CS 577: Introduction to Algorithms	Fall 2022	
	Homework 6	
Instructor: Dieter van Melkebeek		TA: Nicollas Mocelin Sdroievski

This homework covers the greedy paradigm and exchange arguments in particular. Problem 3 must be submitted for grading by $2: 29$ pm on $11 / 1$. Please refer to the homework guideline on Canvas for detailed instructions

Warm-up problems

1. A small photocopying service with a single large machine to do its photocopying faces the following scheduling problem. Each morning they get a set of jobs from customers. The want to do the jobs on their single machine in an order that keeps their customers happiest. Customer i 's job will take t_{i} time to complete. Given a schedule (i.e., an ordering of the jobs), let C_{i} denote the finishing time of job i. For example, if job j is the first to be done we would have $C_{j}=t_{j}$; and if job j is done right after job i, we would have $C_{j}=C_{i}+t_{j}$. Each customer i also has a given weight $w_{i} \geq 0$ that represents his or her importance to the business. The happiness of customer i is expected to be dependent on the finishing time of i 's job. So the company decides that they want to order the jobs to minimize the weighted um of the completion times, $\sum_{i=1}^{n} w_{i} C_{i}$.
Design an $O(n \log n)$ algorithm to solve this problem. That is, you are given a set of n jobs with a processing time t_{i} and a weight w_{i} for each job. You want to order the jobs so as to minimize the weighted sum of the completion times, $\sum_{i=1}^{n} w_{i} C_{i}$.
Example: Suppose there are two jobs: the first takes time $t_{1}=1$ and has weight $w_{1}=10$, while the second job takes time $t_{2}=3$ and has weight $w_{2}=2$. Then doing job 1 first would ield a weighted completion time of $10 \cdot 1+2 \cdot 4=18$, while doing the second job first would vield the larger weighted completion time of $10 \cdot 4+2 \cdot 3=46$.
2. You see the following special offer by the convenience store: "A bottle of cola for every 3 mpty bottles returned.", and you want to find out the maximum number of colas you can drink if you buy N bottles of cola
For example, consider the case where $N=8$. The straightforward strategy is as follows: After finishing your 8 bottles of cola, you have 8 empty bottles. Take 6 of them and you get 2 new bottles of cola. Now after drinking them you have 4 empty bottles, so you take 3 of them to get yet another new cola. Finally, you have only 2 bottles in hand, so you cannot get new cola any more. Hence, you have enjoyed $8+2+1=11$ bottles of cola.
You can actually do better! You first borrow an empty bottle from your friend, then you can enjoy $8+3+1=12$ bottles of cola! Of course, to be fair, you have to return your remaining mpty bottle back to your friend which you can do because you will have one left over bottle fter drinking the final cola you get from the store
Design an algorithm to finds the largest number of bottles you can get when buying N of them nd can borrow as many bottles as you want. Your algorithm should run in time bounded by a polynomial in the bit length of N, i.e., a polynomial in $\log N$.

Regular problems

3. [Graded] You're about to buy a new phone and want to determine the minimum amount of memory that is required to download and install your n favorite apps. The i-th app has a download size of d_{i} and a storage size of s_{i}. To download the app, your phone must have at east d_{i} megabytes of free disk space. After installation the app consumes s_{i} megabytes of disk space on the phone. The download size d_{i} is always at least as large as the storage size s_{i} but may be larger due to material that might not get used such as translations to different languages.
The order in which you install the apps matters. Consider an example with $n=2,\left(d_{1}, s_{1}\right)=$ $(7,4)$, and $\left(d_{2}, s_{2}\right)=(10,6)$.
. First downloading app 1 and then app 2 requires: 7 megabytes for downloading app 1, after which app 1 permanently consumes 4 megabytes of disk space, and then an additional 10 megabytes for downloading app 2, for a total of 14 megabytes. Thus, the maximum amount of memory needed at any point in time is 14 megabytes.

- First downloading app 2 and then app 1 requires: 10 megabytes for downloading app 2 , after which app 2 permanently consumes 6 megabytes of disk space, and then an additional 7 megabytes for downloading app 1, for a total of 13 megabytes. In this case the maximum amount of memory needed is 13 megabytes.

For this example the answer would be $\min (14,13)=13$.
Design on $O(n \log n)$ algorithm to determine the amount of memory needed to download and nstall all n apps in an optimal order
4. In a city there are n bus drivers. There are also n morning bus routes and n evening bu. outes, each with various lengths. Each driver is assigned one morning route and one evening oute. For any drver, if his total route length for a day exceeds d, he has to be paid overtime forery hour atter the fist d hours at a fixed rate per hou. Your task is to assign one morning route and one evening route to each bus driver so that the total overtime amount that the city authority has to pay is minimized.
Design an $O(n \log n)$ algorithm for this problem
5. Each morning you drive from your house to work. The route decomposes to n parts each of ength $t_{i}>0$. At each part there is a different speed limit $v_{i}>0$. As usual, you are late for ork and decide to brak the speed himit in order to arrive faster. since you do not want to isk much you decide to only break the speed limit by v at each part and only for k parts overall. For example, your route may be the list

$[(30 \mathrm{mi}, 20 \mathrm{mph}),(40 \mathrm{mi}, 70 \mathrm{mph}),(10 \mathrm{mi}, 30 \mathrm{mph})]$,

where each tuple contains the length l_{i} and the speed limit v_{i} of each part. You decide that you only want to break the speed limit 2 times, that is $k=2$ and by speed $v=10 \mathrm{mph}$. A ossible way to do this route is for example to drive 30 mph at l_{1} and 40 mph at l_{3}. Remembe hat since you always travel at a constant speed during each part of your route you the time to travel part i is l_{i} / v_{i} if you travel according to the speed limit or $l_{i} /\left(v_{i}+v\right)$ if you decid use the extra speed v. Since you want to optimize the time of your commute, you want to ind at which parts of the route you should break the speed limit and use the extra speed v You have many ideas on how you should use the extra speed.

2
a) A reasonable choice is to use it on the longest parts of the route, that is sort the list with respect to l_{i} (largest first) and use the bonus speed on the first k parts of the sorte list. Provide a counter-example for this greedy strategy
b) Another option is to use it on the parts of the route with smallest speed limit v_{i}, that sort the list with respect to v_{i} and use the bonus speed on the first k parts of the sorted list. Provide a counter-example for this greedy strategy.
(c) Design an $O(n \log n)$ algorithm that takes as input the list of lengths and speed limits

$$
L=\left[\left(l_{1}, v_{1}\right), \ldots\left(l_{n}, v_{n}\right)\right]
$$

and two positive integers k, v and computes the minimum time to go from your house to work. You need to provide a proof that the algorithm finds the minimum travel time

Challenge problem

6. Suppose you are given a connected graph G in which the edge weights depend on a paramete t, where t ranges over the reals. More specifically, the cost of an edge e is given by a function of the form $c_{e}(t)=a_{e} t^{2}+b_{e} t+d_{e}$, where a_{e}, b_{e}, d_{e} are reals depending on e, and $a_{e}>0$. Your oal is to find the minimum cost of a minimum spanning tree of G over all values of t. You gorithm should run in time polynomial in the number of nodes and edges of G. You may ssume that you can perform standard arithmetic operations (including computing square oots) at unit cost
Would your approach also work for the shortest paths problem (assuming the weight functions are nonnegative over their entire range)?

Programming problem

7. SPOJ problem Island Hopping (problem code ISLHOP)

CS 577: Introduction to Algorithms
Homework 6 Solutions to Warm-up Problems
Instructor: Dieter van Melkebeek

Problem 1

You are given n jobs, each comprised of a time to complete t_{i} and a value w_{i} denoting its importance. Given a schedule (i.e., an ordering of the jobs), let C_{i} denote the finishing time importance. Given a schedule (i.e., an ordering of the jobs), let C_{i} denote the finishing time the completion times, $\sum_{i=1}^{n} w_{i} C_{i}$. Design an $O(n \log n)$ algorithm to solve this problem.

We'll try to solve this problem using a greedy approach. This means that we'll order the jobs by choosing, at each step, the job that looks best at the moment. But how will we define 'best'? We could try just choosing the job with the greatest weight first, reasoning that the most importan obs should be done first. But this could get us into trouble if the job of greatest weight is so much
 We might also try choosing the shortest job first, but this would not work if we had a longer job Whose weight was dramatically higher than the shorter jobs. Next, we could consider both the weight and the duration of a job in deciding which one is the current best choice.
We'd like to favor jobs with high weights, but we'd also like to favor jobs with short times. Thus, we should look for a quantity that increases as a job's weight increases, and also increases as job's duration decreases. To help us find the right such quantity, let's analyze the problem with two jobs. Scheduling job 1 first is best iff

$$
\begin{equation*}
w_{1} t_{1}+w_{2}\left(t_{1}+t_{2}\right)<w_{2} t_{2}+w_{1}\left(t_{1}+t_{2}\right) . \tag{2}
\end{equation*}
$$

In case of equality in (2), both schedules are equally good. We can rewrite (2) as

$$
\begin{aligned}
w_{2} t_{1} & <w_{1} t_{2} \\
\frac{w_{2}}{t_{2}} & <\frac{w_{1}}{t_{1}} .
\end{aligned}
$$

Thus, for the two-job problem, the jobs are in the proper order if the ratio of weight to duration is no bigger for the later job than for the earlier job. This suggests that we use the greedy approach of always choosing the job with the greatest ratio of weight to duration. That is, if J is the list of jobs remaining to be run, we'll choose the first job i (that is, the earliest job in our list) such that

$$
\frac{w_{i}}{t_{i}}=\max _{j \in J}\left(\frac{w_{j}}{t_{j}}\right)
$$

We'll have to show that this approach minimizes the weighted sum $\sum_{i=1}^{n} w_{i} C_{i}$. We'll do this ith an exchange argument, in which we show that any ordering can be converted into the greed dering without increasing the cost.
Let us number the jobs from 1 to n in the order of the greedy algorithm. An inversion in a schedule is a pair $i>j$ such that job i is scheduled before job j. Because of our choice of the greedy criterion, this means that either $w_{i} / t_{i}<w_{j} / t_{j}$, or else that $w_{i} / t_{i}=w_{j} / t_{j}$ but j comes earlier in the
original list of jobs than i (remember, we decided to break ties by choosing the earlier job first) By definition, an ordering different from the greedy ordering has at least one inversion, and by the argument given in the text, any sequence with an inversion has a pair of consecutive elements that constitute an inversion.

Now, consider any pair of consecutive jobs in some schedule, say job i and job j, such that $i>j$. How does swapping jobs i and j affect the cost of the schedule? First of all, it does not affect the contributions of the jobs other than i and j to the overall cost. As for the contribution of jobs i and j, let C_{i-1} be the cumulative times of all jobs before job i (and say $C_{0}=0$). Before the swap, the contribution of jobs i and j to the cost was

$$
w_{i}\left(C_{i-1}+t_{i}\right)+w_{i+1}\left(C_{i-1}+t_{i}+t_{i+1}\right)
$$

whereas after the swap it is

$$
w_{i+1}\left(C_{i-1}+t_{i+1}\right)+w_{i}\left(C_{i-1}+t_{i+1}+t_{i}\right) .
$$

Working out the difference (as for (3) above), we see that the contribution does not increase provided

$$
\frac{w_{j}}{t_{j}} \leq \frac{w_{i}}{t_{i}},
$$

which is the case by our choice of greedy criterion. This way, we can undo all inversions and end up with the greedy schedule without increasing the cost. Thus, the greedy schedule has the minimum cost.

We should also consider the efficiency of our algorithm. We'll need to compute the ratio of weight to duration for each job, which will take $O(n)$ time. We can then sort the jobs based on this ratio, which will take $O(n \log n)$ time. This gives us a total running time of $O(n)+O(n \log n)=O(n \log n)$.

Problem 2

You see the following special offer by the convenience store: "A bottle of cola for every 3 empty bottles returned.", and you want to find out the maximum number of colas you can drink if you buy N bottles of cola. You are able to borrow empty bottles from a friend (as many as you want), but you have to give them back at the end. Design an algorithm for this problem that runs in time bounded by a polynomial in the bit length of N, i.e., a polynomial in $\log N$.
The key observation is the following: Whenever there are three or more non-borrowed bottles, it never hurts to postpone borrowing empty bottles. We can formally use an exchange argument to justify this. Suppose we use $k \leq 3$ borrowed bottes to get another one. Because we have three or more non-borrowed bottles, we can replace these k borrowed bottles with non-borrowed ones and still get another one. In both cases, we get the same extra cola, so nothing is lost via this exchange. Let $\operatorname{OPT}(N)$ denote the maximum number of colas we can drink with N bought bottles. For $N \geq 3$, the above observation shows that

$$
\begin{equation*}
\operatorname{OPT}(N)=3+\operatorname{OPT}(N-2) \tag{1}
\end{equation*}
$$

That is, drinking 3 bought bottles gives one back, and we can continue the process in the next That is, drinking 3 bought bottles gives one back, and we can continue the process in the next we got back in return for the 3 empty bottles. For the base cases, since $N \geq 1$, we need to consider $N=1,2$.
$N=1$ We need to borrow at least two empty bottles in order to get at least one extra bottle. However, if we borrow $k \geq 2$ empty bottles and use at least two of them to get an extra bottle, we have $(k+1)-3+1=k-1$ bottles in total in the next round. Since our total number of bottles cannot increase over time, this means we'll be able to return at most $k-1$ empty bottles at the end, whereas we need to return k. Thus, we cannot use any borrowed empty bottles, and the best we can do is just drink the one bottle we bought: $\operatorname{OPT}(1)=1$.
$N=2$ We can drink our two bottles, borrow an empty and turn in the three empty bottles for a new full one, drink the latter, and return it empty. This shows that OPT(2) ≥ 3. In order to do better, we'd need to turn in three empty bottles for a new full one at least twice (so we need at least $k \geq 3$ borrowed bottles if we buy 2), which would reduce our total number of bottles from $k+2$ (k borrowed empty bottles and 2 full bought ones) to $(k+2)-3+1=k$, which then becomes $k-3+1=k-2$. This makes it impossible to return k empty bottles at the end. Thus, $\mathrm{OPT}(2)=3$.
Solving (1) gives that

$$
\operatorname{OPT}(N)= \begin{cases}3 n & \text { if } N=2 n \\ 3 n+1 & \text { if } N=2 n+1\end{cases}
$$

for some $n \geq 1$. A single formula for this is $\left\lfloor\frac{3 N}{2}\right\rfloor$ since

$$
\left\lfloor\frac{3 N}{2}\right\rfloor= \begin{cases}\left\lfloor\frac{3 \cdot 2 n}{2}\right\rfloor=3 n & \text { if } N=2 n \\ \left\lfloor\frac{3 \cdot(2 n+1)}{2}\right\rfloor=\left\lfloor 3 n+\frac{3}{2}\right\rfloor=3 n+1 & \text { if } N=2 n+1\end{cases}
$$

Therefore given N, one can directly return $\left\lfloor\frac{3 N}{2}\right\rfloor$.

Complexity Arithmetic operations can be done in time polynomial in the length of N (encoded in binary), therefore one can compute $\left\lfloor\frac{3 N}{2}\right\rfloor$ in time polynomial in $\log N$, as desired.

CS 577: Introduction to Algorithms	Fall 2022
Homework 6 Solutions to Regular Problems	
Instructor: Dieter van Melkebeek	TA: Nicollas Mocelin Sdroievski

Problem 3

You're about to buy a new phone and want to determine the minimum amount of memory that is required to download and install your n favorite apps. The i-th app has a download size of d_{i} and a storage size of s_{i}. To download the app, your phone must have at least d_{i} on the phone. The download size d_{i} is always at least as large as the storage size s_{i} but may be larger due to material that might not get used such as translations to different languages.

Design on $O(n \log n)$ algorithm to determine the amount of memory needed to download and install all n apps in an optimal order.
Let us first consider the case with $n=2$ apps. The amount of memory space needed to first download app 1 and then app 2 is: d_{1} for downloading app 1 , and $s_{1}+d_{2}$ for downloading app 2 while app 1 is in memory, so the amount of memory needed for the entire process is $\max \left(d_{1}, s_{1}+d_{2}\right)$. The other order similarly requires space $\max \left(d_{2}, s_{2}+d_{1}\right)$. The first order is optimal if and only if

$$
\begin{equation*}
\max \left(d_{1}, s_{1}+d_{2}\right) \leq \max \left(d_{2}, s_{2}+d_{1}\right) \tag{1}
\end{equation*}
$$

i.e., the largest value among $d_{1}, s_{1}+d_{2}, d_{2}, s_{2}+d_{1}$ is among d_{2} and $s_{2}+d_{1}$. Since $s_{2}+d_{1} \geq d_{1}$ and $s_{1}+d_{2} \geq d_{2}$, the largest value among those four is always one of $s_{1}+d_{2}$ and $s_{2}+d_{1}$. If follows that (1) is equivalent to $s_{1}+d_{2} \leq s_{2}+d_{1}$, which can be rearranged as

$$
\begin{equation*}
d_{2}-s_{2} \leq d_{1}-s_{1} . \tag{2}
\end{equation*}
$$

If the inequality in (2) goes the other way around, then first downloading app 2 and then app 1 is optimal. In case of equality, both orders are optimal. This suggests the greedy strategy of downloading the apps in the order of non-increasing value of $d_{i}-s_{i}$, with ties broken arbitrarily

The criterion (2) can also be gleaned from Figure 1, where the top represents the situation where app 1 is downloaded first and then app 2, and the bottom the other order. The solid area represents the permanent memory needed for a given app, s_{i}, and the hatched area the additional memory needed for downloading the app, $d_{i}-s_{i}$. The amount of memory needed for a download order corresponds to the furthest a block in that order sticks out to the right.
Note that is possible in the top line for the hatched block of app 1 to stick out the furthest, but in that case the corresponding hatched block in the other order sticks out even further. Thus, we only need to compare how far the blocks corresponding to the second downloads in both orders stick out. (This is the equivalent of the above observation that two of four quantities involved always contain the maximum.) Since the memory that is permanently needed for both orders is the same, the starting point for the hatched blocks in both orders is the same, namely $s_{1}+s_{2}=s_{2}+s_{1}$. Thus, the order that sticks out the furthest is the one for which the hatched block of the second download is the largest. The other order is the preferred one.

Figure 1: Geometric comparison of download orders for two apps.

Correctness We use an exchange argument based on the above two-app analysis. Consider any order π of the n apps that is not our greedy order. Such an order has to contain two consecutive apps, say app 1 and app 2, that are out of our greedy order: App 2 is downloaded before app 1 while $d_{2}-s_{2} \leq d_{1}-s_{1}$. Consider the order π^{\prime} obtained from π by swapping apps 1 and 2. Doing so:

- Does not affect the space needed for downloading the apps that come before both app 1 and app 2 as there is no difference between π and π^{\prime} up to that point
- Changes the memory space required to download apps 1 and 2 from $\max \left(s+d_{2}, s+s_{2}+d_{1}\right)=$ $s+\max \left(d_{2}, s_{2}+d_{1}\right)$ in π to $\max \left(s+d_{1}, s+s_{1}+d_{2}\right)=s+\max \left(d_{1}, s_{1}+d_{2}\right)$ in π^{\prime}, where s denotes the sum of the storage sizes of all apps that come before both app 1 and app s.
- Does not affect the space needed for downloading the apps that come after both app 1 and app 2 as the total storage size of all prior apps in π and π^{\prime} is the same for each such app
Thus, the swap does not increase the memory space required as long as $s+\max \left(d_{1}, s_{1}+d_{2}\right) \leq$ $s+\max \left(d_{2}, s_{2}+d_{1}\right)$, which simplifies to $\max \left(d_{1}, s_{1}+d_{2}\right) \leq \max \left(d_{2}, s_{2}+d_{1}\right)$, and by the above nalysis is equivalent to our hypothesis $d_{2}-s_{2} \leq d_{1}-s_{1}$.

The above swap reduces the number of inversions of π with respect to the greedy order by 1 Thus, after a finite number of swaps we end up at our greedy order without every having increased he memory space needed. As we started with an arbitrary order π other than our greedy order, this implies that our greedy order requires the least amount of memory space.

Algorithm and running time Implementing the above strategy involves sorting the apps in nonincreasing order of $d_{i}-s_{i}$, and then computing the memory space required for that order The first phase can be done in time $O(n \log n)$. The second phase can be done in time $O(n)$ by oing over the apps in the sorted order, keeping track of the sum s of the storage sizes of the apps ownloaded thus far, and keeping track of the maximum value of $s+d_{i}$. The finale value of the atter quantity is the answer. See Algorithm 1 below for pseudocode. The resulting overall running time is $O(n \log n)+O(n)=O(n \log n)$.

Alternate solution The problem can be solved by a reduction to minimizing the maximum ateness. For each app i, create a job i with duration s_{i} and deadline $D_{i} \doteq s_{i}-d_{i}$ (note that

lgorithm 1

1: Sort the apps in nonincreasing order of $d_{i}-s_{i}$
2: $m \leftarrow 0 ; s \leftarrow 0$
3: for $i=1$ to $n \mathbf{d o}$
$\left.+d_{i}\right) ; s \leftarrow s+s_{i}$
5: return m
$D_{i} \leq 0$, which is OK). Suppose that the jobs are indexed the way they are scheduled, starting with $i=1$. The finish time of job i equals $T_{i} \doteq \sum_{j=1}^{i} s_{j}$, so the lateness of job i equals $\max \left(0, T_{i}-D_{i}\right)=$ $d_{i}+\sum_{j=i}^{i-1} s_{j}$, which is exactly the memory space needed for downloading app i in this order. The naximum lateness over all jobs equals the amount of memory space needed for downloading all apps, which is the quantity we want to minimize. Thus, a schedule that minimizes the maximum leness is equivalent to a download order that minimizes the memory required. This argues the correctness of the reduction. As the reduction takes time $O(n)$ and the resulting instance of
 he overall running time of this approach is also O (xactly the same elementary operations as the direct approach above.

Problem 4
In a city there are n bus drivers. There are also n morning bus routes and n evening bus routes, each with various lengths. Each driver is assigned one morning route and one evening route. For any driver, if his total route length for a day exceeds d, he has to be paid overtime for every hour after the first d hours at a fixed rate per hour. Your task is to assign one morning route and one evening route to each bus driver so that the total overtime amount that the city authority has to pay is minimized. Design an $O(n \log n)$ algorithm for this problem
Since each bus driver is allowed to work exactly d hours before requiring overtime pay, it makes intuitive sense that in order to minimize total overtime pay, the available hours of driving should e spread as evenly as possible among the n drivers. Each morning route and each evening route so the driver, so the problem then becomes how to pair morning route with coresponding evening route in such a way that the total driving times are as even as possible. The natural way to do this is to par the longest moming route with the shostest evening route, esecond longest with the second shortest, and so on where the i-th longest morning route
 ritraily) we will call the schedule seneted by this strategy the "greedy schedule". As it tuw It, this wis First, we give a high, level overview of the proof technique we will use. Sort the moning ro
nondecreasing order of driving time. Any schedule can be uniquely written as an ordered lis of evering routes (where the first evening route is paired implicitly with the first morning route, ad so on). Then, given any schedule that is not the greedy schedule there must be at least on ar of contive ing that inverted with respect to sredy shedule (that is, the two outes apear in the oppoite order in the greedy schedule, though not neessarily consecutively) exhan the of these two he schedule by 1 , so since the schedule can have only a finite number of inversions to begin with there must be a finite sequence of such exchanges that transforms the schedule into the greedy chedule. Hence, if we can show that no such exchange increases the total overtime the greed schedule can be no worse than any other schedule (and hence must be optimal).
Claim 1. Given a schedule which contains a pair of consecutive evening routes that is inverted with respect to the greedy schedule, swapping the pair of routes does not increase the total overtime hat must be paid in the schedule.
Proof. Let e and e^{\prime} be the lengths of the evening routes to be exchanged, and let $m \leq m^{\prime}$ be the engths of the corresponding morning routes, where we assume that m precedes m in the fixed rder. Since in the greedy schedule the evening routes are sorted in nonincreasing order, in order for e and e to be inverted we must have $e \leq e$. In order to determine the effect that swapping has on total overtime, we consider a number of cases.

- $m^{\prime}+e^{\prime} \leq d$. Note that $m+e \leq d$ as well since $m \leq m^{\prime}$ and $e \leq e^{\prime}$, so both pairs of route fall under the overtime threshold before the exchange. After the exchange, $m+e^{\prime}$ and $m^{\prime}+e$ re both upper bounded by $m^{\prime}+e^{\prime}$ (also since $m \leq m^{\prime}$ and $e \leq e^{\prime}$) and hence d, so neither contributes overtime after the exchange either
$m+e \geq d$. In this case, both pairs of routes require overtime pay, so the total overtime is $m+e+m^{\prime}+e^{\prime}-2 d$ before the exchange. Afterwards, $m+e^{\prime}$ and $m^{\prime}+e$ are both at least a large as $m+e$, so the total overtime is still $m+e+m^{\prime}+e^{\prime}-2 d$.
- $m+e<d<m^{\prime}+e^{\prime}$. Refer to Figure 2 for a pictorial representation of this case. Imagine that the ($m^{\prime}+e^{\prime}$)-length pairing is in fact made up of a segment of length $m^{\prime}+e$ and another of length $e^{\prime}-e$, while the ($m+e$)-length pairing is a single segment of length $m+e$. Then swapping e and e^{\prime} is equivalent to moving the segment of length $e^{\prime}-e$ from the first pairing o the second. The $\left(m^{\prime}+e\right)$ - and $(m+e)$-length segments still contribute the same amount o total overtime, but the $\left(e^{\prime}-e\right)$-length segment contributes the same or less, regardless of how much of it contributed to overtime before the swap, since $m+e \leq m^{\prime}+e$. Hence, the total overtime stays the same or decreases.

Hence, in every case swapping does not increase the total overtime, so the claim follows.
\square

Figure 2: Effect on total overtime of swap when $m+e<d<m^{\prime}+e^{\prime}$.
Now, armed with claim, we can follow the exchange argument discussed above to get that the reedy schedule is optimal, as desired. To actually construct the greedy schedule, it suffices to sort the morning routes in increasing order and the evening routes in decreasing order, which take $O(n \log n)$ time.

Problem 5

The route from your house to work is composed of n parts of length $l_{i}>0$ with different speed limits $v_{i}>0$. You are given positive integers k and v, where k indicates how many times you are allowed to break the speed limit by v. Your objective is to find at which parts of the route you should break the speed limit to minimize the total time required to get to work. You have some ideas of how to do this.
(a) A reasonable choice is to use it on the longest parts of the route, that is sort the list with respect to l_{i} (largest first) and use the bonus speed on the first k parts of the sorted list. Provide a counter-example for this greedy strategy.
(b) Another option is to use it on the parts of the route with smallest speed limit v_{i}, that is sort the list with respect to v_{i} and use the bonus speed on the first k parts of the sorted list. Provide a counter-example for this greedy strategy
(c) Design an $O(n \log n)$ algorithm that takes as input the list of lengths and speed limits

$$
L=\left[\left(l_{1}, v_{1}\right), \ldots\left(l_{n}, v_{n}\right)\right]
$$

and two positive integers k, v and computes the minimum time to go from your house to work. You need to provide a proof that the algorithm finds the minimum travel time.

Part (a)

Consider the instance with $k=1$, bonus speed $v=10$ and $L=[(100,40),(50,10)]$. The proposed greedy strategy uses the bonus speed on the first part and in this case the total time is 100/(40 + 10) $+50 / 10=7$. On the other hand, if we use the bonus speed on the second part we get a total time of $100 / 40+50 /(10+10)=5$.

Part (b)
Consider the instance with $k=1, v=10$, and $L=[(40,10),(180,20)]$. The proposed greedy strategy uses the bonus speed on the first part of the route, making the total travel time $40 /(10+$ $10)+180 / 20=11$. However, if we use the bonus on the second part we obtain that the travel time is $40 / 10+180 /(20+10)=10$.

Part (c)
We first investigate the case with only two intervals and $k=1$. In this case, we have that in order to choose the first interval it must be true that

$$
\frac{\ell_{1}}{v_{1}+v}+\frac{\ell_{2}}{v_{2}} \leq \frac{\ell_{1}}{v_{1}}+\frac{\ell_{2}}{v+v_{2}} \Leftrightarrow \frac{\ell_{1}}{v_{1}\left(v_{1}+v\right)} \geq \frac{\ell_{2}}{v_{2}\left(v_{2}+v\right)}
$$

Therefore, a reasonable choice is to sort the intervals according to non-increasing $\ell_{i} /\left(v_{i}\left(v_{i}+v\right)\right)$, and use the bonus speed on the first k intervals of the sorted list. We can prove that this strategy is optimal using an exchange argument. We simply denote a solution to this problem by the set of the indices of the intervals of the trip that the solution uses the bonus speed on, that is
$S \subseteq[n] \doteq\{1, \ldots, n\}$. Moreover, let t_{i} be the time that it takes us to travel part i without using the bonus speed, namely $t_{i}=\ell_{i} / v_{i}$. The time to travel part i using the bonus speed is $t_{i}^{\prime}=\ell_{i} /\left(v+v_{i}\right)$ Without loss of generality, we may assume that S contains exactly k elements. That is becaus if S contains fewer, then we can use the bonus speed on any of the remaining intervals and get solution with smaller travel time. Now, assume that there exist $i \in S$ and $j \in[n] \backslash S$ such that

$$
\frac{\ell_{j}}{v_{j}\left(v_{j}+v\right)}>\frac{\ell_{i}}{v_{i}\left(v_{i}+v\right)}
$$

From the same computation as for 2 intervals and $k=1$ we have that this inequality is equivalent to $t_{i}^{\prime}+t_{j}>t_{i}+t_{j}^{\prime}$. Since the time that we spent on the intervals other that i and j did not change we have that the total time of $(S \backslash\{i\}) \cup\{j\}$ is not worse than the total time of S. Now, we can continue making these changes until there exists no pair i, j with $i \in S$ and $j \in[n] \backslash S$ such that $\frac{\ell_{j}}{v_{i}\left(v_{j}+v\right)}>\frac{\ell_{i}}{v_{i}\left(v_{i}+v\right)}$. Then S contains the k largest elements of L with respect to our measure which is exactly what the greedy strategy does. Notice, that if two parts i, j of the route have $\frac{\ell_{j}}{v_{i}\left(v_{i}+v\right)}=\frac{\ell_{i}}{v_{i}\left(v_{i}+v\right)}$, it does not matter which one of them we pick to use the bonus speed on.

Alternate solution Another, way to see this is by using the objective that we are trying to minimize, namely the total time of the trip. Let $\delta_{i}=t_{i}-t_{i}^{\prime}$. The total time for this solution is

$$
T_{S}=\sum_{i \in S} t_{i}^{\prime}+\sum_{i \in[n] \backslash S} t_{i}=\sum_{i \in S}\left(t_{i}-\delta_{i}\right)+\sum_{i \in[n] \backslash S} t_{i}=\sum_{i=1}^{n} t_{i}-\sum_{i \in S} \delta_{i}
$$

So, in order to minimize the total travel time, we want to maximize the $\sum_{i \in S} \delta_{i}$. To do this we can sort the intervals with respect to δ_{i} in decreasing order and choose the first k to use the bonus can sort the intervals with respect
speed. In particular, we have that

$$
\delta_{i}=t_{i}-t_{i}^{\prime}=v \frac{\ell_{i}}{v_{i}\left(v+v_{i}\right)} .
$$

Since, v is an absolute constant we have that the sorted version of L decreasingly with respect to δ_{i} is the same as when we sort with respect to $\frac{\ell_{i}}{v_{i}\left(v+v_{i}\right)}$.

Analysis To implement this greedy strategy we just need to sort the list of the tuples $\left(\ell_{i}, v_{i}\right)$ by decreasing value of $\ell_{i} /\left(v\left(v+v_{i}\right)\right)$. This can be done in $O(n \log n)$ time using Merge Sort. Then we can do a linear pass over the sorted list to compute the total travel time by adding the time that we spend on each part of the route, for the first k parts we compute the time as $t_{i}^{\prime}=\ell_{i} /\left(v_{i}+v\right)$ since for these we are using the bonus speed, for the others we compute it as t_{i}. This takes $O(n)$ time. Overall, the run time of our algorithm is $O(n \log n)$.

COMP SCI 577 Homework 06 Problem 3

Greed

Ruixuan Tu
rtu7awisc.edu
University of Wisconsin-Madison
1 November 2022

Algorithm

Explanation

We first sort the apps $\left[d_{i}, s_{i}\right]$ descendingly by the value of $d_{i}-s_{i}$. Then we loop through the sorted apps to calculate the total space needed in this order: if there is not enough space (free space $=$ total space - consumed space) to download the current app, expand the space first; then after we have enough space, we increase the consumed space after installation. By downloading and installing the apps in this order, we get the smallest total space needed

Code (Python) of $O(n \log n)$

```
import input
import typing
if __name__ = "__main__":
    n: int = input.nextInt(
    d: typing.List[int] = [input.nextInt() for _ in range(n)]
    s: typing.List[int] = [input.nextInt() for _ in range(n)]
    apps: typing.List[typing.Tuple[int, int]] = [(d[i], s[i]) for
        i in range(n)]
    apps.sort(key=lambda x: x[0] - x[1], reverse=True)
    d = [app[0] for app in apps]
    s = [app[1] for app in apps]
```

```
total: int = 0
consumed: int = 0
for i in range(n)
    if total - consumed < d[i]:
        total += (d[i] - (total - consumed))
        consumed += s[i]
print(total)
```


Proof

Correctness

Let an ordering of apps be $A=(D, S)$ with $a_{i}=\left(d_{i}, s_{i}\right), D$ be downloading size, and S be installing size. Let A be the order to download and install apps by our algorithm, and A^{*} be any order which could minimize the total space used. If $A=A^{*}$ then we are done. Otherwise, $A \neq A^{*}$, i.e., $\exists i \in[n]$ such that $a_{i} \neq a_{i}^{*}$. Denote updated spaces at the $i^{\text {th }}$ round as S_{t}^{i} and S_{c}^{i}. The base case $n=0$ is always true, as when there is no app installed, there is no space that should be cost.
First, we can prove that we have correct total and consumed costs by the counting part, as the total space S_{t} could be increased to fit any d_{i}, and the consumed space S_{c} always has $S_{c} \leq S_{t}$. We start an induction for the loop invariants: (1) $S_{t}^{i} \geq S_{c}^{i}$, (2) $S_{t}^{i}-S_{c}^{i-1}=d_{i}$, and (3) $S_{c}^{i}-S_{c}^{i-1}=s_{i}$. We have the inductive step: by $S_{t}^{i}=S_{t}^{i-1}+d_{i}-\left(S_{t}^{i-1}-S_{c}^{i-1}\right)=d_{i}+S_{c}^{i-1}$, $S_{c}^{i}=S_{c}^{i-1}+s_{i}$, and $d_{i} \geq s_{i} \geq 0$; we have $S_{t}^{i}-S_{c}^{i}=d_{i}-\left(S_{c}^{i}-S_{c}^{i-1}\right) \geq 0$ by loop invariant (3), $S_{t}^{i}-S_{c}^{i-1}=d_{i}+S_{c}^{i-1}-S_{c}^{i-1}=d_{i}$, and $S_{c}^{i}-S_{c}^{i-1}=S_{c}^{i-1}+s_{i}-S_{c}^{i-1}=s_{i}$.

Then, noting that any A (including which redefined later), A^{*}, and G are feasible orders with arrangements as $\left(d_{i}, s_{i}\right)$ are bundled together. We redefine A be a set transformed from A^{*} by that there are two consecutive elements in A^{*} denoted as a_{i}^{*} and a_{i+1}^{*} in a different order than they are in G, i.e., there is an inversion such that $a_{i}=a_{i+1}^{*}$ and $a_{i+1}=a_{i}^{*}$. Denote the comparison between two elements a_{i} and a_{j} in A be based on their differences, i.e., $d_{i}-s_{i}$ and $d_{j}-s_{j}$, as well as similarly in A^{*}. Then we have $a_{i} \geq a_{i+1}$ from our algorithm such that $a_{i+1}^{*} \geq a_{i}^{*}$.

As A^{*} is an optimal solution which is in a different order, to keep the optimality (or equality) of the space yielded by our algorithm, we should have $s_{i}+d_{i+1} \leq s_{i}^{*}+d_{i+1}^{*}=s_{i+1}+d_{i}$ for the greedy-like order which could be proved by $d_{i+1}-s_{i+1} \leq d_{i}-s_{i}$, i.e., $a_{i}^{*} \leq a_{i+1}^{*}$, with $s_{i}+d_{i+1}$ (similar for $*$) be the minimum space occupancy of the concatenation by appending a_{i+1} after a_{i}
if there is no enough space for d_{i+1} after installing s_{i}. Another situation is that $d_{i}-s_{i} \geq d_{i+1}$, so that a_{i}^{*} is fit within the remaining space from a_{i+1}^{*}, and the total space consumption is d_{i}, then after transformation we have $s_{i}+d_{i+1} \leq d_{i}$ which also satisfies $s_{i}+d_{i+1} \leq s_{i+1}+d_{i}$ mentioned before. We use the signs \leq and \geq to ensure that tie are maintained that should not be. Thus, we have proven in both cases, the space consumed does not increase from A^{*} to A.

As the number of inversions of A with respect to the true greedy solution G is one less than the number of inversions of A^{*} with respect to G. We end up in G eventually. \square

Termination

The algorithm must terminate, as it is in loops without any recursion. Also, no edge case should be taken care of.

Complexity

Data reading costs $O(n)$ time, sorting costs $O(n \log n)$ time, and counting costs $O(n)$ time. The overall time cost is $O(n \log n)$

Test Cases

Input: $n \leftarrow 2 ; d \leftarrow[7,10] ; s \leftarrow[4,6]$;
Output: 13;
Explanation: Same as the example in the write-out of this problem.

Appendix

Code (Python) for utility input

from typing import List, Optional
2
file $=$ None
queue = []
def openFile(filename: Optional[str]): global file
if filename \neq None:

```
        file = open(filename, "r")
    else:
        file = None
def next() }->\mathrm{ Optional[str]:
    while len(queue) = 0:
        if file = None:
        line: str = input()
        else:
        line: str = file.readline()
        if len(line) = 0:
                return None
        LineArr: List[str] = line.split(" ")
        for lineElem in lineArr:
        queue.append(lineElem)
    return queue.pop(0)
def nextInt() }->\mathrm{ int:
    result = next()
    if result }\not=\mathrm{ None:
        return int(result)
    raise Exception("no input")
```

