
Unweighted Interval Scheduling

Specification

Input: intervals Ii = [si , fi ) and values vi 2 Rand values

vi 2 R for i 2 [n].

Output: S ✓ [n] such that no intervals Ii and Ij for distinct

i , j 2 S overlap and
P

i2S vi |S | is maximized.

Greedy algorithm

I Local criterion

I Order

Earliest Finish Time First

Algorithm (assuming fi  fi+1 for i 2 [n � 1])

Complexity analysis

I O(n) time and O(1) space for finding maximum value and

producing schedule on-line.

I O(n log n) time due to sorting.

Correctness – Greed Stays Ahead

Strategy

Design a quality measure for partial solutions such that:

I For every valid solution S and every point in time t, the

quality measure of the greedy solution G up to t is at least as

good as S up to t.

I For a full solution, optimal quality measure implies optimal

objective value.

Quality measures for earliest finish time first

Assume intervals numbered in greedy order.

I input components: cardinality |S \ [t]|
I output components: finish time of the t-th interval in S

Cardinality as Quality Measure

Claim

(8t 2 N) |G \ [t]| � |S \ [t]|

Proof: Induction on t
I Base case: t = 0

I Inductive step t ! t + 1 for t + 1 62 S

I Inductive step t ! t + 1 for t + 1 2 S

Let k be meeting in S right before t + 1 (k = 0 if there is

none).

|G \ [t + 1]| � 1 + |G \ [k]| [greedy criterion]

� 1 + |S \ [k]| [induction hypothesis]

= |S \ [t + 1]| [definition of k]

Finish Time as Quality Measure

Definition

fS(t) =

8
<

:

finish time of t-th interval in S if it exists

1 if t > |S |
�1 for t = 0

Claim

(8t 2 N) fG (t)  fS(t)

Proof: Induction on t
I Base case: t = 0

I Inductive step t ! t + 1

Corollary

|G | � |S |

From DP to Greed

I Consider meetings ordered earliest start time first.

I OPT(k)
.
= OPT({k , k + 1, . . . , n}) for 1  k  n + 1

I OPT(k) = max(1 + OPT(next(k)),OPT(k + 1))

where next(k)
.
= min{` : k < `  n + 1 and s` � fk}

I OPT(k) = max(1 + OPT(next(k)),
1 + OPT(next(k + 1)),
1 + OPT(next(k + 2)),
. . . )

= 1 + OPT(next(k
⇤
))

where k
⇤
= argminkin next(i)

I k
⇤
is interval with earliest finish time among {k , . . . , n}.

I Include k
⇤
.

I Continue process with k  next(k
⇤
).



Knapsack Problem with Unit Values

Specification

Input: items i 2 [n] specified by weight wi 2 R and value

vi 2 R; weight limit W 2 Z+

Ouput: S ✓ [n] such that
P

i2S wi  W and
P

i2S vi |S |
is maximized.

Greedy algorithm

I Local criterion

I Order: lightest first

Shortest Paths – nonnegative weights

Specification

Input: (di)graph G = (V ,E ); lengths ` : E ! [0,1)

s, t 2 V

Ouput: path P from s to t with minimum length

`(P)
.
=

P
e2P `(e)

Variants

I Single pair

I Single source

Distance d(s, t)

= min{`(P) |P path from s to t}
=1 if there is no path from s to t

Greedy Algorithm

Approach

Grow set S of v 2 V for which we know d(s, v).

Initialization

S = {s} as d(s, s) = 0.

Claim

Every path P from s to some vertex in S satisfies

`(P) � min
(u,v)2E\S⇥S

(d(s, u) + `(u, v))

Proof

I P has to include an edge (u, v) 2 E \ S ⇥ S .

I `(P) = `(P |s u) + `(u, v) + `(P |v ) � d(s, u) + `(u, v) + 0

Greed Stays Ahead

Claim

Every path P from s to some vertex in S satisfies

`(P) � min
(u,v)2E\S⇥S

(d(s, u) + `(u, v))

Extending S

I Let (u
⇤, v⇤) = argmin(u,v)2E\S⇥S(d(s, u) + `(u, v))

I Shortest path s  u
⇤
followed by (u

⇤, v⇤) is shortest path
s  v

⇤
.

I d(s, v⇤) = d(s, u⇤) + `(u⇤, v⇤)

I S  S [ {v⇤}

Implementation

Priority queue

Key for v 2 S : �(v)
.
= minu2S :(u,v)2E (d(s, u) + `(u, v))

Running time with binary heap

I Initialization: O(n)

I n min extractions: O(n log n)

I m =
P

v2V outdeg(v) key updates: O(m log n)

I Total: O((n +m) log n)

Better algorithms

I Improved data structures (Fibonacci heaps): O(m + n log n)

I Other approaches:

O(n +m) undirected, O(m + n log log n) directed

From DP to Greed

I OPT(k , v) = length shortest path s  v using  k edges

I OPT(v) = d(s, v) = limk!1OPT(k , v)

I OPT(s) = 0

I OPT(v) = min(u,v)2E (OPT(u) + `(u, v)) for v 6= s (*)

I Let S be set of u 2 V for which we know OPT(u).

I Rewrite OPT(v) for v 62 S using (*).

I After n levels resulting expression for OPT(v) is minimum of:

(a) OPT(u) + `(u, v) for all u 2 S with (u, v) 2 E

(b) OPT(u) + `(u, v 0
) + `(P) for some (u, v 0

) 2 E with

v 6= v
0 62 S and P : v

0  v

(c) OPT(u) + `(P) for some u 62 S and P containing n edges.

I Minimum of terms over all v 2 S achieved by term of type (a).

I Finding (u
⇤, v⇤) = argmin(u,v)2E\S⇥S(OPT(u) + `(u, v)) tells

us how to extend S .

I Time complexity: O((n +m)n) ! O((n +m) log n).



DP / Greed for DAGs

I Evaluate OPT(v) = min(u,v)2E (OPT(u) + `(u, v)) for v 6= s

in topological order.

I Running time: O(n +m)

I Replacing min by max yields solution to longest path problem.

Greed Stays Ahead vs Exchange Argument

Greed stays ahead

Design a quality measure for partial solutions such that:

I For every valid solution S and every point in time t, the

quality measure of the greedy solution G up to t is at least as

good as S up to t.

I For a full solution, optimal quality measure implies optimal

objective value.

Exchange argument

Consider an optimal solution S . Establish a sequence of local

transformations (exchanges) such that:

I The sequence ends in the greedy solution G .

I Each transformation maintains validity and does not

deteriorate the objective value.

Unweighted Interval Scheduling

Specification

Input: intervals Ii = [si , fi ) for i 2 [n].

Output: S ✓ [n] such that no intervals Ii and Ij for distinct

i , j 2 S overlap and |S | is maximized.

Greedy algorithm

I Order: earliest finish time first

I Local criterion

Exchange Argument

I Consider an optimal solution S that di↵ers from G .

I There exists a first interval i in the greedy order on which S

di↵ers from G .

I It has to be the case that i 2 G and i 62 S .

I There exists an interval j > i such that j 2 S .

I S
0 .
= S \ {j} [ {i} is an optimal solution.

I The first interval i
0
on which S

0
di↵ers from G (if any)

satisfies i
0 > i .

I As there are only a finite number of intervals, the process has

to end in G .

Minimizing Maximum Tardiness

Problem

Input: tasks i 2 [n] specified by duration ti 2 R and

deadline di 2 R.
Output: for each i 2 [n]: si 2 [0,1) and fi

.
= si + ti s.t.

I no intervals [si , fi ) for distinct i 2 [n] overlap

I maxi2[n](tardiness(i)) is minimized,

where tardiness(i)
.
= max(0, fi � di ).

Example

n = 2, (t1, d1) = (10, 14), (t2, d2) = (5, 11)

Approach

I Schedule all tasks back to back starting from 0.

I Remains to find optimal ordering S of [n].

Natural Task Orders

I Smallest duration first

I Smallest slack first

I Earliest deadline first

I Correctness: exchange argument

I Running time: O(n log n)



Exchange Argument

I Consider an optimal ordering S and suppose S 6= G .

I There have to be two tasks i , j 2 [n] such that

S schedules i right before j but di � dj .

I Consider S
0
obtained by swapping i and j in S .

I tardinessS0(k) = tardinessS(k) for all k 2 [n] \ {i , j}
I tardinessS0(j)  tardinessS(j)

I tardinessS0(i)  tardinessS(j)

) Max tardiness does not increase from S to S
0
.

I Number of inversions of S
0
with respect to G is one less than

of S with respect to G .

) We end up in G eventually.

Optimal Binary Codes

Want to send messages over alphabet S = {A,B,C,D,E} through

binary channel.

Fixed-length encoding

I 3 bits per symbol

Variable-length encoding

I Frequencies:

A: 32%, B: 25%, C: 20%, D: 18%, E: 5%

I Goal is to minimize average encoding length.

I No encoding can be a prefix of another encoding.

⌘ Encodings are paths in binary tree with symbols as leaves.

Optimal Binary Tree

I Encoding: A: 10, B: 00, C: 01, D: 111, E: 110

I Average encoding length:

32% · 2+ 25% · 2+ 20% · 2+ 18% · 3+ 5% · 3 = 2+ .23 = 2.23

Key Observations

Observation 1

Optimal tree needs to be full (each node either has two children or

none).

Observation 2 - Exchange

I Frequencies of leaves at higher levels need to be � frequencies

of leaves at lower levels.

I Leaves at a given level are interchangeable.

Corollary

There is an optimal tree in which the two symbols with the lowest

frequencies form a cherry (leaves with the same parent).

Principle of Optimality

Problem instance I

Input: frequencies fs � 0 for s 2 S with
P

s2S fs = 1

Output: binary tree T with leave set S such that

cost(T )
.
=

P
s2S fs · depthT (s) is minimized.

T for I with cherry {E,D} ⌦ T
0
for I

0
over {A,B,C,ED}

costI (T ) = costI 0(T
0
) + fE + fD

T optimal for I w/ cherry {E,D} , T
0
optimal for I

0

Algorithm

Recursive case: |S | � 2

I Find lowest frequency symbols E and D.

I Create instance I
0
over S

0 .
= S \ {E,D} [ {ED} with

f
0
ED = fE + fD and f

0
s = fs for s 2 S \ {ED}.

I Find optimal solution T
0
for I

0
.

I Expand leaf ED in T
0
to cherry with leaves E and D to obtain

T .

Implementation

I Binary heap

I Iterative version

Running time: O(n log n)



Outline

Common framework

I System consisting of n components.

I Each component can be in any of a finite number of states.

I Want to set the states of the components so as to optimize a

certain objective under certain constraints.

Greedy paradigm

I Consider components in some order.

I Locally optimize setting of component based on prior

components and settings only.

Correctness argument

I Greed stays ahead: interval scheduling, shortest paths

I Exchanges: interval scheduling, minimizing maximum

tardiness, optimal binary codes, minimum spanning tree

Exchange Argument

Structure

Consider an optimal solution S . Establish a sequence of local

transformations (exchanges) such that:

I Each transformation maintains validity and does not

deteriorate the objective value.

I The sequence ends in the greedy solution G .

Remarks

I Minimizing maximum tardiness:

Case n = 2 plays central role.

I Optimal binary codes:

From DP to greed.

Minimum Spanning Tree

Problem

Input: connected graph G = (V ,E ) and w : E ! R
Output: tree T = (V ,F ) with F ✓ E such that

w(T )
.
=

P
e2F w(e) is minimized

Greedy algorithm

Try to make progress using edges of smallest weight w first.

I Locally: Tree growing (Prim)

I Globally: Tree joining (Kruskal)

Tree Growing

Invariant

T
.
= (S ,F ) is MST for subgraph of G = (V ,E ) induced by S .

Implementation

Priority queue for v 2 S with key �(v)
.
= minu2S :(u,v)2E (w(u, v))

Running time with binary heap

I n min extractions: O(n log n)

I m =
1
2

P
v2V deg(v) key updates: O(m log n)

I Total: O((n +m) log n) = O(m log n) as m � n � 1

Tree Joining

Invariant

Connected components of (V ,F ) are MSTs for subgraphs of

G = (V ,E ) that they induce.

Implementation

I Consider edges (u, v) 2 E in order of nondecreasing weight.

I Add (u, v) to T if u 6 v in (V ,F ).

Maintaining Connected Components

Tables

I Table with (v ,cc(v)) pairs: O(1) time to find cc(v)

I Table with (C ,v) pairs: O(|C |) time to relabel C

Lazy relabeling

I When merging C1 and C2, relabel smaller one.

I Each time v gets relabeled, |cc(v)| at least doubles.
I Number of times v gets relabeled is at most log n.

Running time

I Sorting the edges: O(m logm)

I Testing edges: O(m)

I Maintaining connected components: O(n log n)

I Total: O(m log(m) + n log(n)) = O(m log n) as m � n � 1



Lazy Relabeling – example Maintaining Connected Components

Rooted trees

I Store each connected component as a rooted tree, with edges

pointing in direction of root.

I O(depth(C ) time to find root of C = cc(v) given v .

Lazy relabeling

I When merging C1 and C2, make root of smaller one point to

root of larger one.

I Keeps depth upper bounded by log n.

Running time

I Sorting the edges: O(m logm)

I Testing edges: O(m log n)

I Maintaining connected components: O(n)

I Total: O(m log(m)+m log(n)+n) = O(m log n) as m � n�1

Better Algorithms

Based on tree growing

I Binary heap: O(m log n)

I Improved data structures (Fibonacci heaps): O(m + n log n)

Based on tree joining

I O(m logm) due to sorting edges

I Lazy relabeling: O(m log n) given sorted edges

I Improved data structures (Union-Find): O(m · ↵(n,m)) given

sorted edges, where ↵ is inverse Ackermann

Other approaches

O(m · ↵(n,m)) where ↵ is inverse Ackermann

Correctness

Setting

I Suppose we know a subset F ✓ E such that there exists an

MST T of G that contains F .

I Consider a subset S ✓ V such that no edge in F crosses the

cut (S , S), i.e., F \ S ⇥ S = ;.

Correctness

Observations

I T has to contain an edge in E \ S ⇥ S .

I This edge contributes at least mine2E\S⇥S(w(e)) to w(T ).

Cut property

I Let e
⇤
= argmine2E\S⇥S(w(e)).

I There exists an MST T
0
of G that contains F [ {e⇤}.

Instantiations

Cut property

I Let F ✓ E such that there exists an MST T of G that

contains F .

I Let S ✓ V such that no edge in F crosses the cut (S , S), i.e.,
F \ S ⇥ S = ;.

I Let e
⇤
= argmine2E\S⇥S(w(e)).

I There exists an MST T
0
of G that contains F [ {e⇤}.

Correctness implications

I Apply cut property with F the set of edges included thus far.

I Tree growing: S is set of vertices in current tree.

I Tree joining: S is set of vertices connected to u
⇤
in current

forest, where (u
⇤, v⇤) is edge under consideration.



Exchange Argument for Cut Property Exchange Argument for Cut Property

Cut property

Let e
⇤
= argmine2E\S⇥S(w(e)).

There exists an MST T
0
of G that contains F [ {e⇤}.

Proof

I Suppose e
⇤
not in T ; otherwise done.

I Consider adding e
⇤
to T . This induces cycle that crosses

(S , S) somewhere else, say at e 2 E \ S ⇥ S .

I Replacing e by e
⇤
in T yields spanning tree T

0
of G .

I Since w(e
⇤
)  w(e),

w(T
0
) = w(T ) + w(e

⇤
)� w(e)  w(T ).

I ) T
0
is an MST of G containing F [ {e⇤}


