
CS 577: Introduction to Algorithms Fall 2022

Homework 7

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

This homework covers network flow. Problem 3 must be submitted for grading by 2:29pm
on 11/8. Please refer to the homework guidelines on Canvas for detailed instructions.

Warm-up problems

1. Suppose we are given an integer k, together with a flow network N = (V,E, c) in which every
edge has capacity 1. Design an algorithm to identify k edges in N such that after deleting
those k edges, the maximum value of a flow in the remaining network is as small as possible.
Your algorithm should run in time polynomial in n and m.

2. Given a flow network N = (V,E, c) with source s and sink t, we say that a node v 2 V is
upstream if, for all minimum s-t cuts (S, T ) of G, v 2 S. In other words, v lies on the s-side of
every minimum s-t cut. Analogously, we say that v is downstream if v 2 T for every minimum
s-t cut (S, T ) of G. We call v central if it is neither upstream nor downstream.

Design an algorithm that takes N and a flow f of maximum value in N , and classifies each
of the nodes of N as being upstream, downstream, or central. Your algorithm should run in
linear time.

Regular problems

3. [Graded] Consider a network with integer capacities. An edge is called upper-binding if
increasing its capacity by one unit increases the maximum flow value in the network. An
edge is called lower-binding if reducing its capacity by one unit decreases the maximum flow
value in the network.

(a) For the network G below determine a maximum flow f
⇤, the residual network Gf⇤ , and

a minimum cut. Also identify all of the upper-binding edges and all of the lower-binding
edges.

(b) Develop an algorithm for finding all the upper-binding edges in a network G when given
G and a maximum flow f

⇤ in G. Your algorithm should run in linear time.

(c) Develop an algorithm for finding all the lower-binding edges in a network G when given G

and an integer maximum flow f
⇤ in G. Your algorithm should run in time O(m(n+m)),

where n denotes the number of vertices and m the number of edges. Can you make the
running time linear?

1

4. A given network N with integer capacities may have more than one minimum s-t cut. Define
the densest minimum s-t cut to be any minimum s-t cut (S, T ) of N with the greatest number
of edges crossing from S to T .

Suppose we have access to a black box called IntegralMaxFlow. IntegralMaxFlow
takes as input a network N

0 with integer capacities and outputs an integral flow of maxi-
mum value for N

0. Design algorithms for each of the following tasks. Each algorithm can
most at most one call of to IntegralMaxFlow. Outside of IntegralMaxFlow, the al-
gorithms should run in linear time assuming that standard arithmetic operations can be done
in constant time.

(a) Finding a densest minimum s-t cut in N .

(b) Determining whether N has a unique densest minimum s-t cut.

5. A given network can have many minimum st-cuts.

(a) Determine precisely how large the number of minimum st-cuts in a graph can be as a
function of n.

(b) Show that if (S1, T1) and (S2, T2) are both minimum st-cuts in a given network, then so
is (S1 [ S2, T1 \ T2). How does this generalize to more than 2 st-cuts?

(c) Design an algorithm that, given a network, generates a collection of minimum st-cuts
(S1, T1), (S2, T2), . . . such that every minimum cut of the network can be written as

([i2ISi,\i2ITi)

for some subset I of indices. Your algorithm should run in time polynomial in n and m.

Challenge problem

6. Problem J from the 2007 ACM-ICPC World Finals (see next page). Your algorithm should
run in time polynomial in n

.
= R+ T .

Programming problem

7. SPOJ problem Potholers (problem code POTHOLE).
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Problem J 
Tunnels 

Input File: tunnels.in 
 

Curses! A handsome spy has somehow escaped from your elaborate deathtrap, overpowered your guards, and 
stolen your secret world domination plans. Now he is running loose in your volcano base, risking your entire 
evil operation. He must be stopped before he escapes! 

Fortunately, you are watching the spy's progress from your secret control room, and you have planned for just 
such an eventuality. Your base consists of a complicated network of rooms connected by non-intersecting 
tunnels. Every room has a closed-circuit camera in it (allowing you to track the spy wherever he goes), and 
every tunnel has a small explosive charge in it, powerful enough to permanently collapse it. The spy is too quick 
to be caught in a collapse, so you'll have to strategically collapse tunnels to prevent him from traveling from his 
initial room to the outside of your base. 

Damage to your base will be expensive to repair, so you'd like to ruin as few tunnels as possible. Find a strategy 
that minimizes the number of tunnels you'll need to collapse, no matter how clever the spy is. To be safe, you’ll 
have to assume that the spy knows all about your tunnel system. Your main advantage is the fact that you can 
collapse tunnels whenever you like, based on your observations as the spy moves through the tunnels. 
 

Input 
The input consists of several test cases. Each test case begins with a line containing integers R (1 ≤ R ≤ 50) and 
T (1 ≤ T ≤ 1000), which are the number of rooms and tunnels in your base respectively. Rooms are numbered 
from 1 to R. T lines follow, each with two integers x, y (0 ≤ x,y ≤ R), which are the room numbers on either end 
of a tunnel; a 0 indicates that the tunnel connects to the outside. More than one tunnel may connect a pair of 
rooms. 

The spy always starts out in room 1. Input is terminated by a line containing two zeros. 
 

Output 
For each test case, print a line containing the test case number (beginning with 1) followed by the minimum 
number of tunnels that must be collapsed, in the worst case. Use the sample output format and print a blank line 
after each test case. 
 

Sample Input Output for the Sample Input 
4 6 
1 2 
1 3 
2 4 
3 4 
4 0 
4 0 
4 6 
1 2 
1 3 
1 4 
2 0 
3 0 
4 0 
0 0 

Case 1: 2 
 
Case 2: 2 

CS 577: Introduction to Algorithms Fall 2022

Homework 7 Solutions to Warm-up Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 1

Suppose we are given an integer k, together with a flow network N = (V,E, c) in which every

edge has capacity 1. Design an algorithm to identify k edges in N such that after deleting

those k edges, the maximum value of a flow in the remaining network is as small as possible.

Your algorithm should run in time polynomial in n and m.

We recall strong duality: the maximum value of a flow in any network is equal to the capacity

of a minimum s-t cut in the same network. Suppose we can identify k edges in N such that after

deleting these k edges, the capacity of a minimum s-t cut in the remaining network is as small

as possible. Strong duality tells us that these k edges would also be a satisfactory solution to the

given problem. We now want an algorithm that finds k edges in N such that after removing these

k edges, the capacity of a minimum s-t cut in the remaining network is as small as possible.

To develop such an algorithm, we must understand how removing edges from a network changes

the capacity of an s-t cut.

Claim 1. Consider the network N
0 obtained by removing from the network N = (V,E, c) a subset

F ✓ E of edges. Let (S, T ) be any s-t-cut of N . Note that (S, T ) is also an s-t-cut of N 0. Let
c(S, T ) be the capacity of (S, T ) in N and let c0(S, T ) be the capacity of (S, T ) in N

0. Then we have

c
0
(S, T ) = c(S, T )� |F \ S ⇥ T |.

Less formally, suppose we remove some edges from N . The capacity of (S, T ) will decrease by

some nonnegative amount. This nonnegative amount is equal to the number of removed edges that

crossed from S to T .

The claim follows from the definition of capacity of an s-t cut. The capacity of an s-t cut (S, T )

in a network N = (V,E, c) is the sum of the capacities of all edges in N that cross from S to T :

c(S, T ) =

X

e2E\S⇥T

c(e).

For this problem, we know every edge has capacity 1. Therefore, the above expression simplifies

to

c(S, T ) =

X

e2E\S⇥T

1 = |E \ S ⇥ T |.

In words, the capacity of (S, T ) in N is the number of edges in N that cross from S to T . Note

that since N
0
is also a network where each edge has capacity 1, we know the capacity of (S, T ) in

N
0
is the number of edges in N

0
that cross from S to T .

Therefore, the di↵erence between c(S, T ) and c
0
(S, T ) is the number of removed edges that

crossed from S to T .

As a result of this claim, we understand that if we remove k edges from N , the capacity of any

s-t cut in N will be reduced by at most k. Specifically, the capacity of a minimum s-t cut can be
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reduced by at most k. We can achieve this minimum by removing k edges that each go from the

source side to the sink side of a fixed minimum s-t cut.

Our algorithm is to find a minimum s-t cut (S
⇤
, T

⇤
) of N . We then output k edges that cross

from S
⇤
to T

⇤
. If less than k edges cross from S

⇤
to T

⇤
, we output all the edges that cross from

S
⇤
to T

⇤
, guranteeing the capacity of (S

⇤
, T

⇤
) becomes 0.

Our algorithm computes a minimum s-t cut in N and finds up to k edges that cross from the

source side to the sink side. The runtime of our algorithm is polynomial in n and m, assuming

we find the minimum s-t cut in N using an e�cient algorithm, such as the O(nm) network flow

algorithm. Finding the k edges can be done by iterating over all the edges, which can be done in

time polynomial in n and m.
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Problem 2

Given a flow network N = (V,E, c) with source s and sink t, we say that a node v 2 V is

upstream if, for all minimum s-t cuts (S, T ) of G, v 2 S. In other words, v lies on the s-side of

every minimum s-t cut. Analogously, we say that v is downstream if v 2 T for every minimum

s-t cut (S, T ) of G. We call v central if it is neither upstream nor downstream.

Design an algorithm that takes N and a flow f of maximum value in N , and classifies each

of the nodes of N as being upstream, downstream, or central. Your algorithm should run in

linear time.

Consider the min-cut (S
⇤
, T

⇤
) where S

⇤
consists of all the vertices that are reachable from the

source s in the residual network Nf where f is the given maximum flow. We claim that a node v

is upstream if and only if v 2 S
⇤
. Clearly, if v is upstream, then it must belong to S

⇤
; otherwise,

it lies on the sink-side of the minimum cut (S
⇤
, T

⇤
). Conversely, suppose that v 2 S

⇤
were not

upstream. Then there would be a minimum cut (S, T ) with v 2 T . Now, since v 2 S
⇤
, there is a

path in Nf from s to v. Since v 2 T , this path must have an edge (u,w) with u 2 S and w 2 T .

But this is a contradiction since no edge in the residual network Nf corresponding to a max flow

f can go from the source side to the sink side of any minimum cut. (For any max flow f and any

min cut (S, T ), f must saturate every edge from S to T while every edge from T to S must have 0

flow. This is true regardless of whether S is the set of vertices reachable from the source in Nf .)

A symmetric argument shows the following. Let (S⇤, T⇤) denote the cut where T⇤ consists of

all vertices from which the sink t can be reached in Nf . Then (S⇤, T⇤) is a minimum cut, and a

vertex w is downstream if and only if w 2 T⇤. (Formally, this statement can be obtained from the

upstream one by reverting all edges and flows in Nf .)

Thus, our algorithm is to build Nf , and run a graph traversal to find the sets S
⇤
and T⇤. These

are the upstream and downstream vertices, respectively; the remaining vertices are central.

The running time of our algorithm is linear as we can construct Nf out of f in linear time, and

graph traversal can be done in linear time (using BFS of DFS).
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Homework 7 Solutions to Regular Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 3

Consider a network with integer capacities. An edge is called upper-binding if increasing its
capacity by one unit increases the maximum flow value in the network. An edge is called
lower-binding if reducing its capacity by one unit decreases the maximum flow value in the
network.

(a) For the network G below determine a maximum flow f
⇤, the residual network Gf⇤ , and

a minimum cut. Also identify all of the upper-binding edges and all of the lower-binding
edges.

(b) Design an algorithm for finding all the upper-binding edges in a network G when given
G and a maximum flow f

⇤ in G. Your algorithm should run in linear time.

(c) Design an algorithm for finding all the lower-binding edges in a network G when given
G and an integer maximum flow f

⇤ in G. Your algorithm should run in time polynomial
in n and m. Can you make it run in linear time?

Part (a)

The maximum value of a flow in the network is 8 units. The next figure shows such flow and the
corresponding residual network.
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Note that backward edges in the residual graph have been shown as broken. One s-t min-cut is
S = {s, a} and T = {b, c, d, e, t}. Another is S = {s, a, b, c, d} and T = {e, t}. Only the edge (a, e)
is upper-binding. The lower-binding edges are (s, b), (a, b), (a, e), (b, e), (c, t), and (d, t).

Part (b)

We can test whether a given edge e = (u, v) in G is upper-binding as follows. Let G(e) denote the
same network as G but with the capacity of edge e increased by one unit. Note that f⇤ is a valid
flow in G

(e). The edge e is upper-binding i↵ the flow f
⇤ in G

(e) can be improved, which is the case

i↵ there is an s-t path in the residual network G
(e)
f⇤ . Since we can construct the residual network

from f
⇤ in linear time, this gives us a linear-time procedure to check whether a given edge e is

upper-binding. Doing this for all edges e yields a quadratic algorithm.

We can do better by exploiting the fact that G
(e)
f⇤ and Gf⇤ only di↵er in the edge e (which is

always present in G
(e)
f⇤ but not necessarily in Gf⇤) and that there is no s-t path in Gf⇤ (since the

flow f
⇤ has maximum value in G). Thus, there exists an s-t path in G

(e)
f⇤ i↵ there exists an s-u path

in Gf⇤ and a v-t path in Gf⇤ .
This observation leads to the following linear-time algorithm to determine all upper-binding

edges in G. First compute the residual network Gf⇤ from the given max flow f
⇤. Then run DFS or

BFS from s in Gf⇤ to determine the set U of all vertices that are reachable from s. Next run DFS
or BFS from t on Gf⇤ with all edges reversed to determine the set V of all vertices from which t is
reachable in Gf⇤ . Finally, cycle over all edges e = (u, v) in G and output e i↵ u 2 U and v 2 V .

This algorithm spends linear time in constructing the residual network, linear time in running
DFS or BFS twice, and then linear time in iterating over all of the edges in G. Therefore its total
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running time is also linear.

Part (c)

We can test whether a given edge e = (u, v) in G is lower-binding as follows. First, if e has residual
capacity in Gf⇤ then e is not lower-binding. This is because f⇤ remains a valid flow after we reduce
the capacity of e by one unit. If e has no residual but there is a u-v path in Gf⇤ then we can reduce
the flow through e by one unit by rerouting that unit along a u-v path in Gf⇤ . The modified flow
has the same value and remains valid after reducing the capacity of e by one unit.

Conversely, suppose that there is no u-v path inGf⇤ . We claim that e then belongs to a minimum
cut in G, which implies that reducing the capacity of e reduces the minimum cut value and thus the
maximum flow value, so e is lower-binding. To argue the claim, note that the hypothesis implies
that the edge e does not appear in Gf⇤ and that there is a path in Gf⇤ from t over (v, u) to s. The
latter follows because there is a positive amount of flow going through e, which implies that the
flow f

⇤ contains a positive amount of flow along a path from s over e to t, and thus Gf⇤ contains
the reverse of that path. Let S denote the set of vertices reachable from u in Gf⇤ , and let T denote
its complement. Then s 2 S (because of the u-s path guaranteed above), v 2 T (by our assumption
that there is no u-v path), and t 2 T (otherwise, the concatenation of the u-t path with the t-v
path guaranteed above yields a u-v path). Thus, (S, T ) is an s-t cut in G and e belongs to the cut.
Moreover, by the proof of the max-flow min-cut theorem from class, the capacity of (S, T ) equals
the value of the flow f

⇤, and therefore is a minimum cut.
The above test can be summarized as follows: An edge e = (u, v) is lower-binding i↵ there is

no u-v path in Gf⇤ . Our algorithm to compute all lower-binding edges works as follows. It first
constructs Gf⇤ from f

⇤. It then determines for every vertex u which vertices v are reachable from
u in Gf⇤ by running DFS or BFS from u, and stores these results in a table. Finally, it cycles over
all edges e = (u, v) in G and outputs e i↵ the table indicates that v is not reachable from u in Gf⇤ .

The n runs of DFS or BFS take O(n(m+n)) time. Moreover, in time O(n+m) we can eliminate
all the vertices that are not involved in any edge. After that operation, the number of vertices is
at most 2m. Thus, the overall running time is O(n+m+ nm) = O(nm).

In fact, it is possible to solve this problem in linear time by making use of the fact that the
strongly connected components of a digraph can be found in linear time. Note that if an edge
e = (u, v) is used at full capacity under f⇤ (a necessary condition for e being lower-binding), Gf⇤

contains the reverse edge (v, u), and therefore there exists a path from u to v in Gf⇤ i↵ u and v

belong to the same strongly connected component of Gf⇤ . Based on that, we can find all lower-
binding edges by cycling over all edges e 2 E, and outputting e i↵ f

⇤(e) = c(e) and the end points
of e belong to di↵erent strongly connected component of Gf⇤ . This procedure can be implemented
to run in time O(n+m) by first constructing Gf⇤ out of f⇤ and determining the strongly connected
components of Gf⇤ in linear time.

Side note: Lower-binding edges are exactly the edges that belong to some minimum s � t cut,
and upper-binding edges are exactly the edges that belong to all minimum s� t cuts. Think about
why that is the case.
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Problem 4

A given network N with integer capacities may have more than one minimum s-t cut. Define
the densest minimum s-t cut to be any minimum s-t cut (S, T ) of N with the greatest number
of edges crossing from S to T .

Suppose we have access to a black box called IntegralMaxFlow. IntegralMaxFlow
takes as input a network N

0 with integer capacities and outputs an integral flow of maximum
value for N

0. Design algorithms for each of the following tasks. Each algorithm can most
at most one call of to IntegralMaxFlow. Outside of IntegralMaxFlow, the algorithms
should run in linear time assuming that standard arithmetic operations can be done in constant
time.

(a) Finding a densest minimum s-t cut in N .

(b) Determining whether N has a unique densest minimum s-t cut.

Part (a)

If we input G into the IntegralMaxFlow black box and get an integral flow of maximum value
for G, we can construct the residual network corresponding to the flow and find a minimum s-t cut
of G using the residual network. Unfortunately, we have no guarantee that the minimum s-t cut
of G produced in this way will be a densest minimum s-t cut.

Intuitively, we have to somehow distinguish the densest minimum s-t cut from all the other
minimum s-t cuts. One such way we could try to do this is by modifying the network in a way that
a minimum cut in the new network corresponds to a densest minimum cut in the original network.
This can be accomplished by reducing the capacity of each edge by some fixed amount. Then the
densest minimum s-t cut, which has the most edges crossing from source side to sink side, will
have a smaller capacity in the new network than minimum s-t cuts with fewer edges crossing from
source side to sink side. There are, however, two problems with this idea. The first one is that
we should not reduce the capacities by so much that non minimum cuts become minimum and the
second one is that we need to make sure the capacities are integral.

To solve the first problem, we decrease edge capacities by a really small ✏ > 0. How small does
✏ need to be? Here we take advantage of the fact that G has integral capacities: non-minimum
s-t cuts have capacity at least 1 greater than the capacity of a minimum s-t cut. Therefore, if
✏ = 1/(m + 1), where m is the number of edges in G, we know that an non-minimum s-t cut will
still have a greater capacity than a minimum s-t cut after each edge capacity decreases by ✏. As
✏ < 1, this leads to a network with non integral capacities, but we can solve this by multiplying the
new capacities by (m+ 1). While this changes the capacity of a minimum cut, it does not change
the minimum cuts themselves.

With this discussion in mind, the algorithm creates a new network G
0 with the same vertices

and edges as G, but where each edge capacity c is mapped to c · (m+1)� 1 = (c� ✏) · (m+1). By
our discussion above, we know that (S, T ) is a densest minimum s-t cut of G if and only if (S, T )
is a minimum s-t cut of G0. It then uses the IntegralMaxFlow black box to find (S⇤

, T
⇤), a

minimum s-t cut of G0 and returns (S⇤
, T

⇤).
Outside of the black box call, our algorithm creates G0, creates a residual network given a flow,

and finds all the vertices reachable from the source in the residual network. Assuming standard
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arithmetic operations can be done in constant time, each of the above steps takes linear time.
Therefore, outside of the black box IntegralMaxFlow, our algorithm runs in linear time.

Part (b)

Using the correspondence between densest minimum s-t cuts of G and minimum s-t cuts of G0, it
su�ces to determine whether G0 has a unique minimum s-t cut.

Recall the construction of a min cut (S⇤
, T

⇤) out of a max flow from class: If f is a max flow in
G

0, then we set S⇤ to be all vertices that are reachable from s in the residual network G
0
f . In fact,

this set S⇤ is a subset of the source side S of every min cut (S, T ) of G0. This is because if u 2 S

and e
.
= (u, v) is an edge in G

0
f , then v 2 S:

� If e is an edge in G
0
f because e is an edge in G

0 and f(e) < c
0(e), then e cannot go from S to

T as all edges of G0 that cross a min cut from the source side S to the sink side T need to be
used at full capacity.

� If e is an edge in G
0
f because e

0 .
= (v, u) is an edge in G

0 and f(e0) > 0, then e
0 cannot go

from T to S as all edges of G0 that cross a min cut from the sink side T to the source side S

cannot be used at all.

Similarly, if we let T⇤ denote all the vertices from which t can be reached in G
0
f for a max flow

f , then (S⇤, T⇤) is a min cut in G
0 and T⇤ is a subset of the sink side T of every min cut (S, T ) of

G
0. This can be argued in the same way by considering the network G

0 with all edges reversed.
If follows that G0 has a unique min cut i↵ S

⇤ = S⇤, or equivalently, if S⇤ [ T⇤ contains all the
vertices of G0. This leads to the following algorithm:

1. Call IntegralMaxFlow on G
0 to find f, an integral flow of maximum value in G

0.

2. Construct the residual network G
0
f .

3. Construct the set S⇤ of vertices reachable from s in G
0
f (using BFS or DFS).

4. Construct the set T⇤ of vertices that are reachable from t in G
0
f with all edges reversed (using

BFS or DFS).

5. Output “Yes” i↵ S
⇤ [ T⇤ contains all vertices.

Outside of the black box IntegralMaxFlow, every step runs in linear time.

Alternate view The same solution can be obtained using the terminology of problem 2 - we
output “yes” i↵ every vertex is either upstream (in S

⇤) or downstream (in T⇤), or equivalently,
there are no central vertices.
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Problem 5

A given network can have many minimum st-cuts.

a) Determine precisely how large the number of minimum st-cuts in a graph can be as a
function of n.

b) Show that if (S1, T1) and (S2, T2) are both minimum st-cuts in a given network, then so
is (S1 [ S2, T1 \ T2). How does this generalize to more than 2 st-cuts?

c) Design an algorithm that, given a network, generates a collection of minimum st-cuts
(S1, T1), (S2, T2), . . . such that every minimum cut of the network can be written as

([i2ISi,\i2ITi)

for some subset I of indices. Your algorithm should run in time polynomial in n and m.

Part (a)

First consider how many potential st-cuts there are, total. Every vertex, excepting s and t, can
be in either of 2 sets: S or T . So, we can view a cut as a binary decision made on each of n � 2
elements. The total number of st-cuts possible, then, is 2n�2. Is there a scenario where all of these
are minimum st-cuts? Consider the case in the next figure.

Whether we put some vertex vi into S or T amounts to either placing our cut through (vi, t)
or (s, vi). In either case, the edge we cut contributes exactly 1 to the cost of the total cut. So,
all 2n�2

st-cuts have the minimum weight of n� 2. Therefore, a graph can have as many as 2n�2

minimum weight st-cuts.

Part (b)

By the max-flow-min-cut theorem, given any maximum flow f , an st- cut (S, T ) in the network G

is minimum i↵ every edge from S to T is used at full capacity, and no edge from T to S is used at
all. Equivalently, in terms of the residual network Gf , the st-cut (S, T ) is minimum i↵ there is no
edge in Gf that goes from S to T .

Let (S1, T1) and (S2, T2) be two minimum st-cuts. We need to argue that (S1 [ S2, T1 \ T2) is
a minimum st-cut. First, note that (S1 [ S2, T1 \ T2) is a valid st-cut:
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� S1 [ S2 contains the source s,

� T1 \ T2 contains the sink t,

� S1 [ S2 and T1 \ T2 do not intersect (otherwise at least one of S1 and T1 or S2 and T2 would
intersect), and

� S1 [ S2 and T1 \ T2 together contain all vertices of G (otherwise at least one of S1 and T1 or
S2 and T2 would not cover all vertices).

We next argue that the capacity of (S1 [ S2, T1 \ T2) is minimum. Fix a maximum flow f in G.
Suppose Gf would contain an edge that goes from S1[S2 to T1\T2. Then that same edge would go
from S1 to T1 or from S2 to T2. This contradicts the minimality of (S1, T1) or (S2, T2), respectively.

We can use induction to generalize the result to more than 2 st-cuts as follows: Let (Si, Ti),
1  i  k, be minimum st-cuts, then

([k
i=1Si,\k

i=1Ti)

is also a minimum st-cut. We’ve proven the base case above (k = 2). Next, we assume it holds for
k cuts and show it must hold for k+1 cuts. We can choose any two st-cuts, coalesce them into one
minimum cut by unioning their S-vertices and intersecting their T -vertices. Then, we can apply
our inductive hypothesis to conclude the general case.

Part (c)

We first construct a maximum flow f in the network G. Next, we examine the residual network
Gf . As we argued under (b), an st-cut (S, T ) is minimum i↵ there is no edge in Gf that goes from
S to T . Now, consider an arbitrary vertex u. The minimality criterion implies that any minimum
cut (S, T ) such that u 2 S has to contain all vertices Su that are reachable from s or u in Gf . Let
Tu = V \ Su. By the above, we know that S = [u2SSu. Consequently, T = V \ S = \u2STu. That
is, we can write an arbitrary minimum st-cut (S, T ) as

(S, T ) = ([u2SSu,\u2STu).

Each of the (Su, Tu) defines a minimum st-cut unless t 2 Su. Since we can construct each of the
sets Su by running DFS on Gf from s and u, test whether t 2 Su, and construct Tu as V \ Su in
polynomial time, we are done.
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Question (a)
By augmentation along the path of maximum residual capacity,
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Question (b)

Algorithm
The subroutine GetResidualNetwork is a summary of page 2 and page 5 of the handout

on 3 November 2022, so we do not need to explain or prove it.
1 Function GetResidualNetwork(G, f ):

Input: network G = (V,E,c,s, t); flow f : E→ [0,∞) satisfying capacity constraint
and conservation constraint

Output: residual network of G as G f = (V,E f ,c f ,s, t)
2 foreach e = (u,v) ∈ E do
3 c f (e)← c(e)− f (e);
4 if f (e)> 0 then
5 e′ ∈ E f ← (v,u) with c f (e′) := f (e);

6 G f ← (V,E f ,c f ,s, t);
7 return G f ;

For the main routine GetUpperBindingEdges, we first define S and T to be upstream and
downstream vertices defined in Problem 2 of this problem set, which are identical to that S be
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all vertices reachable from s, and T be all vertices reachable to t. Then we iterate every edge
e from S to T and add the edge into Eu which is the collection of upper-binding edges.
1 Function GetUpperBindingEdges(G, f ∗):

Input: network G = (V,E,c,s, t); maximum flow f ∗ ∈ G
Output: upper-binding edges Eu ∈ G

2 S←
{

v ∈V : ∃ path L⊂ G f ∗ from s to v
}

; // calculated by DFS or BFS
3 T ←

{
v ∈V : ∃ path L⊂ G f ∗ from v to t

}
; // calculated by DFS or BFS

4 foreach e = (u,v) ∈ E ∩S×T & f ∗(e) = c(e) do
5 Eu← Eu∪{e};
6 return Eu;

Proof
There is no need to argue termination, as we have referenced searching and loops which

should always end.

Complexity

Denote n be the number of vertices, and m be the number of edges.
GetResidualNetwork costs O(n+m) time, which is linear, as written on page 12 of the

handout on 3 November 2022. For GetUpperBindingEdges, the check for all edges costs O(n+
m) time with accessing 2 vertices within one loop. Therefore, this paradigm costs O(n+m)

time overall, which is linear.

Correctness

Claim: If e ∈ E is lower-binding or upper-binding, then f ∗(e) = c(e).
Proof: Let us take the contrapositive of this argument: if f ∗(e) ,= c(e), e is neither lower-

binding nor upper-binding. Suppose f ∗(e) < c(e), then the flow passes through e does not
occupy the whole capacity c(e), so e must not be upper-binding as increasing its value will not
consume more flow from s; on the other hand, e must not be lower-binding as decreasing its
value might cause the flow to occupy all capacity, which is not the case which causes the flow
to decrease. There is no case that f ∗(e) > c(e) from the capacity constraint in the definition
of the flow, so we are done. !
Claim: If e ∈ E is upper-binding, there is no central vertex on e.

Proof: Let us take the contrapositive of this argument: If there is a central vertex on e, e
is not upper-binding. As there is a central vertex on e, there are more than one distinct cuts
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on e, then increasing the capacity of any edge in one minimum cut could not increase the
maximum flow, as we have proved in the strong duality that max f ν( f ) = minst-cut(S,T ) c(S,T )
that the two cuts both fulfill this requirement, so a flow attempting to increase at the edge
must be blocked by another minimum cut, and there is no upper-binding edge in this case.
Thus, if e is upper-binding, there is no central vertex on e. !
Claim: ∀e ∈ E, e is upper-binding, iff e ∈ E ∩S×T , i.e., e ∈ S×T .

One side: If e∈ E is upper-binding, e∈ S×T . Proof: Let us take the contrapositive of this
argument: ∀e ∈ E, if e ,∈ E ∩S×T , then e is not upper-binding. If ∀e ,∈ S×T , then e ∈ S×S,
e ∈ T × T , or e ∈ S×C∩C× T with C be central vertices. For the first two cases, there is
no minimum cut available in these subsets, so that even if we increase its capacity by 1, the
maximum flow could not increase, as blocked by the minimum cut (S, S̄) or (T, T̄ ) with similar
reasoning above to prove the previous lemma. For the last case, if we increase the capacity by
1 on some edge, the flow will be blocked by both minimum cuts (S, S̄) and (T, T̄ ). "

Another side: If e ∈ E ∩ S× T , e is upper-binding. Proof: E ∩ S× T contains and only
contains all edges which have no central vertex. So if we increase the capacity of such an e
on one minimum cut, there must be no more edges that occupy their whole capacities (in
other minimum cut) for the maximum flow to block the value of maximum flow to increase.
Therefore, e is upper-binding. !

Question (c)

Algorithm
For the main routine GetLowerBindingEdges, we check the only condition for every edge

e: if there is a path in the residual network, then put it into El which is the collection of
lower-binding edges, which is proven in the correctness part.
1 Function GetLowerBindingEdges(G, f ∗):

Input: network G = (V,E,c,s, t); maximum flow f ∗ ∈ G
Output: lower-binding edges El ∈ G

2 foreach e = (u,v) ∈ G & f ∗(e) = c(e) do
3 if , ∃ path from u to v⊂ G f ∗ then // calculated by DFS or BFS
4 El ← El ∪{e};

5 return El;
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Proof
There is no need to argue termination, as we have referenced searching and loops which

should always end.

Complexity

For one iteration of e, we have searching that costs O(n+m) time. There are m iterations
for all e’s, so the total cost of this paradigm is O(m · (n+m)).

Correctness

Claim: e = (u,v) ∈ E is lower-binding iff there is no path from u to v in the residual network
G f ∗ .

One side: If e = (u,v)∈ E is lower-binding, then there is no path from u to v in the residual
network G f ∗ . Proof: As f ∗(e) = c(e), for the chosen e = (u,v) ∈G, there must be an inversed
edge e′ = (v,u) ∈ G f ∗ with weight of f ∗(e), while there is no e′′ = (u,v) ∈ G f ∗ . As e is lower-
binding, we must be able to reduce 1 unit of the capacity of e′ and reduces the maximum flow.
With the 1 unit decrease in capacity, if we have a route from u to v in the residual network,
then the maximum flow does not change, as the flow will continue to pass along the new path
instead of the deducted edge, which is a contradiction. So we do not have a route from u to v
in the residual network. "

Another side: If there is no path from u to v in the residual network G f ∗ , then e= (u,v)∈E
is lower-binding. Proof: Suppose e= (u,v)∈ E is not lower-binding. As there is no path from u
to v in the residual network, the deducted capacity could not be routed to the original vertex,
so there must be some other vertices for the flow to be redirected to, but it must be blocked
by the capacity of some other edge, as the residual network is not connected for some other
vertices on minimum cut. All lower-binding edges are on some minimum cut, according to the
strong duality. Therefore, as we cannot find a route to redirect the flow, the flow should be
decreased by 1, which results in a contradiction. !
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