Unweighted Interval Scheduling

Specification

Input: intervals $I_{i}=\left[s_{i}, f_{i}\right)$ and values $v_{i} \in \mathbb{R}$ and values $\forall_{i} \in \mathbb{R}$ for $i \in[n]$.
Output: $S \subseteq[n]$ such that no intervals I_{i} and I_{j} for distinct $i, j \in S$ overlap and $\sum_{i \in S} v_{i}|S|$ is maximized.

Greedy algorithm

- Local criterion
- Order

Earliest Finish Time First

Algorithm (assuming $f_{i} \leq f_{i+1}$ for $i \in[n-1]$)
$G \leftarrow \emptyset$
$f \leftarrow-\infty$
for $i=1$ to n do
if $s_{i} \geq f$ then
$G \leftarrow G \cup\{i\}$ $f \leftarrow f_{i}$
return G

Complexity analysis

- $O(n)$ time and $O(1)$ space for finding maximum value and producing schedule on-line.
- $O(n \log n)$ time due to sorting

Correctness - Greed Stays Ahead

Strategy

Design a quality measure for partial solutions such that:

- For every valid solution S and every point in time t, the quality measure of the greedy solution G up to t is at least as good as S up to t.
- For a full solution, optimal quality measure implies optimal objective value.

Quality measures for earliest finish time first
Assume intervals numbered in greedy order.

- input components: cardinality $|S \cap[t]|$
- output components: finish time of the t-th interval in S

Cardinality as Quality Measure

Claim
$(\forall t \in \mathbb{N})|G \cap[t]| \geq|S \cap[t]|$
Proof: Induction on t

- Base case: $t=0$
- Inductive step $t \rightarrow t+1$ for $t+1 \notin S$
- Inductive step $t \rightarrow t+1$ for $t+1 \in S$

Let k be meeting in S right before $t+1$ ($k=0$ if there is none).

$$
\begin{array}{rlr}
|G \cap[t+1]| & \geq 1+|G \cap[k]| & \text { [greedy criterion] } \\
& \geq 1+|S \cap[k]| & \text { [induction hypothesis] } \\
& =|S \cap[t+1]| & \text { [definition of } k]
\end{array}
$$

Finish Time as Quality Measure

Definition

$$
f_{S}(t)= \begin{cases}\text { finish time of } t \text {-th interval in } S & \text { if it exists } \\ \infty & \text { if } t>|S| \\ -\infty & \text { for } t=0\end{cases}
$$

Claim

$(\forall t \in \mathbb{N}) f_{G}(t) \leq f_{S}(t)$
Proof: Induction on t

- Base case: $t=0$
- Inductive step $t \rightarrow t+1$

Corollary
$|G| \geq|S|$

From DP to Greed

- Consider meetings ordered earliest start time first.
$-\mathrm{OPT}(k) \doteq \mathrm{OPT}(\{k, k+1, \ldots, n\})$ for $1 \leq k \leq n+1$
$-\operatorname{OPT}(k)=\max (1+\mathrm{OPT}(\operatorname{next}(k)), \mathrm{OPT}(k+1))$ where $\operatorname{next}(k) \doteq \min \left\{\ell: k<\ell \leq n+1\right.$ and $\left.s_{\ell} \geq f_{k}\right\}$
$-\operatorname{OPT}(k)=\max (1+\mathrm{OPT}(\operatorname{next}(k))$,

$$
\begin{aligned}
& 1+\operatorname{OPT}(\operatorname{next}(k+1)) \\
& 1+\operatorname{OPT}(\operatorname{next}(k+2)) \\
& \ldots) \\
& =1+\operatorname{OPT}\left(\operatorname{next}\left(k^{*}\right)\right) \\
& \quad \text { where } k^{*}=\arg \min _{k \leq i \leq n} \operatorname{next}(i)
\end{aligned}
$$

- k^{*} is interval with earliest finish time among $\{k, \ldots, n\}$.
- Include k^{*}.
- Continue process with $k \leftarrow \operatorname{next}\left(k^{*}\right)$.

Knapsack Problem with Unit Values

Specification
Input: items $i \in[n]$ specified by weight $w_{i} \in \mathbb{R}$ and value $\forall_{i} \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^{+}$
Ouput: $S \subseteq[n]$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} \forall_{i}|S|$ is maximized.

Greedy algorithm

- Local criterion
- Order: lightest first

Shortest Paths - nonnegative weights

Specification

Input: (di)graph $G=(V, E)$; lengths $\ell: E \rightarrow[0, \infty)$ $s, t \in V$
Ouput: path P from s to t with minimum length $\ell(P) \doteq \sum_{e \in P} \ell(e)$

Variants

- Single pair
- Single source

Distance $d(s, t)$
$=\min \{\ell(P) \mid P$ path from s to $t\}$
$=\infty$ if there is no path from s to t

Greed Stays Ahead

Claim
Every path P from s to some vertex in \bar{S} satisfies

$$
\ell(P) \geq \min _{(u, v) \in E \cap S \times \bar{S}}(d(s, u)+\ell(u, v))
$$

Extending S

- Let $\left(u^{*}, v^{*}\right)=\arg \min _{(u, v) \in E \cap S \times \bar{S}}(d(s, u)+\ell(u, v))$
- Shortest path $s \rightsquigarrow u^{*}$ followed by $\left(u^{*}, v^{*}\right)$ is shortest path $s \rightsquigarrow v^{*}$.
- $d\left(s, v^{*}\right)=d\left(s, u^{*}\right)+\ell\left(u^{*}, v^{*}\right)$
- $S \leftarrow S \cup\left\{v^{*}\right\}$

Implementation

Priority queue
Key for $v \in \bar{S}: \lambda(v) \doteq \min _{u \in S}:(u, v) \in E(d(s, u)+\ell(u, v))$
Running time with binary heap

- Initialization: $O(n)$
- n min extractions: $O(n \log n)$
- $m=\sum_{v \in V}$ outdeg(v) key updates: $O(m \log n)$
- Total: $O((n+m) \log n)$

Better algorithms

- Improved data structures (Fibonacci heaps): $O(m+n \log n)$
- Other approaches
$O(n+m)$ undirected, $O(m+n \log \log n)$ directed

From DP to Greed

$-\operatorname{OPT}(k, v)=$ length shortest path $s \rightsquigarrow v$ using $\leq k$ edges
$-\operatorname{OPT}(v)=d(s, v)=\lim _{k \rightarrow \infty} \operatorname{OPT}(k, v)$

- $\operatorname{OPT}(s)=0$
$-\operatorname{OPT}(v)=\min _{(u, v) \in E}(\operatorname{OPT}(u)+\ell(u, v))$ for $v \neq s\left(^{*}\right)$
- Let S be set of $u \in V$ for which we know $\operatorname{OPT}(u)$.
- Rewrite $\operatorname{OPT}(v)$ for $v \notin S$ using (*).
- After n levels resulting expression for $\operatorname{OPT}(v)$ is minimum of:
(a) $\operatorname{OPT}(u)+\ell(u, v)$ for all $u \in S$ with $(u, v) \in E$
(b) $\operatorname{OPT}(u)+\ell\left(u, v^{\prime}\right)+\ell(P)$ for some $\left(u, v^{\prime}\right) \in E$ with $v \neq v^{\prime} \notin S$ and $P: v^{\prime} \rightsquigarrow v$
(c) $\operatorname{OPT}(u)+\ell(P)$ for some $u \notin S$ and P containing n edges
- Minimum of terms over all $v \in \bar{S}$ achieved by term of type (a).
- Finding $\left(u^{*}, v^{*}\right)=\arg \min _{(u, v) \in E \cap S \times \bar{S}}(\operatorname{OPT}(u)+\ell(u, v))$ tells us how to extend S.
- Time complexity: $O((n+m) n) \rightarrow O((n+m) \log n)$.

DP / Greed for DAGs

- Evaluate $\operatorname{OPT}(v)=\min _{(u, v) \in E}(\operatorname{OPT}(u)+\ell(u, v))$ for $v \neq s$ in topological order.
- Running time: $O(n+m)$
- Replacing min by max yields solution to longest path problem.

Unweighted Interval Scheduling

Specification

Input: intervals $I_{i}=\left[s_{i}, f_{i}\right)$ for $i \in[n]$.
Output: $S \subseteq[n]$ such that no intervals I_{i} and l_{j} for distinct $i, j \in S$ overlap and $|S|$ is maximized.

Greedy algorithm

- Order: earliest finish time first
- Local criterion

Greed Stays Ahead vs Exchange Argument

Greed stays ahead
Design a quality measure for partial solutions such that:

- For every valid solution S and every point in time t, the quality measure of the greedy solution G up to t is at least as good as S up to t.
- For a full solution, optimal quality measure implies optimal objective value.

Exchange argument
Consider an optimal solution S. Establish a sequence of local transformations (exchanges) such that:

- The sequence ends in the greedy solution G.
- Each transformation maintains validity and does not deteriorate the objective value.

Exchange Argument

- Consider an optimal solution S that differs from G.
- There exists a first interval i in the greedy order on which S differs from G.
- It has to be the case that $i \in G$ and $i \notin S$.
- There exists an interval $j>i$ such that $j \in S$.
- $S^{\prime} \doteq S \backslash\{j\} \cup\{i\}$ is an optimal solution.
- The first interval i^{\prime} on which S^{\prime} differs from G (if any) satisfies $i^{\prime}>i$.
- As there are only a finite number of intervals, the process has to end in G.

Minimizing Maximum Tardiness

Problem
Input: tasks $i \in[n]$ specified by duration $t_{i} \in \mathbb{R}$ and deadline $d_{i} \in \mathbb{R}$.
Output: for each $i \in[n]: s_{i} \in[0, \infty)$ and $f_{i} \doteq s_{i}+t_{i}$ s.t.

- no intervals $\left[s_{i}, f_{i}\right)$ for distinct $i \in[n]$ overlap
- $\max _{i \in[n]}(\operatorname{tardiness}(i))$ is minimized, where $\operatorname{tardiness}(i) \doteq \max \left(0, f_{i}-d_{i}\right)$.

Example
$n=2,\left(t_{1}, d_{1}\right)=(10,14),\left(t_{2}, d_{2}\right)=(5,11)$

Approach

- Schedule all tasks back to back starting from 0 .
- Remains to find optimal ordering S of $[n]$.

Natural Task Orders

- Smallest duration first
- Smallest slack first
- Earliest deadline first
- Correctness: exchange argument
- Running time: $O(n \log n)$

Exchange Argument

- Consider an optimal ordering S and suppose $S \neq G$.
- There have to be two tasks $i, j \in[n]$ such that S schedules i right before j but $d_{i} \geq d_{j}$.
- Consider S^{\prime} obtained by swapping i and j in S.
- tardiness $_{s^{\prime}}(k)=\operatorname{tardiness} s(k)$ for all $k \in[n] \backslash\{i, j\}$
- tardiness $s^{\prime}(j) \leq$ tardiness $_{s}(j)$
- tardiness $s^{\prime}(i) \leq$ tardinesss $_{(}(j)$
\therefore Max tardiness does not increase from S to S^{\prime}.
- Number of inversions of S^{\prime} with respect to G is one less than of S with respect to G.
\therefore We end up in G eventually.

Optimal Binary Codes

Want to send messages over alphabet $S=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$ through binary channel.

Fixed-length encoding

- 3 bits per symbol

Variable-length encoding

- Frequencies:

A: 32%, B: $25 \%, C: 20 \%, D: 18 \%, E: 5 \%$

- Goal is to minimize average encoding length.
- No encoding can be a prefix of another encoding.
\equiv Encodings are paths in binary tree with symbols as leaves.

Optimal Binary Tree

- Encoding: A: 10, B: 00, C: 01, D: 111, E: 110
- Average encoding length:
$32 \% \cdot 2+25 \% \cdot 2+20 \% \cdot 2+18 \% \cdot 3+5 \% \cdot 3=2+.23=2.23$

Key Observations

Observation 1
Optimal tree needs to be full (each node either has two children or none).

Observation 2 - Exchange

- Frequencies of leaves at higher levels need to be \geq frequencies of leaves at lower levels.
- Leaves at a given level are interchangeable.

Corollary
There is an optimal tree in which the two symbols with the lowest frequencies form a cherry (leaves with the same parent).

Principle of Optimality

Problem instance I

$$
\text { Input: frequencies } f_{s} \geq 0 \text { for } s \in S \text { with } \sum_{s \in S} f_{s}=1
$$

Output: binary tree T with leave set S such that $\operatorname{cost}(T) \doteq \sum_{s \in S} f_{s} \cdot \operatorname{depth}_{T}(s)$ is minimized.
T for I with cherry $\{\mathrm{E}, \mathrm{D}\} \quad \rightleftharpoons \quad T^{\prime}$ for I^{\prime} over $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{ED}\}$

T optimal for $I \mathrm{w} /$ cherry $\{\mathrm{E}, \mathrm{D}\} \Leftrightarrow T^{\prime}$ optimal for I^{\prime}

Algorithm

Recursive case: $|S| \geq 2$

- Find lowest frequency symbols E and D.
- Create instance I^{\prime} over $S^{\prime} \doteq S \backslash\{\mathrm{E}, \mathrm{D}\} \cup\{\mathrm{ED}\}$ with $f_{\mathrm{ED}}^{\prime}=f_{\mathrm{E}}+f_{\mathrm{D}}$ and $f_{s}^{\prime}=f_{s}$ for $s \in S \backslash\{\mathrm{ED}\}$.
- Find optimal solution T^{\prime} for I^{\prime}.
- Expand leaf ED in T^{\prime} to cherry with leaves E and D to obtain T.

Implementation

- Binary heap
- Iterative version

Running time: $O(n \log n)$

Outline

Common framework

- System consisting of n components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize a certain objective under certain constraints.

Greedy paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

- Greed stays ahead: interval scheduling, shortest paths
- Exchanges: interval scheduling, minimizing maximum tardiness, optimal binary codes, minimum spanning tree

Exchange Argument

Structure
Consider an optimal solution S. Establish a sequence of local transformations (exchanges) such that:

- Each transformation maintains validity and does not deteriorate the objective value.
- The sequence ends in the greedy solution G.

Remarks

- Minimizing maximum tardiness:

Case $n=2$ plays central role.

- Optimal binary codes:

From DP to greed.

Minimum Spanning Tree

Problem

Input: connected graph $G=(V, E)$ and $w: E \rightarrow \mathbb{R}$
Output: tree $T=(V, F)$ with $F \subseteq E$ such that $w(T) \doteq \sum_{e \in F} w(e)$ is minimized

Greedy algorithm
Try to make progress using edges of smallest weight w first.

- Locally: Tree growing (Prim)
- Globally: Tree joining (Kruskal)

Tree Growing

```
S\leftarrow{s};F\leftarrow\emptyset
while S\not=V do
    (u*,v*)}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{min}}{(u,v)\inE\capS\times\overline{S}}{(w(u,v))
    S\leftarrowS\cup{\mp@subsup{v}{}{*}};F\leftarrowF\cup{(\mp@subsup{u}{}{*},\mp@subsup{v}{}{*})}
return T\doteq(V,F)
```

Invariant
$T \doteq(S, F)$ is MST for subgraph of $G=(V, E)$ induced by S.
Implementation
Priority queue for $v \in \bar{S}$ with key $\lambda(v) \doteq \min _{u \in S:}(u, v) \in E(w(u, v))$
Running time with binary heap

- n min extractions: $O(n \log n)$
- $m=\frac{1}{2} \sum_{v \in V} \operatorname{deg}(v)$ key updates: $O(m \log n)$
- Total: $O((n+m) \log n)=O(m \log n)$ as $m \geq n-1$

Maintaining Connected Components

Tables

- Table with ($v, c c(v))$ pairs: $O(1)$ time to find $c c(v)$
- Table with (C, v) pairs: $O(|C|)$ time to relabel C

Lazy relabeling

- When merging C_{1} and C_{2}, relabel smaller one.
- Each time v gets relabeled, $|c c(v)|$ at least doubles.
- Number of times v gets relabeled is at most $\log n$.

Running time

- Sorting the edges: $O(m \log m)$
- Testing edges: $O(m)$
- Maintaining connected components: $O(n \log n)$
- Total: $O(m \log (m)+n \log (n))=O(m \log n)$ as $m \geq n-1$

Lazy Relabeling - example

Better Algorithms

Based on tree growing

- Binary heap: $O(m \log n)$
- Improved data structures (Fibonacci heaps): $O(m+n \log n)$

Based on tree joining

- $O(m \log m)$ due to sorting edges
- Lazy relabeling: $O(m \log n)$ given sorted edges
- Improved data structures (Union-Find): $O(m \cdot \alpha(n, m)$) given sorted edges, where α is inverse Ackermann

Other approaches

$O(m \cdot \alpha(n, m))$ where α is inverse Ackermann

Maintaining Connected Components

Rooted trees

- Store each connected component as a rooted tree, with edges pointing in direction of root.
- $O($ depth (C) time to find root of $C=c c(v)$ given v.

Lazy relabeling

- When merging C_{1} and C_{2}, make root of smaller one point to root of larger one.
- Keeps depth upper bounded by $\log n$.

Running time

- Sorting the edges: $O(m \log m)$
- Testing edges: $O(m \log n)$
- Maintaining connected components: $O(n)$
- Total: $O(m \log (m)+m \log (n)+n)=O(m \log n)$ as $m \geq n-1$

Correctness

Setting

- Suppose we know a subset $F \subseteq E$ such that there exists an MST T of G that contains F.
- Consider a subset $S \subseteq V$ such that no edge in F crosses the $\operatorname{cut}(S, \bar{S})$, i.e., $F \cap S \times \bar{S}=\emptyset$.

Correctness

Observations

- T has to contain an edge in $E \cap S \times \bar{S}$
- This edge contributes at least $\min _{e \in E \cap S \times \bar{S}}(w(e))$ to $w(T)$.

Cut property

- Let $e^{*}=\arg \min _{e \in E \cap S \times \bar{S}}(w(e))$.
- There exists an MST T^{\prime} of G that contains $F \cup\left\{e^{*}\right\}$.

Instantiations

Cut property

- Let $F \subseteq E$ such that there exists an MST T of G that contains F.
- Let $S \subseteq V$ such that no edge in F crosses the cut (S, \bar{S}), i.e., $F \cap S \times \bar{S}=\emptyset$.
- Let $e^{*}=\arg \min _{e \in E \cap S \times \bar{S}}(w(e))$.
- There exists an MST T^{\prime} of G that contains $F \cup\left\{e^{*}\right\}$.

Correctness implications

- Apply cut property with F the set of edges included thus far.
- Tree growing: S is set of vertices in current tree.
- Tree joining: S is set of vertices connected to u^{*} in current forest, where $\left(u^{*}, v^{*}\right)$ is edge under consideration.

