
Queens Problem

Specification (search version)

Input: n 2 N
Output: Position of n queens on n⇥ n board such that no two

queens threaten each other, i.e., no two queens are

on the same row, column, or diagonal.

Model

I Components ⇠ queens. State space: [n]⇥ [n]

I Components ⇠ rows. State space: [n].

Backtracking

Approach

I Check for violations of constraints by partial solutions.

I Backtrack if violation detected.

Queens problem

Generating All Solutions – backtracking

Extended specification

Input: instance I with solutions of length n
` 2 N with `  n
S [1 . . . `] satisfying all constraints involving first `
components only

Output: all valid solutions for I that start with S [1 . . . `]

Common Problem Type

Setting

I System consisting of n components.

I Each component can be in a finite number of states.

I Certain constraints defining which combinations of states are

valid.

I Objective function f from settings to R

Goal

Decision: Decide whether a solution exists.

Search: Find a solution.

Generation: Output all solutions.

Count: Output the number of solutions.

Optimal solution: Output solution that maximizes or minimizes f .

Optimal value: Output max or min value of f over valid solutions.

Interval Scheduling

Problem specification (value version)

Input: intervals Ii = [si , fi ) and values vi 2 R for i 2 [n].

Output: maximum of
P

i2S vi over all S ✓ [n] such that no

intervals Ii and Ij for distinct i , j 2 S overlap

Subproblems

Input: J ✓ [n]

Output: OPT(J)
.
= maximum of

P
i2S vi over all S ✓ J such

that no intervals Ii and Ij for distinct i , j 2 S overlap

Analysis

Correctness

Running time

I Aggregate local work over all subproblems

I Work per subproblem: O(n)

I Number of subproblems

I Number of subsets of [n] equals 2
n
.

I Example where number of distinct subproblems is at least 2
n/2

.

I Can be improved by considering intervals in appropriate order.



Improved Algorithm

Idea

Sort the intervals Ii = [si , fi ) by smallest si first, then run prior

algorithm.

Subproblems

Su�xes of [n], i.e., subsets of the form {k , k + 1, . . . , n}
where k 2 [n + 1]

.
= {1, 2, . . . , n + 1}

Recurrence

I OPT(k)
.
= maximum total value achievable by intervals Ij

with j 2 {k , k + 1, . . . , n}.
I OPT(k) = max (OPT(k + 1), vk +OPT(next(k)))

where next(k)
.
= min({j 2 {k + 1, . . . , n} : sj � fk}[ {n+ 1})

I Base case: OPT(n + 1) = 0

I Answer: OPT(1)

Analysis

Correctness

Running time

I Sorting: O(n log n)

I Number of subproblems: n + 1

I Amount of work per subproblem: O(log n) for finding next(k)

using binary search.

I Total: O(n log n)

Memory space

I O(n)

Retrieving the Solution

Recursively

Return both the value and a solution achieving it.

Iteratively

Paradigm

Dynamic Programming

Recursive approach such that:

1. The number of distinct subproblems in the recursion tree

remains small.

2. Each of those subproblems is solved only once.

Realizing property 2

I Memoization

I Iteration

Analyzing property 1

I Looking back: What information about backtracking history

su�ces to continue the process? [state reduction]

I Looking forward: What set of parameters su�ce to describe

all subproblems? [explicit description of subproblems]

Knapsack Problem

Problem

Input: items i 2 [n] specified by weight wi 2 Z+
and value

vi 2 R; weight limit W 2 Z+

Ouput: S ✓ [n] such that
P

i2S wi  W and
P

i2S vi is
maximized.

Principle of optimality

I Case i
⇤ 62 S :

Remains to solve given instance with i
⇤
removed.

I Case i
⇤ 2 S (only an option if wi⇤  W ):

Remains to solve given instance with i
⇤
removed and weight

limit W � wi⇤ .

I Informally, OPT(I ) is the maximum of:

I OPT(I without i
⇤
)

I vi⇤ +OPT(I without i
⇤
and weight limit W � wi⇤).

Dynamic Program for Optimal Value

I Consider items in given order.

I State reduction: ⇥(n ·W ) states

last item considered, total weight thus far

I Subproblem specification:

OPT(k ,w) = OPT(items {k , . . . , n} and weight limit w)

where 1  k  n + 1 and 0  w  W

I Recurrence: OPT(k ,w) =

max (OPT(k + 1,w), vk +OPT(k + 1,w � wk) only if wk  w)

I Base cases (k = n + 1): OPT(n + 1,w) = 0

I Answer: OPT(1,W )

I Evaluation order for iterative implementation



Retrieving the Solution

Pseudocode

Complexity analysis

I Time: O(n ·W ) with or without retrieval.

I Space: O(n ·W ) with retrieval; O(W ) without.

Problem Specifications

Sequence alignment

Input: strings A[1, . . . , n] and B[1, . . . ,m]

Ouput: alignment of A and B that maximizes the number of

matches

Longest common subsequence

Input: strings A[1, . . . , n] and B[1, . . . ,m]

Ouput: subsequence of both A and B of maximum length

Principle of optimality

Consider alignment at the end.

I Case 1: Do not align A[n]

Contribution: 0

Remains to solve problem for A[1, . . . , n � 1] and B[1, . . . ,m]

I Case 2: Do not align B[m]

Contribution: 0

Remains to solve problem for A[1, . . . , n] and B[1, . . . ,m � 1]

I Case 3: Align A[n] and B[m]

Contribution: 1 if A[n] = B[m], 0 otherwise

Remains to solve problem for A[1, . . . , n � 1] and

B[1, . . . ,m � 1]

DP Approach

Subproblems

OPT(i , j) = length of a longest common subsequence of

A[1, . . . , i ] and B[1, . . . , j ] (0  i  n and 0  j  m)

Recursion

OPT(i , j) =
max(OPT(i � 1, j),OPT(i , j � 1), �A[i ],B[j ] +OPT(i � 1, j � 1))

where �a,b
.
=

⇢
1 if a = b

0 otherwise

Base cases

OPT(0, j) = 0 = OPT(i , 0)

Answer: OPT(n,m)

Interpretation

Finding a longest path from (0, 0) to (n,m) in grid digraph

Complexity Analysis

Time

I O(nm) table entries

I O(1) time per entry

I O(nm) total time

Space

I O(min(n,m)) for length of longest common subsequence

I O(nm) for alignment / longest common subsequence

Reducing Space Complexity for Alignment / LCS

I Need to find longest simple path from (0, 0) to (n,m).

I Path must be in column m/2 at least once, say in row i
⇤
.

I Once we know i
⇤
, remains to find:

(a) longest simple path from (0, 0) to (i
⇤,m/2), and

(b) longest simple path from (i
⇤,m/2) to (n,m).

I Both (a) and (b) are significantly smaller instances of the

same problem.

I To find i
⇤
compute for each i 2 [n]:

(a) f (i): length of longest simple path from (0, 0) to (i ,m/2)
(b) g(i): length of longest simple path from (i ,m/2) to (n,m)

Then set i
⇤
to an i 2 [n] that maximizes f (i) + g(i).

I As f (i) = OPT(i ,m/2), all of f can be computed in time

O(nm) and space O(n) using original algorithm.

I Same applies to g by symmetry (reverse direction of edges).

I Thus, i
⇤
can be computed in time O(nm) and space O(n).



Complexity Analysis

Space

I O(n +m) for path [global]

I O(n) for computing i
⇤
[local, reused]

I O(1) per level of recursion [recursion stack]

I Total: O(n +m) + O(n) + O(logm) = O(n +m)

Time

I local work: c · n ·m
I dimension of children: i

⇤ ⇥m/2 and (n � i
⇤
)⇥m/2

I local work at children:

c · i⇤ ·m/2+c ·(n� i
⇤
) ·m/2 = c ·(i⇤+(n� i

⇤
)) ·m/2 =

1
2c ·n ·m

I Total: O(nm)

A Little Bio

DNA

I String over {A,C ,G ,T}
I Complementary strands: A ⇠ T and C ⇠ G

RNA

I String over {A,C ,G ,U}
I Single strand

I Self-stabilizes forming bonds A ⇠ U and C ⇠ G

RNA Secondary Structure

Input:

string R[1, . . . , n] over alphabet {A,C ,G ,U}

Output:

set S of pairs (i , j) 2 [n]⇥ [n] with i < j of maximum size |S | s.t.:
I [Matching] Each i 2 [n] appears in at most one pair of S .

I [Complementarity] For each (i , j) 2 S , R[i ] ⇠ R[j ].

I [No sharp turns] For each (i , j) 2 S , j � i + 5.

I [No crossings] For no (i , j), (k , `) 2 S , i < k < j < `.

Algorithm

Principle of optimality

I Case position 1 is not matched:

Remains to solve problem for R[2, . . . , n].

I Case position 1 is matched with k

(only an option if k � 5 and R[1] ⇠ R[k]):

Remains to solve problem for R[2, . . . , k � 1] and for

R[k + 1, . . . , n].

Subproblem specification

OPT(i , j) = OPT(R[i , . . . , j ]) where 1  i  j  n.

Recurrence (for i < j)

OPT(i , j) = max (OPT(i + 1, j),
maxi+5kj ,R[i ]⇠R[k](1 + OPT(i + 1, k � 1) + OPT(k + 1, j))

�

Base cases: OPT(i , i) = 0 for i 2 [n]. Answer: OPT(1, n).

Analysis

Subproblem specification

OPT(i , j) = OPT(R[i , . . . , j ]) where 1  i  j  n.

Recurrence (for i < j)

OPT(i , j) = max (OPT(i + 1, j),
maxi+5kj ,R[i ]⇠R[k](1 + OPT(i + 1, k � 1) + OPT(k + 1, j))

�

Time

I ⇥(n
2
) table entries

I O(n) operations to evaluate recurrence for a given table entry

I O(n
3
) time overall

Space

O(n
2
) with or without retrieval.

Shortest Paths Problem

Input: (di)graph G = (V ,E ); lengths ` : E ! R; s, t 2 V

Ouput: path P from s to t with minimum length

`(P)
.
=

P
e2P `(e)

Variants based on source/target

I single pair

I single source

I single target

I all pairs

Variants based on edge lengths

I unit

I nonnegative

I arbitrary



Shortest Paths Problem

Specification

Input: (di)graph G = (V ,E ); lengths ` : E ! R; s, t 2 V

Ouput: path P from s to t with minimum length

`(P)
.
=

P
e2P `(e)

Distance d(s, t)

= min{`(P) |P path from s to t}
= 1 if there is no path from s to t

= �1 if there is a path from s to t but no shortest one

Proposition

d(s, t) = �1 ,
there exists cycle C with `(C ) < 0 such that s  C and C  t.

Single Source – subproblems and recurrence

Subproblems

OPT(k , v) =
length of a shortest path from s to v using  k edges

1 if no such path exists

(k 2 N and v 2 V )

Base case (k = 0)

OPT(0, s) = 0 and OPT(0, v) = 1 for v 6= s

Recursive case (k � 1)

OPT(k , v) = min(

min(u,v)2E (OPT(k � 1, u) + `(u, v))
OPT(k � 1, v))

Answer

d(s, v) = limk!1OPT(k , v)

Single Source – number of Iterations

Observation 1

If (8v)OPT(k , v) = OPT(k � 1, v)
then (8v)OPT(k + 1, v) = OPT(k , v).

Observation 2

If OPT(n, u) < OPT(n � 1, u) then
there exists cycle C with `(C ) < 0 such that s  C and C  u.

Criterion

d(s, v) = �1 ,
there exist u 2 V s.t. u  v and OPT(n, u) < OPT(n � 1, u).

Single Source – algorithm

Single Source – complexity analysis

Recurrence

I OPT(0, s) = 0 and OPT(0, v) = 1 for v 6= s

I OPT(k , v) =
min

�
OPT(k � 1, v),min(u,v)2E (OPT(k � 1, u) + `(u, v))

�

Time

I O(n +m) per row

I  n + 1 rows

I O(n(n +m)) total

Space

I For computing distances: O(n)

I For finding shortest paths: O(n
2
) ! O(n)

All Pairs – subproblems

Subproblems

OPT(s, t, k) =
length of a shortest path from s to t

that only uses {k , . . . , n} as intermediate vertices

1 if no such path exists

�1 if there is such a path but no shortest one

(s, t 2 V
.
= [n] and k 2 [n + 1])

Base case (k = n + 1)

I OPT(s, t, n + 1) = 0 if s = t

I OPT(s, t, n + 1) = `(s, t) if (s, t) 2 E

I OPT(s, t, n + 1) = 1 otherwise

Answer

d(s, t) = OPT(s, t, 1)



All Pairs – recurrence and analysis

Recursive case (k  n)

I OPT(s, t, k) =
min(OPT(s, t, k + 1),OPT(s, k , k + 1) + OPT(k , t, k + 1))

I OPT(s, t, k) = �1
if OPT(s, k , k + 1) < 1, OPT(k , t, k + 1) < 1, and

OPT(k , k , k + 1) < 0

Time

I O(n
3
) entries

I O(1) time per entry

I O(n
3
) time total

Space

O(n
2
) for distances and shortest paths


