT}(k, v)=$
length of a shortest path from s to v using $\leq k$ edges
∞ if no such path exists
($k \in \mathbb{N}$ and $v \in V$)
Base case ($k=0$)
$\operatorname{OPT}(0, s)=0$ and $\operatorname{OPT}(0, v)=\infty$ for $v \neq s$
Recursive case ($k \geq 1$)
$\operatorname{OPT}(k, v)=\min ($

$$
\min _{(u, v) \in E}(\mathrm{OPT}(k-1, u)+\ell(u, v))
$$

$$
\operatorname{OPT}(k-1, v))
$$

Answer
$d(s, v)=\lim _{k \rightarrow \infty} \operatorname{OPT}(k, v)$

Single Source - algorithm

```
\(k \leftarrow 0\)
\(\operatorname{OPT}(k, s) \leftarrow 0\)
for \(v \in V \backslash\{s\}\) do \(\operatorname{OPT}(k, v) \leftarrow \infty\)
repeat
    \(k \leftarrow k+1\)
    for \(v \in V\) do
        \(\left.d \leftarrow \min _{(u, v) \in E}(\operatorname{OPT}(k-1, u)+\ell(u, v))\right)\)
        \(\operatorname{OPT}(k, v) \leftarrow \min (\mathrm{OPT}(k-1, v), d)\)
until \(k=|V|\) or \((\forall v \in V) \operatorname{OPT}(k, v)=\operatorname{OPT}(k-1, v)\)
for \(v \in V\) do
    if \((\exists u \in V) u \rightsquigarrow v\) and \(\operatorname{OPT}(k, u)<\operatorname{OPT}(k-1, u)\) then
            \(d(s, v) \leftarrow-\infty\)
    else
    \(d(s, v) \leftarrow \operatorname{OPT}(k, v)\)
```

Single Source - complexity analysis
Recurrence

- $\operatorname{OPT}(0, s)=0$ and $\operatorname{OPT}(0, v)=\infty$ for $v \neq s$
- $\operatorname{OPT}(k, v)=$ $\min \left(\operatorname{OPT}(k-1, v), \min _{(u, v) \in E}(\operatorname{OPT}(k-1, u)+\ell(u, v))\right)$

Time

- $O(n+m)$ per row
- $\leq n+1$ rows
- $O(n(n+m))$ total

Space

- For computing distances: $O(n)$
- For finding shortest paths: $O\left(n^{2}\right) \rightarrow O(n)$

All Pairs - subproblems

Subproblems

$\operatorname{OPT}(s, t, k)=$
length of a shortest path from s to t
that only uses $\{k, \ldots, n\}$ as intermediate vertices
∞ if no such path exists
$-\infty$ if there is such a path but no shortest one
$(s, t \in V \doteq[n]$ and $k \in[n+1])$
Base case $(k=n+1)$

- $\operatorname{OPT}(s, t, n+1)=0$ if $s=t$
- $\operatorname{OPT}(s, t, n+1)=\ell(s, t)$ if $(s, t) \in E$
- $\operatorname{OPT}(s, t, n+1)=\infty$ otherwise

Answer
$d(s, t)=\operatorname{OPT}(s, t, 1)$

All Pairs - recurrence and analysis
Recursive case ($k \leq n$)

- $\operatorname{OPT}(s, t, k)=$
$\min (\operatorname{OPT}(s, t, k+1), \operatorname{OPT}(s, k, k+1)+\operatorname{OPT}(k, t, k+1))$
- $\operatorname{OPT}(s, t, k)=-\infty$
if $\operatorname{OPT}(s, k, k+1)<\infty, \operatorname{OPT}(k, t, k+1)<\infty$, and OPT $(k, k, k+1)<0$

Time

- $O\left(n^{3}\right)$ entries
- $O(1)$ time per entry
- $O\left(n^{3}\right)$ time total

Space
$O\left(n^{2}\right)$ for distances and shortest paths

