Unweighted Interval Scheduling

Specification
Input: intervals I; = [s;, f;) and values v; € Rand-values
¥R for i € [n].
Output: S C [n] such that no intervals /; and /; for distinct
i,j € S overlap and)~ s v;|S| is maximized.

Greedy algorithm

» Local criterion
» Order

Earliest Finish Time First

Algorithm (assuming f; < fiiq for i € [n —1])
G+ 0
[—oc0
for i =1ton do
if s; > f then
G+ GuU{i}
[fi

return G

Complexity analysis

» O(n) time and O(1) space for finding maximum value and
producing schedule on-line.

» O(nlog n) time due to sorting.

Correctness — Greed Stays Ahead

Strategy
Design a quality measure for partial solutions such that:

» For every valid solution S and every point in time t, the
quality measure of the greedy solution G up to t is at least as
good as S up to t.

» For a full solution, optimal quality measure implies optimal
objective value.

Quality measures for earliest finish time first
Assume intervals numbered in greedy order.
» input components: cardinality |S N [t]]

» output components: finish time of the t-th interval in S

Cardinality as Quality Measure

Claim
(vteN)|GN [t = [SN[t]]
Proof: Induction on t
> Base case: t =0
» Inductivestept > t+1fort+1¢S

» Inductivestept »>t+1lfort+1€S
Let k be meeting in S right before t + 1 (k = 0 if there is
none).

[GN[t+1]| > 14+ |GNI[K]|

>1+1|SN[k]| [induction hypothesis]
=|Sn[t+1]| [definition of k]

[greedy criterion]

Finish Time as Quality Measure

Definition
finish time of t-th interval in S if it exists
fs(t) =< oo if t >S5
—00 fort =0
Claim

(Vt € N) fg(t) < fs(t)

Proof: Induction on t
> Base case: t =0
» Inductive step t — t+ 1

Corollary
|G| > |S]

From DP to Greed

» Consider meetings ordered earliest start time first.
OPT(k) =OPT({k,k+1,...,n})for 1< k<n+1
» OPT(k) = max(1 + OPT(next(k)), OPT(k + 1))
where next(k) =min{¢: k <{<n+1and sy > f}
» OPT(k) = max(1 + OPT(next(k)),
1+ OPT(next(k + 1)),
1+ OPT(next(k + 2)),

v

=1+ OP%(next(k*))
where k* = arg mink<j<p next(i)
> k* is interval with earliest finish time among {k, ..., n}.
Include k*.

» Continue process with k < next(k*).

v

Knapsack Problem with Unit Values

Specification
Input: items i € [n] specified by weight w; € R and-value
v~ R; weight limit W € Z+
Ouput: S C [n] such that 37;csw; < W and 3z5v: |S]
is maximized.
Greedy algorithm

» Local criterion
» Order: lightest first

Shortest Paths — nonnegative weights

Specification
Input: (di)graph G = (V, E); lengths £: E — [0, c0)
s,teV
Ouput: path P from s to t with minimum length

U(P) =2 ecp l(e)

Variants
» Single pair
» Single source

Distance d(s, t)
= min{{(P) | P path from s to t}
= oo if there is no path from s to t

Greedy Algorithm

Approach
Grow set S of v € V for which we know d(s, v).

Initialization
S={s}asd(s,s)=0.

Claim
Every path P from s to some vertex in S satisfies

UP) > min _(d(s, u) + £(u, v))
(u,v)EENSXS

Proof
» P has to include an edge (u,v) € ENS x S.
» U(P) = U(P|swu) + u,v)+ £(P|y.) > d(s,u) + €(u,v) + 0

Greed Stays Ahead

Claim
Every path P from s to some vertex in S satisfies

UP) > min _(d(s, u) + £(u, v))
(u,v)EENSXS

Extending S
> Let (u*,v*) = argmin, ,\cens,5(d(s, u) +£(u, v))
» Shortest path s ~» u* followed by (u*, v*) is shortest path

5~ VEL
> d(s,v*) =d(s,u*)+ £(u*, v¥)
> S« SuU{v'}

Implementation

Priority queue
Key for v € S§: A(v) = min,es.(u)ee(d(s, u) + (u, v))
Running time with binary heap

» Initialization: O(n)

» n min extractions: O(nlogn)

> m=3" .y outdeg(v) key updates: O(mlogn)

» Total: O((n+ m)logn)

Better algorithms

» Improved data structures (Fibonacci heaps): O(m + nlogn)

» Other approaches:
O(n + m) undirected, O(m + nloglog n) directed

From DP to Greed

@)
o
4
x
<
Il
o}
S
os]
[
5
w
>
o
<
(=g
@
(9]
(=
o
o
(=
5
“
<
c
o,
S
o
IN
x
o)
o
[0)c]
®
192}

(v) = mingyu)ee(OPT(u) + £(u,v)) for v # 5 (¥)
Let S be set of u € V for which we know OPT(u).
Rewrite OPT(v) for v ¢ S using (*).
After n levels resulting expression for OPT(v) is minimum of:
(a) OPT(u)+ €(u,v) for all ue S with (u,v) € E
(b) OPT(u) + €(u,v') + £(P) for some (u,v’) € E with
vAEV €Sand P: v ~ v
(c) OPT(u)+ £(P) for some u ¢ S and P containing n edges.
» Minimum of terms over all v € S achieved by term of type (a).
> Finding (u*,v*) = argmin, s, 5(OPT(u) + £(u, v)) tells
us how to extend S.
» Time complexity: O((n+ m)n) — O((n+ m)log n).

vVvyVvyVvVYvYyVvyy
o
T
_|

DP / Greed for DAGs

» Evaluate OPT(v) = min(, ,)e(OPT(u) 4 £(u, v)) for v # s
in topological order.
» Running time: O(n+ m)

» Replacing min by max yields solution to longest path problem.

Greed Stays Ahead vs Exchange Argument

Greed stays ahead
Design a quality measure for partial solutions such that:

» For every valid solution S and every point in time t, the
quality measure of the greedy solution G up to t is at least as
good as S up to t.

» For a full solution, optimal quality measure implies optimal
objective value.

Exchange argument

Consider an optimal solution S. Establish a sequence of local
transformations (exchanges) such that:

» The sequence ends in the greedy solution G.

» Each transformation maintains validity and does not
deteriorate the objective value.

Unweighted Interval Scheduling

Specification
Input: intervals I; = [s;, f;) for i € [n].

Output: S C [n] such that no intervals /; and /; for distinct
i,j € S overlap and |S| is maximized.

Greedy algorithm

» Order: earliest finish time first

» Local criterion

Exchange Argument

» Consider an optimal solution S that differs from G.

» There exists a first interval i in the greedy order on which S
differs from G.

» It has to be the case that i € G and i & S.

» There exists an interval j > i such that j € S.

> S" =S\ {j} U{i} is an optimal solution.

» The first interval i’ on which S’ differs from G (if any)
satisfies /' > i.

» As there are only a finite number of intervals, the process has

toend in G.

Minimizing Maximum Tardiness

Problem

Input: tasks i € [n] specified by duration t; € R and
deadline d; € R.

Output: for each i € [n]: s; € [0,00) and f; = s; + ¢; s.t.
» no intervals [s;, f;) for distinct i € [n] overlap
> max;e|y)(tardiness(i)) is minimized,

where tardiness(i) = max(0, f; — d;).

Example
n=2, (t17d1) = (107 14), (fz, d2) = (57 11)

Approach
» Schedule all tasks back to back starting from 0.

» Remains to find optimal ordering S of [n].

Natural Task Orders

» Smallest duration first
» Smallest slack first
» Earliest deadline first

» Correctness: exchange argument

» Running time: O(nlog n)

Exchange Argument

» Consider an optimal ordering S and suppose S # G.

» There have to be two tasks /,j € [n] such that
S schedules i right before j but d; > dj.
» Consider S’ obtained by swapping i and j in S.
> tardinesss: (k) = tardinessg(k) for all k € [n] \ {/,/}
> tardinesss (j) < tardinesss(j)
> tardinesss/ (i) < tardinesss(j)
*. Max tardiness does not increase from S to S'.

» Number of inversions of S’ with respect to G is one less than
of S with respect to G.
.. We end up in G eventually.

Optimal Binary Codes

Want to send messages over alphabet S = {A,B,C,D,E} through
binary channel.

Fixed-length encoding
» 3 bits per symbol

Variable-length encoding
» Frequencies:
A: 32%, B: 25%, C: 20%, D: 18%, E: 5%
» Goal is to minimize average encoding length.

» No encoding can be a prefix of another encoding.
= Encodings are paths in binary tree with symbols as leaves.

Optimal Binary Tree

5% 18%

» Encoding: A: 10, B: 00, C: 01, D: 111, E: 110

» Average encoding length:
32%-2+25%-24+20%-2+18%-34+5%-3 =2+.23=2.23

Key Observations

Observation 1
Optimal tree needs to be full (each node either has two children or
none).

Observation 2 - Exchange

» Frequencies of leaves at higher levels need to be > frequencies
of leaves at lower levels.

> Leaves at a given level are interchangeable.

Corollary
There is an optimal tree in which the two symbols with the lowest
frequencies form a cherry (leaves with the same parent).

Principle of Optimality

Problem instance /
Input: frequencies £ > 0 for s € S with ZSES fs=1

Output: binary tree T with leave set S such that
cost(T) = > .5 fs - depth(s) is minimized.

T for [with cherry {ED} = T'for I’ over {A,B,C,ED}

25% 20% 32% 2%

5% 18%

cost)(T) = costy(T)+fe+ 1
T optimal for | w/ cherry {E,D} <« T’ optimal for /I’

Algorithm

Recursive case: |S| > 2

» Find lowest frequency symbols E and D.

» Create instance /" over S’ = S\ {E,D} U {ED} with
fip =fe+ fp and f/ = f; for s € S\ {ED}.

» Find optimal solution T’ for /’.

» Expand leaf ED in T’ to cherry with leaves E and D to obtain
T.

Implementation
» Binary heap

» Iterative version

Running time: O(nlog n)

Outline

Common framework
» System consisting of n components.
» Each component can be in any of a finite number of states.

» Want to set the states of the components so as to optimize a
certain objective under certain constraints.

Greedy paradigm
» Consider components in some order.

» Locally optimize setting of component based on prior
components and settings only.

Correctness argument

» Greed stays ahead: interval scheduling, shortest paths

» Exchanges: interval scheduling, minimizing maximum
tardiness, optimal binary codes, minimum spanning tree

Exchange Argument

Structure
Consider an optimal solution S. Establish a sequence of local
transformations (exchanges) such that:

» Each transformation maintains validity and does not
deteriorate the objective value.

» The sequence ends in the greedy solution G.

Remarks
» Minimizing maximum tardiness:
Case n = 2 plays central role.
» Optimal binary codes:
From DP to greed.

Minimum Spanning Tree

Problem
Input: connected graph G = (V,E) and w: E - R

Output: tree T = (V, F) with F C E such that
w(T) =3 .cr w(e) is minimized

Greedy algorithm

Try to make progress using edges of smallest weight w first.
> Locally: Tree growing (Prim)
> Globally: Tree joining (Kruskal)

Tree Growing

S+ {sh F+0

while S # V do
(u*,v*) < arg min(w;)eEmSXg(w(u,1}))
S Su{v*}; F «+ Fu{(u*v*)}

return 7' = (V, F)

Invariant
T = (S, F) is MST for subgraph of G = (V, E) induced by S.
Implementation
Priority queue for v € S with key A\(v) = minyes:(uv)ee(w(u, v))
Running time with binary heap

> n min extractions: O(nlog n)

> m=1%" .\ deg(v) key updates: O(mlog n)

» Total: O((n+ m)logn) = O(mlogn)asm>n—1

Tree Joining

F«0
while (V, F) disconnected do

(u*,v*) = arg min(,)e Bauto in (v,F) (W (8, v))
F+ Fu{(u*,v*)}

return 7' = (V| F)
Invariant
Connected components of (V, F) are MSTs for subgraphs of
G = (V, E) that they induce.
Implementation

> Consider edges (u, v) € E in order of nondecreasing weight.
» Add (u,v) to T if ussvin (V,F).

Maintaining Connected Components

Tables
» Table with (v,cc(v)) pairs: O(1) time to find cc(v)
» Table with (C,v) pairs: O(|C]) time to relabel C

Lazy relabeling
» When merging C; and (,, relabel smaller one.
» Each time v gets relabeled, |cc(v)| at least doubles.

» Number of times v gets relabeled is at most log n.

Running time
> Sorting the edges: O(mlog m)
» Testing edges: O(m)
> Maintaining connected components: O(nlog n)
» Total: O(mlog(m)+ nlog(n)) = O(mlogn)as m>n—1

Lazy Relabeling — example

Comp
2::,‘\{‘: XS \ 9
® 4 ¢ 4
RAA : X2
® 839 s 92
WHEN JOINING ,i { Z
NENMNTS
%‘L‘R"m SHAWLER & 3
oNE BY THE LARGER oNE 9 ';—
Il

Maintaining Connected Components

Rooted trees

» Store each connected component as a rooted tree, with edges
pointing in direction of root.

» O(depth(C) time to find root of C = cc(v) given v.

Lazy relabeling
» When merging C; and (,, make root of smaller one point to
root of larger one.
» Keeps depth upper bounded by log n.

Running time
» Sorting the edges: O(mlog m)
> Testing edges: O(mlog n)
» Maintaining connected components: O(n)
> Total: O(mlog(m)+ mlog(n)+n) = O(mlogn)asm>n—1

Better Algorithms

Based on tree growing
» Binary heap: O(mlogn)
> Improved data structures (Fibonacci heaps): O(m + nlog n)

Based on tree joining
» O(mlog m) due to sorting edges
» Lazy relabeling: O(mlog n) given sorted edges

» Improved data structures (Union-Find): O(m - a(n, m)) given
sorted edges, where « is inverse Ackermann

Other approaches
O(m - a(n, m)) where «a is inverse Ackermann

Correctness

Setting

» Suppose we know a subset F C E such that there exists an
MST T of G that contains F.

» Consider a subset ScC V such that no edge in £ crosses the
cut (5,5),ie, FNSxS=0.

S

— EDGES IV F

e EDGES IV
SxS

Q|

Correctness
— EDGES IV F

e EDGES IV
SxS

Q|

Observations
» T has to contain an edge in ENS x S.
> This edge contributes at least min_ s, s(w(e)) to w(T).

Cut property
> Let e = argmin s, 5(w(e)).
» There exists an MST T’ of G that contains F U {e*}.

Instantiations

Cut property
» Let F C E such that there exists an MST T of G that

contains F.
» let SC L/ such that no edge in F crosses the cut (S,5), i.e.,
FNSxS=0.

> Let e* = argmin s, s(w(e)).
» There exists an MST T’ of G that contains F U {e*}.

Correctness implications
» Apply cut property with F the set of edges included thus far.
> Tree growing: S is set of vertices in current tree.

» Tree joining: S is set of vertices connected to u* in current
forest, where (u*, v*) is edge under consideration.

Exchange Argument for Cut Property

— EDGES IVF
- EDGES IV T
_ RO NOT INF

S w EDGEC IV
SRS MTINT

Exchange Argument for Cut Property

Cut property
Let e* = argmin s, 5(w(e)).
There exists an MST T’ of G that contains F U {e*}.
Proof
» Suppose e* not in T; otherwise done.

» Consider adding e* to T. This induces cycle that crosses
(S,S) somewhere else, say at e€ ENS x S.

> Replacing e by e* in T yields spanning tree T’ of G.
> Since w(e*) < w(e),

w(T') = w(T)+ w(e*) — w(e) < w(T).

» . T'isan MST of G containing F U {e*}

