Unweighted Interval Scheduling

Specification

Input: intervals $I_i = [s_i, f_i)$ and values $v_i \in \mathbb{R}$ and values $v_i \in \mathbb{R}$ for $i \in [n]$.

Greedy algorithm

- Local criterion
- Order

Earliest Finish Time First

Algorithm (assuming $f_i \leq f_{i+1}$ for $i \in [n-1]$)

 $\begin{array}{l} G \leftarrow \emptyset \\ f \leftarrow -\infty \\ \mathbf{for} \ i = 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{if} \ s_i \geq f \ \mathbf{then} \\ \quad G \leftarrow G \cup \{i\} \\ \quad f \leftarrow f_i \\ \mathbf{return} \ G \end{array}$

Complexity analysis

- O(n) time and O(1) space for finding maximum value and producing schedule on-line.
- $O(n \log n)$ time due to sorting.

rrectness – Greed Stays Ahead	Cardinality as Quality Measure
 Strategy Design a quality measure for partial solutions such that: For every valid solution S and every point in time t, the quality measure of the greedy solution G up to t is at least as good as S up to t. For a full solution, optimal quality measure implies optimal objective value. Quality measures for earliest finish time first Assume intervals numbered in greedy order. input components: cardinality S ∩ [t] output components: finish time of the t-th interval in S 	Claim $(\forall t \in \mathbb{N}) G \cap [t] \ge S \cap [t] $ Proof: Induction on t> Base case: $t = 0$ > Inductive step $t \to t + 1$ for $t + 1 \notin S$ > Inductive step $t \to t + 1$ for $t + 1 \in S$ Let k be meeting in S right before $t + 1$ ($k = 0$ if there is none). $ G \cap [t + 1] \ge 1 + G \cap [k] $ [greedy criterion] $\ge 1 + S \cap [k] $ [induction hypothesis] $= S \cap [t + 1] $ [definition of k]

Finish Time as Quality Measure	From DP to Greed
Definition $f_{S}(t) = \begin{cases} \text{finish time of } t\text{-th interval in } S & \text{if it exists} \\ \infty & \text{if } t > S \\ -\infty & \text{for } t = 0 \end{cases}$ Claim $(\forall t \in \mathbb{N}) f_{G}(t) \leq f_{S}(t)$ Proof: Induction on t • Base case: $t = 0$ • Inductive step $t \rightarrow t + 1$ Corollary $ G \geq S $	Consider meetings ordered earliest start time first. OPT(k) \doteq OPT({k, k + 1,, n}) for $1 \le k \le n + 1$ OPT(k) $=$ max(1 + OPT(next(k)), OPT(k + 1)) where next(k) \doteq min{ $\ell : k < \ell \le n + 1$ and $s_{\ell} \ge f_k$ } OPT(k) $=$ max(1 + OPT(next(k)), 1 + OPT(next(k + 1)), 1 + OPT(next(k + 2)),) $=$ 1 + OPT(next(k*)) where $k^* = \arg \min_{k \le i \le n} next(i)$ k* is interval with earliest finish time among {k,,n}. Include k*. Continue process with $k \leftarrow next(k^*)$.

Knapsack Problem with Unit Values

Specification

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{R}$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$ Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i |S|$

is maximized.

Greedy algorithm

- Local criterion
- Order: lightest first

Shortest Paths - nonnegative weights

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to [0, \infty)

s, t \in V

Ouput: path P from s to t with minimum length

\ell(P) \doteq \sum_{e \in P} \ell(e)
```

Variants

- Single pair
- Single source

Distance d(s, t)= min{ $\ell(P) | P$ path from s to t}

 $= \infty \text{ if there is no path from } s \text{ to } t \text{ } f$

Greedy Algorithm	Greed Stays Ahead
Approach Grow set S of $v \in V$ for which we know $d(s, v)$. Initialization $S = \{s\}$ as $d(s, s) = 0$. Claim Every path P from s to some vertex in \overline{S} satisfies $\ell(P) \ge \min_{(u,v)\in E\cap S\times\overline{S}} (d(s, u) + \ell(u, v))$ Proof $\triangleright P$ has to include an edge $(u, v) \in E \cap S \times \overline{S}$. $\triangleright \ell(P) = \ell(P _{s \to u}) + \ell(u, v) + \ell(P _{v \to v}) \ge d(s, u) + \ell(u, v) + 0$	Claim Every path P from s to some vertex in \overline{S} satisfies $\ell(P) \ge \min_{(u,v)\in E\cap S\times\overline{S}} (d(s,u) + \ell(u,v))$ Extending S • Let $(u^*, v^*) = \arg\min_{(u,v)\in E\cap S\times\overline{S}} (d(s,u) + \ell(u,v))$ • Shortest path $s \rightsquigarrow u^*$ followed by (u^*, v^*) is shortest path $s \rightsquigarrow v^*$. • $d(s, v^*) = d(s, u^*) + \ell(u^*, v^*)$ • $S \leftarrow S \cup \{v^*\}$

Implementation Priority queue	From DP to Greed • OPT (k, v) = length shortest path $s \rightsquigarrow v$ using $\leq k$ edges • OPT $(v) = d(s, v) = \lim_{k \to \infty} v = OPT(k, v)$
Key for $v\in\overline{\mathcal{S}}\colon \lambda(v)\doteq\min_{u\in\mathcal{S}:(u,v)\in E}(d(s,u)+\ell(u,v))$	$\mathbf{P} = \mathbf{O}(\mathbf{r}(\mathbf{v}) - \mathbf{O}(\mathbf{s}, \mathbf{v}) - \min_{k \to \infty} \mathbf{O}(\mathbf{r}(\mathbf{v}, \mathbf{v}))$ $\mathbf{P} = \mathbf{O}(\mathbf{r}(\mathbf{s}) - \mathbf{O}(\mathbf{s}) - \mathbf{O}$
Running time with binary heap	• $OPT(v) = \min_{(u,v) \in E}(OPT(u) + \ell(u,v))$ for $v \neq s$ (*)
▶ Initialization: $O(n)$	• Let S be set of $u \in V$ for which we know $OPT(u)$.
\blacktriangleright <i>n</i> min extractions: $O(n \log n)$	Rewrite OPT(v) for $v \notin S$ using (*).
 <i>m</i> = ∑_{v∈V} outdeg(v) key updates: O(m log n) Total: O((n + m) log n) 	After <i>n</i> levels resulting expression for OPT(<i>v</i>) is minimum of: (a) OPT(<i>u</i>) + $\ell(u, v)$ for all $u \in S$ with $(u, v) \in E$ (b) OPT(<i>u</i>) + $\ell(u, v') + \ell(P)$ for some $(u, v') \in E$ with $v \neq v' \notin S$ and $P : v' \to v$
Better algorithms	(c) $OPT(u) + \ell(P)$ for some $u \notin S$ and P containing n edges.
▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$	• Minimum of terms over all $v \in \overline{S}$ achieved by term of type (a).
 Other approaches: O(n + m) undirected, O(m + n log log n) directed 	Finding (u [*] , v [*]) = arg min _{(u,v)∈E∩S×S} (OPT(u) + ℓ(u, v)) tells us how to extend S.
	► Time complexity: $O((n+m)n) \rightarrow O((n+m)\log n)$.

DP / Greed for DAGs Greed Stays Ahead vs Exchange Argument Greed stays ahead Design a quality measure for partial solutions such that: For every valid solution S and every point in time t, the quality measure of the greedy solution G up to t is at least as ▶ Evaluate $OPT(v) = \min_{(u,v) \in E} (OPT(u) + \ell(u, v))$ for $v \neq s$ good as S up to t. in topological order. ▶ For a full solution, optimal quality measure implies optimal ▶ Running time: O(n + m)objective value. Replacing min by max yields solution to longest path problem. Exchange argument Consider an optimal solution S. Establish a sequence of local transformations (exchanges) such that: ▶ The sequence ends in the greedy solution *G*. Each transformation maintains validity and does not deteriorate the objective value.

Unweighted Interval Scheduling	Exchange Argument
 Specification Input: intervals <i>l_i</i> = [<i>s_i</i>, <i>f_i</i>) for <i>i</i> ∈ [<i>n</i>]. Output: <i>S</i> ⊆ [<i>n</i>] such that no intervals <i>l_i</i> and <i>l_j</i> for distinct <i>i</i>, <i>j</i> ∈ <i>S</i> overlap and <i>S</i> is maximized. Greedy algorithm Order: earliest finish time first Local criterion 	 Consider an optimal solution S that differs from G. There exists a first interval i in the greedy order on which S differs from G. It has to be the case that i ∈ G and i ∉ S. There exists an interval j > i such that j ∈ S. S' = S \ {j} ∪ {i} is an optimal solution. The first interval i' on which S' differs from G (if any) satisfies i' > i. As there are only a finite number of intervals, the process has to end in G.

٦Г

Minimizing Maximum Tardiness	Natural Task Orders
ProblemInput: tasks $i \in [n]$ specified by duration $t_i \in \mathbb{R}$ and deadline $d_i \in \mathbb{R}$.Output: for each $i \in [n]$: $s_i \in [0, \infty)$ and $f_i \doteq s_i + t_i$ s.t.> no intervals $[s_i, f_i)$ for distinct $i \in [n]$ overlap> $\max_{i \in [n]}(tardiness(i))$ is minimized, where tardiness $(i) \doteq \max(0, f_i - d_i)$.Example $n = 2, (t_1, d_1) = (10, 14), (t_2, d_2) = (5, 11)$ Approach> Schedule all tasks back to back starting from 0.> Remains to find optimal ordering S of $[n]$.	 Smallest duration first Smallest slack first Earliest deadline first Correctness: exchange argument Running time: O(n log n)

Exchange Argument

- Consider an optimal ordering S and suppose $S \neq G$.
- There have to be two tasks $i, j \in [n]$ such that S schedules *i* right before *j* but $d_i \ge d_j$.
- Consider S' obtained by swapping i and j in S.
 - tardiness_{S'}(k) = tardiness_S(k) for all $k \in [n] \setminus \{i, j\}$
 - tardiness_{S'} $(j) \leq tardiness_S(j)$
 - ▶ tardiness_{S'}(i) ≤ tardiness_S(j)
 - \therefore Max tardiness does not increase from S to S'.
- Number of inversions of S' with respect to G is one less than of S with respect to G.
 - \therefore We end up in G eventually.

Optimal Binary Codes

Want to send messages over alphabet $S = \{A, B, C, D, E\}$ through binary channel.

Fixed-length encoding

▶ 3 bits per symbol

Variable-length encoding

- Frequencies:
 - A: 32%, B: 25%, C: 20%, D: 18%, E: 5%
- Goal is to minimize average encoding length.
- No encoding can be a prefix of another encoding. \equiv Encodings are paths in binary tree with symbols as leaves.

Algorithm

Recursive case: $|S| \ge 2$

- Find lowest frequency symbols E and D.
- Create instance I' over $S' \doteq S \setminus \{E,D\} \cup \{ED\}$ with $f'_{\mathsf{ED}} = f_{\mathsf{E}} + f_{\mathsf{D}} \text{ and } f'_s = f_s \text{ for } s \in S \setminus \{\mathsf{ED}\}.$
- Find optimal solution T' for I'.
- Expand leaf ED in T' to cherry with leaves E and D to obtain Τ.

Implementation

- Binary heap
- Iterative version

Running time: $O(n \log n)$

Outline

Common framework

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize a certain objective under certain constraints.

Greedy paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

Minimum Spanning Tree

- Greed stays ahead: interval scheduling, shortest paths
- Exchanges: interval scheduling, minimizing maximum tardiness, optimal binary codes, minimum spanning tree

Exchange Argument

Structure

Consider an optimal solution *S*. Establish a sequence of local transformations (exchanges) such that:

- Each transformation maintains validity and does not deteriorate the objective value.
- ▶ The sequence ends in the greedy solution *G*.

Remarks

- Minimizing maximum tardiness: Case n = 2 plays central role.
- Optimal binary codes: From DP to greed.

Tree Growing

Problem

Input: connected graph G = (V, E) and $w : E \to \mathbb{R}$ Output: tree T = (V, F) with $F \subseteq E$ such that $w(T) \doteq \sum_{e \in F} w(e)$ is minimized

Greedy algorithm

Try to make progress using edges of smallest weight w first.

- Locally: Tree growing (Prim)
- Globally: Tree joining (Kruskal)

$$\begin{split} S &\leftarrow \{s\}; \ F \leftarrow \emptyset \\ \textbf{while} \ S &\neq V \ \textbf{do} \\ (u^*, v^*) \leftarrow \arg\min_{(u, v) \in E \cap S \times \overline{S}} (w(u, v)) \\ S \leftarrow S \cup \{v^*\}; \ F \leftarrow F \cup \{(u^*, v^*)\} \\ \textbf{return} \ T \doteq (V, F) \end{split}$$

Invariant

 $T \doteq (S, F)$ is MST for subgraph of G = (V, E) induced by S.

Implementation

Priority queue for $v \in \overline{S}$ with key $\lambda(v) \doteq \min_{u \in S:(u,v) \in E}(w(u,v))$

Running time with binary heap

- ▶ *n* min extractions: $O(n \log n)$
- $m = \frac{1}{2} \sum_{v \in V} \deg(v)$ key updates: $O(m \log n)$
- ▶ Total: $O((n+m)\log n) = O(m\log n)$ as $m \ge n-1$

Tree Joining

```
F \leftarrow \emptyset

while (V, F) disconnected do

(u^*, v^*) \leftarrow \arg\min_{(u,v) \in E: u \not\prec v} \inf_{(V,F)} (w(u, v))

F \leftarrow F \cup \{(u^*, v^*)\}

return T \doteq (V, F)
```

Invariant

Connected components of (V, F) are MSTs for subgraphs of G = (V, E) that they induce.

Implementation

- Consider edges $(u, v) \in E$ in order of nondecreasing weight.
- Add (u, v) to T if $u \not\rightarrow v$ in (V, F).

Maintaining Connected Components

Tables

- Table with (v, cc(v)) pairs: O(1) time to find cc(v)
- ▶ Table with (C,v) pairs: O(|C|) time to relabel C

Lazy relabeling

- When merging C_1 and C_2 , relabel smaller one.
- Each time v gets relabeled, |cc(v)| at least doubles.
- Number of times v gets relabeled is at most log n.

Running time

- Sorting the edges: $O(m \log m)$
- ▶ Testing edges: O(m)
- Maintaining connected components: $O(n \log n)$
- ▶ Total: $O(m \log(m) + n \log(n)) = O(m \log n)$ as $m \ge n 1$

Better Algorithms Correctness Setting Based on tree growing ▶ Suppose we know a subset $F \subseteq E$ such that there exists an Binary heap: O(m log n) MST T of G that contains F. ▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$ • Consider a subset $S \subseteq V$ such that no edge in F crosses the cut (S,\overline{S}) , i.e., $F \cap S \times \overline{S} = \emptyset$. Based on tree joining - EDGES IN F \triangleright $O(m \log m)$ due to sorting edges Lazy relabeling: $O(m \log n)$ given sorted edges EDGES IN ▶ Improved data structures (Union-Find): $O(m \cdot \alpha(n, m))$ given SxS sorted edges, where α is inverse Ackermann Ś Other approaches $O(m \cdot \alpha(n, m))$ where α is inverse Ackermann

- ▶ Let $e^* = \arg \min_{e \in E \cap S \times \overline{S}}(w(e))$.
- There exists an MST T' of G that contains $F \cup \{e^*\}$.

Instantiations

Cut property

- Let $F \subseteq E$ such that there exists an MST T of G that contains F.
- Let $S \subseteq V$ such that no edge in F crosses the cut (S, \overline{S}) , i.e., $F \cap S \times \overline{S} = \emptyset$.
- Let $e^* = \arg \min_{e \in E \cap S \times \overline{S}}(w(e))$.
- There exists an MST T' of G that contains $F \cup \{e^*\}$.

Correctness implications

- ▶ Apply cut property with *F* the set of edges included thus far.
- ▶ Tree growing: *S* is set of vertices in current tree.
- Tree joining: S is set of vertices connected to u^* in current forest, where (u^*, v^*) is edge under consideration.

