
CS 577-3: Introduction to Algorithms Fall 2022

Practice Problems for Midterm Exam 1

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Here are some problems that you can use to prepare for the exam. Also, don’t forget the regular
problems on the homework assignments that you haven’t done yet.

1. Let P be a set of n distinct points in the plane. A point (x, y) in P is called undominated if
for every other point (x0, y0) in P , either x0 < x or y0 < y (or both).

Design an O(n log n) algorithm for finding all of the undominated points.

2. You are given a binary string a[1 . . . n] and want to find three ones that are at equal distance
from each other, i.e., three positions 1  i < j < k  n such that a[i] = a[j] = a[k] = 1 and
j � i = k � j.

Design an O(n log n) algorithm that finds such a triple or reports that none exists.

Hint: Use polynomial multiplication.

3. You run a chemical lab, and are planning the supply of purified water for a period of n days.
You know that you will need wi  100 gallons during day i. To accommodate this, you will
acquire a storage tank with a capacity of some c gallons. The tank will be filled to capacity
some days throughout the period, each time at the start of the day. It is always filled to
capacity at the start of the first day. It should never happen that the demand for a day
cannot be met.

As an example, consider a tank with capacity c = 40 and a period of n = 5 days with w1 = 15,
w2 = 25, w3 = 15, w4 = 10, and w5 = 22. As illustrated below, it works to have fills at the
start of days 1, 3, and 5.

w1

w2

w3

w4

w5

day 1 day 2 day 3 day 4 day 5
0

10

20

30

40

(a) One problem is deciding how large the capacity c of the tank should be for a given bound
on the number of fills. You know that an optimal schedule in this setting is to postpone
each fill as much as possible without letting the supply run out. Given n, f , and the
values wi for i 2 [n], what is the minimum capacity c 2 N so that this schedule leads to
no water shortages and at most f fills?

Continuing the example above, for f = 3 the figure indicates that c = 40 works. If we
try c = 39, then we need to fill at the start of days 1, 2, 3, and 5. So, the answer is
c = 40.

Design an algorithm that runs in time O(n log n).

(b) Some of the days a fill would be more disruptive for the lab than others. You have
quantified these as a daily loss of revenue `i that the lab incurs when a fill happens at
the start of day i for i 2 [n]. Given c, n, and the values wi and `i for i 2 [n], you would
like to know how small you can make your total loss of revenue due to the fills without
having any supply shortage. As the tank is always filled at the start of day 1, you always
incur a cost of at least `1. Design an algorithm that runs in time O(n2) and space O(n).

As an example, consider the above setting with `1 = 0, `2 = 1, `3 = 100, `4 = 20, and
`5 = 30. The schedule in the figure costs `1 + `3 + `5 = 130 loss in revenue. By instead
refilling at the start of days 1, 2, and 4, the loss in revenue is reduced to `1+`2+`4 = 21.
This is optimal, so the answer is 21.

(c) Assume you have an algorithm for part (a) that you can call as a blackbox. Design an
algorithm that retrieves a solution and outputs a fill schedule that achieves the minimum
total loss in revenue in (a). Your algorithm can make O(n) calls to the blackbox and
spend O(n) time outside of the calls.

For the example from part (a), the output for would be: days 1, 2, and 4.

4. In the two-player game “Two Ends”, n cards are laid out in a row. On each card, face up, is
written a positive integer. Players take turns removing a card from either end of the row and
placing the card in their pile, until all cards are removed. The score of a player is the sum of
the integers of the cards in his/her pile.

Design an algorithm that takes the sequence of n positive integers, and determines the score
of each player when both play optimally. Your algorithm should run in time O(n2) and space
O(n).

5. You are given an arithmetic expression containing n integers and n� 1 operators, each either
+, �, or ⇥. You are also given a positive integer m. Your goal is to find an order to perform
the operations such that the result is a multiple of m, or report that no such order exists.

For example, for the expression 6 ⇥ 3 + 2 ⇥ 5, this is possible for m = 7, namely as follows:
(6⇥ 3) + (2⇥ 5) = 28. For the same expression this is not possible for m = 8 as none of the
five possible orderings yield a multiple of 8: (6⇥ 3) + (2⇥ 5) = 28, ((6⇥ (3 + 2))⇥ 5) = 150,
((6⇥ 3) + 2)⇥ 5 = 100, 6⇥ (3 + (2⇥ 5)) = 78, 6⇥ ((3 + 2)⇥ 5) = 150.

Design an algorithm that runs in time polynomial in n and m.
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CS 577-3: Introduction to Algorithms Fall 2022

Solutions to the Midterm 1 Practice Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 1

We use divide-and-conquer. We need to determine how to divide the problem into some number
of subproblems. We can do this by dividing the set of points into two halves based on their
coordinates. Define an ordering of the points based on the x-coordinate with ties broken by the
y-coordinate. More precisely, (x, y)  (x0, y0) if and only if x < x

0, or x = x
0 and y  y

0. The
“left” subset contains the points less than or equal to the median, and the “right” subset the points
greater than the median. Call these sets PL and PR, respectively. We recursively compute the sets
of undominated points for PL and PR and then combine these two subsets in such a way that we
end up with the set of undominated points for the whole set.

Let the two computed undominated sets be UL and UR. The set U of undominated points for
the entire set P is a subset of UL \ UR. To figure out which points in UL \ UR are in U , we make
use of the fact that all points in UR are larger than all points in UL:

• Points in UR are not dominated by any points in PL. This holds since for points pl 2 PL and
pr 2 UR, either the x-coordinate of pr is greater than the one for pl or they are the same and
the y-coordinate for pr is greater.

• A point in UL is not dominated by any point in PR if and only if its y-coordinate is greater
than the maximum y-coordinate in PR, which is also the maximum y-coordinate in UR.

Since we can calculate the maximum y-coordinate of UR in a linear scan, we can combine the
solutions of the subproblems to produce the complete solution U in linear time.

Algorithm Our algorithm makes use of the Split procedure, which can be implemented in linear
time using the linear-time algorithm for finding the median.

Split(P )

Input: A nonempty set of distinct points P
Output: Two sets PL and PR which partition P , and where:

• |PL| = b|P |/2c
• |PR| = d|P |/2e
• (x, y) 2 PL, (x0, y0) 2 Pr ) (x < x

0 _ (x = x
0 ^ y < y

0))

Correctness If |P | = 1, then the sole element is undominated. Otherwise, |P | > 1, and we use
the above recursive approach, the correctness of which was argued in the two bullet points above.
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Algorithm 2 Undominated(P )

Input: A nonempty set of distinct points P
Output: The set of undominated points in P

1: procedure Undominated(P )
2: if |P | = 1 then

3: return P

4: else

5: (PL, PR) Split(P )
6: (UL) Undominated(PL)
7: (UR) Undominated(PR)
8: U  UR

9: max largest y-coordinate of a point in UR

10: for each element (x, y) in UL do

11: if y > max then

12: add (x, y) to U

13: return U

Complexity We use the recursion tree method. Each non-leaf node in the recursion tree has
two children, and the input size n shrinks by half with each level of recursion, so the tree has the
same shape as MergeSort. At any internal node in the tree, the non-recursive work done is the
call to Split plus some linear amount of work. The leaves do constant work. As in the analysis of
MergeSort, it follows that the total work done is O(n log n).

Note that since our algorithm takes O(n log n) time anyways, we could have sorted the points
according to the order we defined by first sorting them by their x-coordinate, and sort those with
the same x-coordinate by their y-coordinate. We can then directly access the median element and
split P into PL and PR without using linear-time selection as in Split.

Problem 2

We observe that

(9i, j, k 2 [n]) a[i] = a[j] = a[k] = 1 and j � i = k � j 6= 0

, (9i, j, k 2 [n]) a[i] = a[j] = a[k] = 1 and i+ k = 2j and i 6= k

, (9j 2 [n]) a[j] = 1 and (9i, k 2 [n]) (a[i] = a[k] = 1 and i+ k = 2j and i 6= k)

, (9j 2 [n]) a[j] = 1 and coe�cient of x2j in (pa(x))
2 exceeds 1,

where pa(x)
.
=
P

d2[n] a[d]x
d. The last step follows because

(pa(x))
2 =

X

i2[n]

a[i]xi ·
X

k2[n]

a[k]xk

=
X

i,k2[n]

a[i]a[k]xi+k

=
X

s

csx
s where cs =

X

i,k2[n]:i+k=s

a[i]a[k],
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which shows that the coe�cient x
2j in (pa(x))2 equals the number of pairs (i, j) 2 [n] ⇥ [n] with

i + k = 2j for which a[i] = a[k] = 1. If a[j] = 1, this number always has a contribution of 1 from
the pair (i, k) = (j, j), and has another contribution i↵ there exist i, k 2 [n] with i 6= k such that
a[i] = a[k] = 1.

The above observation leads to the following pseudocode for finding a suitable value of j 2 [n]
(or report that none exists):

1: pa(x) 
P

d2[n] a[d]x
d

2: c(x)
.
=
P

s csx
s  pa(x) · pa(x)

3: j  1
4: while j  n cand (a[j] = 0 or c2j = 1) do j  j + 1

5: if j  n then

6: return j

7: else

8: return no solution

Once we found a suitable j 2 [n] (if any), we can find suitable values of i, k 2 [n] by trying
equidistant positions on both sides of j until a[i] = a[k] = 1, which is guaranteed to happen by the
choice of j.

1: i j � 1; k  j + 1
2: while a[i] = 0 or a[k] = 0 do

3: i i� 1; k  k + 1

4: return (i, j, k)

Correctness follows from the above observation. As for the running time, it takes O(n log n)
time to compute c(x) from pa(x) using polynomial multiplication via the FFT. All other operations
run in time O(n): constructing pa(x), the linear search for a suitable j 2 [n], and the linear search
for a suitable pair (i, k) 2 [n]⇥ [n] for the found value of j.

Problem 3

Part (a)

We can test whether a given candidate capacity c 2 N is su�cient by simulating the optimal
schedule day by day and making sure we never have a water shortage (because the demand wi

exceeds the capacity c) and do not need more than f fills in total. This can be done in time O(n).
For completeness we provide the pseudocode below, where the variable t keeps track of the number
of fills thus far, and W the current water level of the tanks.

Note that if capacity c su�ces then every larger capacity also su�ces. Thus, we can determine
the smallest capacity that su�ces using a binary search.

As the daily demand is no larger than 100 and there are n days, a capacity of 100n definitely
su�ces. Therefore, the range for c can be limited to all nonnegative integers up to 100n. The
resulting binary search takes dlog2(100n + 1)e = O(log n) rounds. Each round involves running
Capacity-Su�ces once and takes O(n) time. Thus, the overall running time is O(n log n).
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Algorithm 3 Capacity-Su�ces(n, r, c, w1, . . . , wn)

Input: n, f, c 2 N, wi 2 R for i 2 [n]
Output: whether capacity c is su�cient to accommodate the demands w1, . . . , wn for n successive

days with complete fills at the start of at most f days including the first day.
1: W  c

2: t 1
3: for i 1 to n do

4: if wi > c or (wi > W and t � f) then
5: return false
6: if wi W then

7: W  W � wi

8: else

9: W  c� wi

10: t t+ 1
11: return true

Part (b)

We can apply the principle of optimality based on the fact that a refill on day d breaks up the
problem into two independent subproblems of the same type, namely the first d � 1 days and the
last n� d days.

Moreover, if we consider the first refill d (if any), then the loss in revenue during the first d� 1
days is `1. It only remains to add the minimum total loss in revenue for the subproblem defined by
the last n� d days. Note that having the first refill on day d is feasible i↵ the total demand during
the first d�1 days does not exceed the capacity c. The case of no refill can be considered as having
a refill on day n+1 at no cost. The result is the minimum over all feasible choices d 2 {2, . . . , n+1}
for the first refill.

The subproblems that arise throughout the recursion all correspond to su�xes of [n]. This leads
to the following subproblems for k 2 [n + 1]: OPT(k) denotes the minimum total loss in revenue
for the period consisting of days {k, . . . , n}, or 1 if there is no feasible schedule. Note that the
latter will happen i↵ at least one of the daily demands exceeds the capacity c.

By the above discussion, we have the following recurrence:

OPT(k) = min

 
1, min

k<dn+1:
Pd�1

i=k wic
(`k +OPT(d))

!
. (1)

The recurrence allows us to compute the values OPT(k) from k = n down to k = 1 using the
initialization OPT(n+ 1) = 0. We return OPT(1).

Each application of the recurrence involves taking the minimum over O(n) terms. Checking the
condition

Pd�1
i=k wi  c for a given term takes time O(n) by itself. However, by keeping track of a

running sum, the total time for checking the condition can be kept to O(n) for a single application
of the recurrence. Thus, the running time per application of the recurrence is O(n). As there are
O(n) applications, the overall running time is O(n2).

For completeness, here is pseudocode for evaluating (1).
Apart from the memory space to store the n values of the array OPT, the evaluation of (1) as

described above only takes space O(1). Thus, the overall space need is O(n).
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Algorithm 4

1: L 1; W  c; d k + 1
2: while d  n+ 1 cand wd�1 W do

3: L min(L,OPT(d)); W  W � wd; d d+ 1

4: return `k + L

Part (c)

We use the OPT notation from part (a). We only need to consider the case where OPT(1) < 1;
there is no optimal schedule otherwise.

The first fill day is always day 1. The first refill day d in an optimal schedule can be constructed
by figuring out a choice of d on the right-hand side of (1) that yields the minimum for k = 1 and
satisfies the constraint that

Pd�1
i=k wi  c; there is no refill if d = n + 1 yields the minimum. If

we search for the first d > 1 for which OPT(1) = `1 +OPT(d), the constraint is guaranteed to be
satisfied. If d  n, we do a refill on day d, and proceed with k = d to find the second refill day in
the same way, etc., until we hit d = n+ 1.

For completeness, here is pseudocode implementing this approach.

Algorithm 5

1: S  ;; k  1
2: for d = 2 to n+ 1 do

3: if OPT(k) = `k +OPT(d) then
4: S  S [ {k}; k  d

5: return S

Each use of an OPT value can be replaced by a call to the corresponding instance of problem
(a). By storing the OPT values, the number of calls to the blackbox for (a) is no more than the
di↵erent OPT values, which is n+1. As d increases by one in each iteration of the pseudocode and
the amount of work per iteration outside of the calls is O(1), the total time spent outside of the
calls is O(n).

Problem 4

Since both players are playing optimally, Alice will choose the move that would maximize her
overall gain, and Bob on the other hand, will choose the move that would minimize Alice’s overall
gain.

Let A(i, j) be the optimal gain for Alice when it is Alice’s turn and the numbers remaining are
ai, ai+1, . . . , aj . Here Alice only has two choices: (1) pick ai or (2) pick aj . Alice will choose the
one with larger overall gain.

(1) Alice picks ai: Bob will have ai+1, ai+2, . . . , aj to choose from. Here Bob also has two choices:
pick ai+1 or aj . If Bob chooses ai+1, then Alice’s gain would be A(i+2, j); and if Bob chooses
aj , Alice’s gain would be A(i+1, j � 1). Bob will choose the one that could minimize Alice’s
gain, and thus Alice will get the minimum of A(i+ 2, j) and A(i+ 1, j � 1) because of Bob’s
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strategy, thus yielding an overall gain of

ai +min{A(i+ 2, j), A(i+ 1, j � 1)}

in this case.

(2) Alice picks aj : by a similar argument Alice would achieve an overall gain of

aj +min{A(i, j � 2), A(i+ 1, j � 1)}.

Between the two choices (1) and (2), Alice will choose the larger one. Therefore, we have

A(i, j) = max{ai +min{A(i+ 2, j), A(i+ 1, j � 1)},
aj +min{A(i, j � 2), A(i+ 1, j � 1)}}.

The base cases are A(i, i) = ai and A(i, i + 1) = max{ai, ai+1}, where Alice only has 1 or 2
numbers to choose from. One can use an n ⇥ n table to compute all values of A(i, j) and return
A(1, n) as the final answer for Alice in time O(n2). The final gain for Bob will then be

nX

i=1

ai �A(1, n).

Note the space complexity can be further reduced to O(n) by only keeping the previous two
diagonals.

Problem 5

Let ai indicate the i-th number, and �i,i+1 be the operator between the i-th and the (i + 1)-th
number. For i  j, define OPT(i, j) to be the set of numbers that can be produced from the
subexpression from the i-th number to the j-th number modulo m. We want to know if 0 is in
OPT(1, n).

We can compute OPT(i, j) using the following recurrence. For two sets of numbers modulo m,
M1 and M2, and operator �, define M1 �M2 to be a new set consisting of (m1 �m2 mod m) for
each choice of m1 in M1 and m2 in M2. Then we have

OPT(i, j) =

(
{ai mod m} i = j
S

ik<j OPT(i, k) �k,k+1 OPT(k + 1, j) i < j
(2)

Time and Space Analysis There are O(n2) subproblems to solve. For each subproblem, we
need to compute the results of O(n) pairs of sets. Each set in a pair contains at most m numbers,
so for fixed k, computing OPT(i, k) �k,k+1 OPT(k + 1, j) takes no more than O(m2) time.1 The
whole algorithm therefore takes O(n3

m
2) time to compute, which is polynomial.

As for space, there are O(n2) unique subproblems. Each subproblem takes O(m) space because
it stores all possible values for the subexpression modulo m. So our space complexity is O(n2

m).
We cannot improve our space complexity by using the iterative approach and “forgetting” about
part of our OPT table along the way because we look back at all split points k for i  k < j.

1There are data structures that allow for this step to be faster, but this analysis is su�cient for this problem.
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Solution Retrieval Option 1 In order to retrieve our solution (the ordering of operations such
that the result is a multiple of m) recall that we have access to our 2D OPT table. Now we
can walk through the array from OPT(1, n) to our base cases, seeing which choice we would have
made at each step. For starters, if OPT(1, n) does not include 0, then we can say that there was no
possible ordering of operations that resulted in a multiple of m. Otherwise, we will find out our last
operation (as well as the values modulom that the left and right subexpressions need to evaluate to)
by looking through all of the options considered in our recurrence. Once we find the last operation,
we then recursively compute the last operations used in the left and right subexpressions to yield
their values modulo m, continuing until we reach our base cases.

In the general case that we are trying to compute the last operation used for the subexpression
from the i-th number to the j-th number such that the subexpression evaluates to r, this means
considering all operations �k,k+1 for i  k < j as well as all values in the sets OPT(i, k) and
OPT(k + 1, j). Specifically, we need to find a value k such that there exists an x 2 OPT(i, k) and
a y 2 OPT(k + 1, j) where (x) �k,k+1 (y) = r modulo m. Once we have found such a value k, we
can add �k,k+1 to our ordering of operations. We then compute the last operation used for the
subexpression from the i-th number to the k-th number such that the subexpression evaluates to
x, and we compute the last operation used for the subexpression from the (k+1)-st number to the
j-th number such that the subexpression evaluates to y. We provide pseudocode in Algorithm 6
for completeness. The final output is given by RecoverSolution(1, n, 0).

Algorithm 6

Input: indices 1  i  j  n indicating the subexpression to consider, and a target value r.
Also, global memory access to the original input and the table OPT filled according to its
specification.

Output: A list L = (`1, . . . , `n�1) indicating the order in which operations must be evaluated so
that ai �i,i+1 · · · �j�1,j aj evaluates to v modulo m. More precisely, operation �`i,`i+1 needs to
be the i-th operation evaluated in the expression.

1: procedure RecoverSolution(i, j, r)
2: if i = j then

3: Return ; . No operation to be made

4: for k = i to j � 1 do

5: for (x, y) 2 OPT[i, k]⇥OPT[k + 1, j] do
6: if x �k,k+1 y = r (mod m) then
7: L RecoverSolution(i, k, x) . find sequence to obtain x in (i, k)
8: R RecoverSolution(k + 1, j, y) . find sequence to obtain y in (k + 1, j)
9: return (L,R, k) . put it all together (�k,k+1 should be last)

The key di↵erence between calculating the time complexity for retrieving the optimal ordering
and the time complexity for finding if an ordering is possible is the number of subexpressions we
consider. We don’t have to consider a subexpression for all O(n2) pairs OPT(i, j), we only have to
consider the subexpressions on the path to our optimal solution. Think of a recursion tree analysis
in which each node is a subexpression we consider. The top node corresponds to OPT(1, n) and
the n leaf nodes correspond to OPT(i, i). At each level of the recursion tree, we have split our
expression into some number of segments. Within each segment, we try a number of split points
equal to the length of the segment. So the total number of split points considered at a given level
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of the recursion tree is O(n). For each split point, the left and right sets each contain at most m
numbers, so computing (x) �k,k+1 (y) takes O(m2). In all, we do O(nm2) work per level and there
are at most n levels, giving us a time complexity for retrieving the solution of O(n2

m
2).

Solution Retrieval Option 2 Although the time complexity for the retrieval performed above
does not a↵ect the overall complexity, we can speed up our approach by keeping track of more
information during the computation of the OPT table and using an appropriate data structure. In
the cell OPT(i, j) we could store not only the set of possible result values for a subexpression but
also the values of k, x, and y that realized each possible result value (k being the split point, x the
value of the left subexpression, and y the value of the right subexpression).

In this case, when we walk through the OPT table to retrieve our solution, we only need to
look through the possible values for a subexpression, find the one that we want, and say that we
used the operator corresponding to �k,k+1, continuing on to investigate how we could have yielded
x from the subexpression i...k and y from the subexpression (k + 1)...j in the same manner. This
way, we need to access no more than n cells of the OPT table. In each cell we just need to locate the
information for the desired result value. If we represent the set of possible values by a characteristic
array of length m, we can locate the information in time O(1). Thus, he running time for retrieval
becomes O(n). Note that this approach requires the same number of cells for the OPT table, but
each cell contains more memory space: O(log n+ 2 logm) bits instead of 1 bit.
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