
CS 577: Introduction to Algorithms Fall 2022

Homework 8

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

This homework covers applications of network flow. Problem 3 must be submitted for grading
by 2:29pm on 11/15. Please refer to the homework guidelines on Canvas for detailed instructions.

Warm-up problems

1. Your friends are attending a convention and want to ask questions to the panelists. They
worked together to create a set S of n di↵erent topics they would like to ask about. Each of
your m friends has a VIP pass that guarantees them the ability to ask at most three questions
each.

Unfortunately, due to the dense subject matter of the convention, not all of your friends
understand every topic well enough to ask about it. For each friend i = 1, 2, . . . ,m, they
have a set Si of topics they are capable of asking about. Finally, to make sure each topic is
thoroughly addressed, the friends want to ask at least k di↵erent questions about each of the
n topics. (Note that one person should not ask about the same topic more than once.) They
are having trouble figuring out who should ask about which topics.

(a) Design a polynomial-time algorithm that takes the input to an instance of this problem
(the n topics, the sets Si for each of the m friends, and the parameter k) and decides
whether there is a way to ask k questions about each of the n topics, while each friend
asks at most three questions each.

(b) You show your friends a solution computed by your algorithm from (a), but to your
surprise, one of them exclaims, “That won’t do at all– the first topic is only asked about
by Optimists!” You hadn’t heard anything about optimists; this is an extra wrinkle they
neglected to mention earlier.

Each of your friends is either an Optimist or a Pessimist. This refers to their general
attitude- they each fall into exactly one of these two categories and will behave that way
for the entire convention, regardless of the topic they are asking about. To keep the
panel’s responses as fair as possible, your friends agree that there should be no topic for
which all k questions come from people with the same attitude.

Describe how to modify your algorithm from (a) into a new polynomial-time algorithm
that decides whether there exists a solution satisfying all of the conditions from (a), plus
the new requirements about optimists and pessimists.

2. The Packers are playing the Bears tonight, and you’d like to invite some of your friends to
watch the game at your place. All of your friends love football, and are either Packers or
Bears fans, but some of them are known not to get along very well. In order to avoid possible
trouble, you do not want to invite two people who are on bad terms with each other and root
for a di↵erent team. (Having people who are on bad terms but root for the same team is OK,
as is any of the other two combinations.) Also, although you like all of your friends, you like
some better than others, and you have assigned a positive value to each of your friends.

Design a polynomial-time algorithm to figure out which friends to invite so as to maximize
their total value under the above constraints.
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Regular problems

3. [Graded] You are building a system consisting of n components. There are two possible
suppliers for each component: Alpha and Omega. Alpha charges ↵i for component i, and
Omega charges !i. You’d like to spend as little money as possible, but also want to take
the costs due to incompatibilities between components of di↵erent suppliers into account. In
particular, if you buy components i and j from di↵erent suppliers, there is an incompatibility
cost of c(i, j).

Design an e�cient algorithm to determine from which supplier you should buy the components
so as to minimize the sum of the purchase costs and the incompatibility costs.

4. Some of your friends with jobs out West decide they really need some extra time each day
to sit in front of their laptops, and the morning commute from Woodside to Palo Alto seems
like the only option. So they decide to carpool to work.

Unfortunately, they all hate to drive, so they want to make sure that any carpool arrangement
they agree upon is fair, and doesn’t overload any individual with too much driving. Some
sort of simple round-robin scheme is out, because none of them goes to work every day, and
so the subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1, . . . , pk}. We say that
the total driving obligation of pj over a set of days is the expected number of times that pj
would have driven, had a driver been chosen uniformly at random from among the people
going to work each day. More concretely, suppose the carpool plan lasts for d days, and on
the ith day a subset Si ✓ S of the people go to work. Then the above definition of the total
driving obligation �j for pj can be written as �j =

P
i:pj2Si

1
|Si| . Ideally, we’d like to require

that pj drives at most �j times; however, �j may not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day, i.e., a sequence
pi1 , pi2 , . . . , pid with pit 2 St. A fair driving schedule is one in which each pj is chosen as the
driver on at most d�je days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair driving schedule.

(b) Design an algorithm to compute a fair driving schedule in time polynomial in k and d.

5. A vertex cover of a graph G = (V,E) is a collection of vertices C ✓ V such that every edge
e 2 E has at least one vertex in C.

Show that for bipartite graphs, the minimum size of a vertex cover equals the maximum size
of a matching.

Challenge problem

6. Here is a variant of the game “Six Degrees of Kevin Bacon.”

You start with a set X of n actresses and a set Y of n actors, and two players P0 and P1.
Player P0 names an actress x1 2 X, player P1 names an actor y1 who has appeared in a movie
with x1, player P0 names an actress x2 who has appeared in a movie with y1, and so on. Thus,
P0 and P1 collectively generate a sequence x1, y1, x2, y2, . . . such that each actor/actress in the
sequence has costarred with the actress/actor immediately preceding. A player Pi(i = 0, 1)
loses when it is Pi’s turn to move, and she cannot name a member of her set who hasn’t been
named before.
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Suppose you are given a specific pair of such sets X and Y , with complete information on
who has appeared in a movie with whom. A strategy for Pi in our setting is an algorithm that
takes a current sequence x1, y1, x2, y2, . . . and generates a legal next move for Pi (assuming
it’s Pi’s turn to move). Design a polynomial-time algorithm that, given some instance of the
game, decides at the start of the the game which of the two players can force a win.

Programming problem

7. SPOJ problem Bank robbery (problem code BANKROB).
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CS 577: Introduction to Algorithms Fall 2022

Homework 8 Solutions to Warm-up Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 1

Your friends are attending a convention and want to ask questions to the panelists. They
worked together to create a set S of n di↵erent topics they would like to ask about. Each of
your m friends has a VIP pass that guarantees them the ability to ask at most three questions
each.

Unfortunately, due to the dense subject matter of the convention, not all of your friends
understand every topic well enough to ask about it. For each friend i = 1, 2, . . . ,m, they
have a set Si of topics they are capable of asking about. Finally, to make sure each topic is
thoroughly addressed, the friends want to ask at least k di↵erent questions about each of the
n topics (Note that one person should not ask about the same topic more than once). They
are having trouble figuring out who should ask about which topics.

a) Design a polynomial-time algorithm that takes the input to an instance of this problem
(the n topics, the sets Si for each of the m friends, and the parameter k) and decides
whether there is a way to ask k questions about each of the n topics, while each friend
asks at most three questions each.

b) You show your friends a solution computed by your algorithm from (a), but to your
surprise, one of them exclaims, “That won’t do at all– the first topic is only asked about
by Optimists!” You hadn’t heard anything about optimists; this is an extra wrinkle they
neglected to mention earlier.

Each of your friends is either an Optimist or a Pessimist. This refers to their general
attitude- they each fall into exactly one of these two categories and will behave that way
for the entire convention, regardless of the topic they are asking about. To keep the
panel’s responses as fair as possible, your friends agree that there should be no topic for
which all k questions come from people with the same attitude.

Describe how to modify your algorithm from (a) into a new polynomial-time algorithm
that decides whether there exists a solution satisfying all of the conditions from (a), plus
the new requirements about optimists and pessimists.

Part (a)

We want to decide whether we can discuss n topics with our m friends (of which friend i can only
ask about topics in Si), asking at least k questions about each topic, and with no person asking
more than three questions. We can do this by looking at a maximum flow on a particular network.
Note that if there is a solution that asks about each topic at least k times, then there must be a
solution that asks about each topic exactly k times; we restrict ourselves both here and in part (b)
to solutions where each topic is discussed exactly k times, since it facilitates the construction of
the flow network we use to solve these problems.
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We construct our network G as a bipartite graph. On the left side of the graph, there is a
vertex for each of the n topics that need to be checked, while on the right, there is a vertex for
each friend. We call the left (topic) vertices a1 · · · an, and the right (friend) vertices b1 · · · bm. We
include an edge of capacity 1 from a vertex ai on the left to a vertex bj on the right if friend j is
able to ask about topic i (if Sj contains i). Then we add a source and a sink to G; the source s has
an edge of capacity k to every vertex on the left (i.e., every topic vertex). The sink t has an edge
of capacity 3 from every vertex on the right (i.e., every friend vertex).

As an example, consider the situation where friend 1 can ask about any topic (S1 contains
1, 2, . . . , n) and every other friend only knows about topic 2 (all Si contain 2). The network would
be built as follows:

Correctness. We claim that the value of a maximum flow in G is kn if and only if there is a way
to ask k questions about each of the n topics, with each friend asking at most 3 questions (each on
a di↵erent topic).

We can see that no flow with value more than kn can exist, since s has n edges leaving it,
and each has capacity k. Suppose there exists a working assignment of friends to topics, i.e., an
assignment that is both satisfactory, in that it asks enough, and valid, in that no one person asks
more than three questions. Then we can construct a flow of value kn in G as follows: Push k

units of flow from s to each topic vertex, then one unit from each topic vertex to each of the k

friends that are asking about it (there must be exactly k such friends for each topic, since this is a
satisfactory assignment); for each friend, we then push a number of units equal to the number of
questions that friend is making (which must be 0, 1, 2, or 3 since this is a valid assignment) to the
sink.

To see the other direction of the claim, suppose there is a flow in G with value kn. Then there
is an integer-valued flow with value kn because all capacities are integer-valued. In this integer-
valued flow, we must have each of the n topic vertices pushing flow into exactly k of the edges that
connect it to the friends. These are the friends we use to ask about that topic. Every topic is asked
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about by precisely k di↵erent friends, as required. Moreover, since each friend vertex on the right
can push at most 3 units of flow to t, no friend asks more than 3 questions. Thus, the assignment
works.

Analysis. There are 1 +m + n + 1 vertices, and the number of edges is bounded by O(mn) as
there are up to mn edges connecting the topic nodes to the friend nodes. Thus, he network can be
constructed in time O(mn). We can then apply any of the polynomial-time algorithms we know for
computing the value of a maximum flow and check whether it equals kn. If we use the O(|V | · |E|)
algorithm to compute a maximum flow, we get a final running time of O((m + n)mn), which is
polynomial in m and n.

Part (b)

We can handle the extra wrinkle – that every friend is an Optimist or Pessimist, and no topic can
be asked about by only optimists or only pessimists – by augmenting the graph we constructed in
part (a). To model this additional constraint, we add two more vertices for each topic (a total of 2n
additional vertices). These vertices are interposed in a new layer between the topic vertices and the
friend vertices (i.e., between the left and right sides of G). Remove the edges from (a) connecting
the n topic nodes directly to the m friend nodes.

For each topic vertex j = 1, 2, . . . , n add an edge of capacity k � 1 to vertices 2j � 1 and 2j
in the intermediate layer. This will represent the subsets of questions about j asked by Optimists
and Pessimists, respectively. From each odd-numbered intermediate node (referenced earlier by
2j � 1), create an edge of capacity 1 to each of the right (person) nodes that can ask about the
topic and are considered optimists. Do the same to connect each even-numbered intermediate node
(referenced earlier by 2j) with an edge of capacity 1 to each of the right (person) nodes that can
ask about the topic and are considered pessimists.

Continuing the example from (a), say we are given the additional information that friend 1 is
an optimist and all other friends are pessimists. The network would now be built as follows:
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Correctness. Thus, a topic vertex cannot send all k units of flow that it receives through only its
corresponding optimist intermediate node or only its pessimist intermediate node. This prevents
any topic from having all k of its questions asked by people of the same attitude. Once again, there
is a way of asking enough questions subject to all of the constraints if and only if a maximum flow
in this network has value kn.

Analysis. In this modification, there are 1+n+2n+m+1 vertices. The number of edges is still
bounded by O(mn) from the set of edges between the intermediate and friend nodes. We can then
apply any of the polynomial-time algorithms we know for computing the value of a maximum flow
and check whether it equals kn. As before, this takes time O((m + n)mn) with the O(|V | · |E|)
algorithm for computing a maximum flow.
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Problem 2

The Packers are playing the Bears tonight, and you’d like to invite some of your friends to
watch the game at your place. All of your friends love football, and are either Packers or Bears
fans, but some of them are known not to get along very well. In order to avoid possible trouble,
you do not want to invite two people who are on bad terms with each other and root for a
di↵erent team. (Having people who are on bad terms but root for the same team is OK, as is
any of the other two combinations.) Also, although you like all of your friends, you like some
better than others, and you have assigned a positive value to each of your friends.

Design a polynomial-time algorithm to figure out which friends to invite so as to maximize
their total value under the above constraints.

Intuition This problem can be solved by reduction to minimum cut. A natural approach starts by
creating a vertex for each friend, as well as separate vertices s and t. An st-cut (S, T ) corresponds
to a partition of the friends into two sets. Initially, we might try regarding such a partition as
separating the friends into those that get invited and those that do not. This turns out not to
work, but let us proceed with this idea for now, as to motivate the idea for fixing it. Let’s say we
try to make S to be the friends that get invited, and T to be those that are not.

What remains is to encode the friend values and incompatibility constraints as edges in the
network. While our original problem was a maximization problem, it is equivalent to minimizing
the total value of all friends who were not invited. So to encode friend values, the idea is to add
edges so that they are cut precisely when a friend is not invited. Based on our rule of inviting
friends i↵ their vertex is in S, it works to use an edge from s to that friend’s vertex. This edge has
capacity equal to the value of that friend.

Given that, we just need to handle the incompatibility constraints. We could try to do this using
infinite capacity edges. However, there is no good place for these edges! Placing them between the
incompatible friends is no good, because we only pay the infinite cost when one friend is invited
while the other is not. Nothing else seems to work either.

How to fix this? The idea of using an infinite-capacity edge to encode the incompatibility
constraint seems good, so let’s start there and try to derive the rest. Let p be a Packers fan and
b be a Bears fan, and assume they are incompatible. We want to encode the incompatibility with
an infinite capacity edge from p to b. Encoding the incompatibility means that cutting this edge
should correspond to inviting both p and b. That is, for a cut S, T , when p 2 S and b 2 T , this
should correspond to inviting both p and b. This suggests we try a new rule for deciding who to
invite. Instead of inviting precisely the friends in S, we invite the Packers fans in S and the Bears
fans in T . Does this work?

We can implement friend values similarly as before. For a Packers fan vertex v, we make an
edge from s to v whose value is that friend’s value. For a Bears fan vertex v, we make an edge from
v to t whose value is that friend’s value. These edges encode the costs of not inviting these friends
to the party. An infinite capacity edge between every pair of incompatible Packers and Bears fans
(always oriented from Packers fan to Bears fan) encodes the incompatibility relation. Thus we have
captured all the aspects of the problem, so we just need to write this solution up.

We mention, however, that this network is an instance of the kind of network that appears when
reducing project selection to minimum cut. This suggests we can reduce our problem to project
selection, and save some e↵ort in the write-up. The following paragraphs present this idea.
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Solution This problem can be cast as an instance of project selection. There is a project for
every friend Pi that is a Packer fan, namely “inviting Pi,” with a benefit equal to the value of Pi.
There is tool for every friend Bj that is a Bears fan, namely ”not inviting Bj ,” with a cost equal
to the value of Bj . The tools needed for Pi are those Bj with which Pi is on bad terms. In that
setup, the project selection requirement of buying all tools needed for a selected project exactly
corresponds to the given requirement of allowing all possible combinations but the ones where we
invite a Pi and a Bj that are on bad terms. Also, the net gain of the project selection equals the
total value of the invited friends minus the sum of the values of all friends that are Bear fans. As
the latter is a constant, an optimal project selection exactly corresponds to an optimal invitation
plan, i.e., we invite Pi if the corresponding project is selected, and we invite Bj if the corresponding
tool is not selected.

Up to constant factors, the running time is the one for project selection, which is the one for
maximum flow on a graph with n vertices and m edges, where n denotes the total number of friends,
and m the number of pairs (Bi, Pj) that are on bad terms. Using the strongly polynomial-time
network flow algorithm mentioned in class, the resulting running time is O(nm).
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Homework 8 Solutions to Regular Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 3

You are building a system consisting of n components. There are two possible suppliers for
each component: Alpha and Omega. Alpha charges ↵i for component i, and Omega charges
!i. You’d like to spend as little money as possible, but also want to take the costs due to
incompatibilities between components of di↵erent suppliers into account. In particular, if you
buy components i and j from di↵erent suppliers, there is an incompatibility cost of c(i, j).

Design an e�cient algorithm to determine from which supplier you should buy the compo-
nents so as to minimize the sum of the purchase costs and the incompatibility costs.

Stated another way, our goal in this problem is to find a partition A t ⌦ of the products [n]
(where A represents the set of products purchased from vendor Alpha and ⌦ those purchased
from vendor Omega) so that the total cost of the partition, given by the following expression, is
minimized: X

i2A
↵i +

X

j2⌦
!j +

X

(i,j)2A⇥⌦

c(i, j).

Note that this objective is strongly reminiscent of the objective in image segmentation, and in
fact almost reduces to image segmentation directly. In image segmentation, the objective we would
like to minimize is X

i2F
bi +

X

j2B
fj +

X

(i,j)2F⇥B:i⇠j

c,

where

• F and B are the sets of pixel indices we take to be foreground and background pixels,
respectively;

• fi and bi are the likelihoods of pixel i being in the foreground or background, respectively;

• i ⇠ j is a relation that indicates whether i and j correspond to adjacent pixels; and

• c is the cost of putting adjacent pixels in di↵erent regions.

In particular, if we identify A and ⌦ with F and B, and ↵i and !i with bi and fi, respectively,
the only two di↵erences in the objective lie in the last summand. First, in the product problem we
would like to include a penalty for any pair of products that we buy from di↵erent vendors, and
not just “adjacent” products. Second, we must allow this penalty to vary for each pair of products
instead of just including a flat penalty c that is inflicted for every pair.

The first di↵erence could be taken care of by defining ⇠ so that every pair of products is
“adjacent”, but the second prevents us from reducing directly to image segmentation. However,
a small tweak to the reduction from image segmentation to minimum cut transforms it into a
reduction from the product problem to minimum cut instead.
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Define a flow network G = (V,E), where the vertices are V = {s, t} t [n]. Exactly as in image
segmentation, we will add edges to this graph so that any s-t cut (S, T ) induces a purchasing
strategy given by A = S\{s} and ⌦ = T\{t}. Also exactly as in image segmentation, we can then
add edges from s to each i 2 [n] of capacity !i, and edges from each i 2 [n] to t of capacity ↵i

to capture the
P

i2A ↵i and
P

j2⌦ !j terms in the objective (since if i 2 A, the edge of weight
↵i crosses the cut and if i 2 ⌦, the edge of weight !i crosses the cut). To take care of the finalP

(i,j)2A⇥⌦ c(i, j) term, for every i < j 2 [n] we add a bidirectional edge of weight c(i, j) between
i and j, so that if they are on opposite sides of the cut (i.e., we purchase them from di↵erent
vendors), we add c(i, j) to the capacity of the cut, or 0 otherwise.

Hence, we can obtain a minimum-cost purchasing strategy for the original problem by construct-
ing G, running a maximum flow algorithm on G to obtain a minimum cut (S, T ), and outputting
S\{s} and T\{t} as the sets of products we buy from vendors Alpha and Omega, respectively.
Since G has O(n) nodes and O(n2) edges, we can construct G in time O(n2), compute a maximum
flow on G in O(n3) time using the O(|V |·|E|)-time algorithm mentioned in class, obtain a minimum
cut from the maximum flow in O(|E| + |V |) = O(n2) time, and compute the output sets in O(n)
time for a total complexity of O(n3).
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Problem 4

You are organizing the carpool to work for you and your friends. Let the people be labeled
S = {p1, . . . , pk}. We say that the total driving obligation of pj over a set of days is the expected
number of times that pj would have driven, had a driver been chosen uniformly at random
from among the people going to work each day. More concretely, suppose the carpool plan
lasts for d days, and on the ith day a subset Si ✓ S of the people go to work. Then the above
definition of the total driving obligation �j for pj can be written as �j =

P
i:pj2Si

1
|Si| . Ideally,

we’d like to require that pj drives at most �j times; however, �j may not be an integer.
So let’s say that a driving schedule is a choice of a driver for each day -— i.e., a sequence

pi1 , pi2 , . . . , pid with pit 2 St -— and that a fair driving schedule is one in which each pj is
chosen as the driver on at most d�je days.

a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair driving schedule.

b) Design an algorithm to compute a fair driving schedule in time polynomial in k and d.

Part (a)

We can reduce the construction of a fair schedule to the following network flow problem. There is
a source node s and a sink node t in the graph. Let us consider each person pj as a node connected
to s. Because pj can drive at most dMje times, we add an edge (s, pj) for each pj to the graph.
This edge has a capacity of dMje. Similarly, let us consider each day Si as a node connected to t

and add an edge (Si, t) for each Si to the graph. This edge has a capacity of 1 because at most
one person can drive at that day. Moreover, for each pair (pj , Si) where pj 2 Si, we add an edge
(pj , Si) whose capacity is 1 to indicate that pj can drive once on the ith day. The final flow network
is as follows:
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We divide the proof of the existence of a fair schedule into two parts. First, we prove that a
fair schedule exists if and only if there exists a flow of value d in the network. Second, we proceed
to show that such a flow exists.

Claim 1. A fair schedule exists if and only if there exists a flow of value d in above network.

Proof. First, if there is a fair schedule, we can construct the following flow. If in the driving
schedule, a person pj is chosen as the driver on the i

th day, then we send one unit of flow along the
path s, pj , Si, t; we do this for all d days. Since the driving schedule satisfies all the constraints, the
flow satisfies the capacity requirements and it sends d units of flow out of s and into t.

Conversely, if there is a flow of value d, then we can construct a driving schedule. As all capacities
are integral, there is a feasible flow of value d in which all flow values are integers. Therefore, if
the edge (pj , Si) carries a unit of flow, we have person pj drive on day i. Because of the capacities,
each person pj will drive at most dMje times and for each day, there will be a person who drives
on that day. So the driving schedule is fair.

Claim 2. There exists a flow of value d in above network.

Proof. We exhibit a flow of value d. We send Mi units of flow from s to every pi, 1/|Sj | units of
flow from every pi to Sj if there is an edge between them, and 1 unit of flow from every Sj to t.
By construction, capacity constraints are satisfied and the size of the flow is d. Flow conservation
is satisfied at pi because of the definition of Mi, and is satisfied at Sj because

X

i connected to Sj

1/|Sj | = 1.

Part (b)

Above we proved that the problem can be reduced to a network flow problem. The algorithm is
immediate: we construct the flow network and apply an e�cient network flow algorithm to it. The
running time of the construction is O(|V | + |E|) = O(k + d + kd). Then, computing a max-flow
using the O(|V | · |E|) algorithm from class takes time O((k + d)kd), which is polynomial in k and
d.
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Problem 5

A vertex cover of a graph G = (V,E) is a collection of vertices C ✓ V such that every edge
e 2 E has at least one vertex in C.

Show that for bipartite graphs, the minimum size of a vertex cover equals the maximum
size of a matching.

Fix a bipartite graph G. Let c denote the minimum number of vertices in a vertex cover for G. Let
m denote the size of a maximum matching in G.

1. c � m.

Let C be an arbitrary vertex cover, and M an arbitrary matching. Consider the edges in M .
We know these are all disjoint, meaning no two edges share any vertex. C must include at
least one vertex for each of these disjoint edges, so |C| � |M |. Since our choices for C and
M were arbitrary, this is true for all vertex covers and all matchings; hence, it follows that
c � m.

2. c  m.

Suppose the two bipartite components of G are L (left) and R (right). Consider the matching
network corresponding to G: Connect the source s to every vertex in L with unit capacity
edges, connect all vertices in R to the sink t with unit capacity edges, and direct every edge
in G from left to right with infinite capacity. Note that since the incoming capacity for any
vertex in L and the outgoing capacity for any vertex in R is exactly 1, no edge in G can ever
carry more than 1 unit of flow; thus, the maximum flow in this network corresponds to a
maximum matching with size equal to the value of the maximum flow. Applying the max-
flow-min-cut theorem, the capacity of a minimum cut in this network equals m. Consider any
cut (S, T ) of finite capacity. Since all edges from L to R have infinite capacity, there can be
no such edge with the left vertex in S and the right vertex in T . Therefore, every edge in G

has either its left vertex in T , its right vertex in S, or both. Therefore, C = (L\T )[ (R\S)
is a vertex cover for G. Moreover, the edges that cross the cut from S to T are precisely those
that go from s to a vertex in L \ T , or from a vertex in R \ S to t. Therefore, |C| = c(S, T ).
Since this shows that every finite capacity cut has a corresponding vertex cover of equal value,
we may conclude that c is no more than the capacity of a minimum cut, i.e., c  m.

These two inequalities, combined, prove that c = m.
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Algorithm
For the minimum cut algorithm, we reference that on page 3 of the handout on 10 November

2022.
For Algorithm 1, we first create one vertex labeled i for every i ∈ [n]; then we create the

source vertex s and the sink vertex t and connect every (i, j) (i, j ∈ [n]) pair in network with
each other, s, and t as in Figure 1. We find the minimum cut on this network. After that, we
have a loop to put all components in T to A and all components in S to O. At this point, we
have finished.

s t
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<latexit sha1_base64="DGOORKxYThjIjmxW9ZZ+sHTsxIE="></latexit>↵i

<latexit sha1_base64="99jsvUg6YqfUyoXjgxthPnLlc5I="></latexit>↵j
<latexit sha1_base64="99jsvUg6YqfUyoXjgxthPnLlc5I="></latexit>↵j

<latexit sha1_base64="NUXXQRkZLBu6Z9dmZfr0cAQ7Nvg="></latexit>!i
<latexit sha1_base64="NUXXQRkZLBu6Z9dmZfr0cAQ7Nvg="></latexit>!i

<latexit sha1_base64="BYUu1tfD+yQHeKtJvphK4Ufz2kM="></latexit>!j
<latexit sha1_base64="BYUu1tfD+yQHeKtJvphK4Ufz2kM="></latexit>!j

<latexit sha1_base64="pDZsrHpCROj4Le+Cz+10A5VGl8A="></latexit>

c(i, j)
<latexit sha1_base64="pDZsrHpCROj4Le+Cz+10A5VGl8A="></latexit>

c(i, j)
<latexit sha1_base64="pDZsrHpCROj4Le+Cz+10A5VGl8A=">AAACanichVFNSwJBGH7cvsw+NOtQdJHMMAiZDanoJHTpqJUZlMjuNtrkurvsroJJf6BbpyBPBRHRz+jSH+jgT4i6FXTp0OsqREX1DjPzzDPv884zM6qlC8dlrOWTenr7+gf8g4Gh4ZHRYGgsvO2YVVvjWc3UTXtHVRyuC4NnXeHqfMeyuVJRdZ5Ty2vt/VyN244wjS23bvF8RSkZoig0xSUqp8XFQuRwvhCKsgTzIvITyF0QTU0UvUiboWvsYR8mNFRRAYcBl7AOBQ61XchgsIjLo0GcTUh4+xzHCJC2SlmcMhRiyzSWaLXbZQ1at2s6nlqjU3TqNikjiLEHdsNe2D27ZY/s/ddaDa9G20udZrWj5VYheDK5+favqkKzi4NP1Z+eXRSx4nkV5N3ymPYttI6+dnT2srm6EWvMsUv2RP4vWIvd0Q2M2qt2leEbTQToA+Tvz/0TbC8m5KVEMiNHU0l0wo9pzCBO772MFNaRRtZzd4pzNH3PUliakqY7qZKvqxnHl5BmPwCJT44/</latexit>

c(i, j)
<latexit sha1_base64="pDZsrHpCROj4Le+Cz+10A5VGl8A="></latexit>

c(i, j)

Figure 1: Network N for every pair of components (i, j)
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1 Function BuyComponents(n,α,ω,c):
Input: components i ∈ [n]; αi ∈ α Alpha charges for component i; ωi ∈ ω Omega

charges for component i; c(i, j) incompatibility cost for components i and j
from different suppliers

Output: 2-partition of [n] as component sets A for Alpha and O for Omega
minimizing (∗) := ∑i∈A αi +∑ j∈O ω j +∑ i∼ j

(i, j)∈A×O
c(i, j)

2 Denote c(S,T ) with S and T being set to be the capacity function of an st-cut,
instead of the cost function c(i, j) with i, j ∈ [n];

3 Construct network N such that (∗) = c(S,T ) where S = A∪{s} and T = O∪{t} as
in Figure 1;

4 Find the minimum st-cut minc(S,T ) and the partition (S,T ); // referenced, by
max-flow algorithm and searching in residual network

5 A← /0;
6 O← /0;
7 foreach i ∈ [n] do
8 if i ∈ T then
9 A← A∪{i};

10 else if i ∈ S then // must be satisfied without check
11 O← O∪{i};

12 return A,O;
Algorithm 1: Main routine

Proof

Correctness
Claim: For network N, (∗) = c(S,T ).

Proof: As c(S,T ) is a partition of the network N, i ∈ [n] is in either S or T as if we do not
cut so, then there is still flow in the residual network on the path (V,E) where V = {s, in, t} and
E = {αi,ωi}, which is a contradiction to the property of partition. So that we have partitioned
VN into S and T , i.e., A∪ {s} and O∪ {t}, while partitioned [n] into A and O. For the flow
already pushed through αi, we must use another ω j to redirect it, which passes through c(i, j).
We have the capacities of edges on the cut be identical to (∗) as we must pay all the costs as
capacities along the edges, regardless if it is optimal. !
Corollary: (min-cut min-cost property) min(∗) = minc(S,T )

Proof: It is obvious from the first claim, as applying a function, i.e., min, on two identical
functions does not change the identity of values of both sides. !
Claim: i ∈ A iff i ∈ [n] and i ∈ T .
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One side: i ∈ A if i ∈ [n] and i ∈ T . Proof: Recall that we have proved from the first claim
that there must be a cut on either αi or ωi. As i∈ [n] and i∈ T , αi ∈ S×T ∪E, i.e., the min-cut.
So that i ∈ A, as we want to pay for the product from the Alpha company by the min-cut
min-cost property. "

Another side: i ∈ [n] and i ∈ T if i ∈ A. Proof: As i ∈ A, αi ∈ S×T ∪E, by the min-cut
min-cost property, so i must be in T . As A⊂ [n] by the definition that (A,O) is a partition of
[n], i ∈ A implies that i ∈ [n]. !
Claim: i ∈ O iff i ∈ [n] and i ∈ S.

One side: i ∈O if i ∈ [n] and i ∈ S. Proof: This is similar to the proof of the second claim.
As i ∈ [n] and i ∈ S, ωi ∈ S×T ∪E. So that i ∈ O, as we want to pay for the product from the
Omega company by the min-cut min-cost property. "

Another side: i ∈ [n] and i ∈ S if i ∈ O. Proof: This is similar to the proof of the second
claim. As i ∈O, ωi ∈ S×T ∪E, by the min-cut min-cost property, so i must be in S. As O⊂ [n]
by the definition that (A,O) is a partition of [n], i ∈ O implies that i ∈ [n]. !

Termination
We are running the minimum cut algorithm on an arbitrary network we have built, and

this algorithm we have referenced must end, and there is no more recursive part (only loop)
of Algorithm 1. Therefore, Algorithm 1 should always terminate regardless of the input. !

Complexity
According to our referenced minimum cut algorithm, it costs O( n

# vertices
· m

# edges
). For this

problem, we redefine n to be the number of components. For every vertex i of one component,
we have 2

s and t
+ (n−1)

other components j
= O(n) edges, and for vertices s, t, they connect to [n] by iden-

tical number of edges n = O(n). Then the total number of edges is n
# components

·O(n)+2O(n) =

O(n2). The total number of vertices is 2
s and t

+ n
# components

= O(n). So the time complexity for

the minimum cut algorithm is O(n) ·O(n2)
O(m)

= O(n3).

For the loop following the minimum cut in foreach, there is one implicit loop in checking
if i ∈ T or i ∈ S, but the implicit loop can be optimized out by using foreach i in T and
checking if i ∈ [n] as the main loop. So that the remaining i ∈ [n] are all in S, as from the
property of partition. Thus, the main loop has the time complexity O(n)

# components
.

For the whole Algorithm 1, the time complexity is O(n3)+O(n) = O(n3).
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