Network

Definition
A network N consists of:
» digraph (V, E)
> edge capacities ¢ : E — [0, 00)
» source s € V, which has indegree 0, and
» sink t € V, which has outdegree 0.

Flow

2/2 1/1

11 2/2

Definition
A flow is a mapping f : E — [0, c0) satisfying:
> [capacity constraints] (Ve € E) f(e) < c(e)
» [conservation constraints] (Vv € V' \ {s, t}) fin(v) = four(v)
where fin(v) = Zuev:ei(u,v)EE f(e) and
fout(v) = ZuEV:ei(v,u)EE f(e).

Value of a flow: v(f) = fou(s)

Cut

Definition
An st-cut is a partition (S, T) of V such thats€ Sand t € T.
Note

> (S5, T)isa partitionof Vif SUT =V and SNT = 0.

» (S, T) can alternately be written as (S,S) where S = V'\ S.

» Term “cut” is sometimes also used to denote the set of edges
that cross the cut, i.e., (ENSx T)U(ENT x S).

Invariance Property

Statement
For every flow f and st-cut (S, T) in a network N = (V,E,¢c,s,t)

ﬁ)ut(s) - f;n(s) = l/(f)7

where fo,1(S) = > ocpnsx T F(€) and £a(S) = X cpntxs f(e)-

Proof of Invariance Property

v(f) = fout(S) - fin(s)
0 = fout (V) - fin(v) veS\{s}
u(f) = > four(v) - > fin(v)
ves ves

fle) — X X fle)
VES e=(v,u)€eE
= X c(enf(er)

*

e*eE
= > fleg - >, fle)
ecENSxT e€ENT xS
= f;)ut(s) - fl-n(s)

() typeof e* € E ‘ c(e*)
SxT|1-0=1
SxS5|1-1=0
TxS|0-1=-1
TxT|0-0=0

Cut

Definition
An st-cut is a partition (S, T) of V such thatse Sand t € T.

Capacity of an st-cut
C(51 T) = ZEEEQSXT C(e)

Weak duality

Statement
For every flow f and st-cut (S, T) in a network N = (V,E,c,s,t)

v(f) <c(S,T).

2/2 1/1

1/1 2/2

Proof of Weak duality

v(f)= Y. fle)— > f(e)

ecENSXT ecENT xS
S Y do- ¥ o
ecENSXT ecENT xS
=c(S5,7T)

Note

Equality v(f) = ¢(S, T) holds iff
> (Vec ENSx T)f(e) =c(e)
> (Vee ENT x S)f(e) =0.

Max Flow and Min Cut

Max flow
Input: network N = (V,E,c,s,t)
Output: flow f such that v(f) is maximized

Min cut
Input: network N = (V,E,c,s,t)
Output: st-cut (S, T) such that ¢(S, T) is minimized

Weak duality

maxv(f) < min _¢(S,T)

flow f st-cut (S, T)

We'll show next lecture that equality always holds (strong duality).

Path Augmentation - first attempt

Algorithm
1. Start with f = 0.

2. While there is an st-path P along which more flow can be
pushed, additionally push as much flow along P as possible.

3. Return f.

Issue
Bad prior choices may block further progress.

1/1 0/1

0/1 1/1

Residual Network
Consider a flow f in N = (V,E,c,s, t).
Definition
The residual network N¢ = (V, Ef, ¢r, s, t) has:
» For each e € E with f(e) < c(e), an edge e in Ef with
cr(e) = c(e) — f(e).
» For each e = (u,v) € E with f(e) > 0, an edge € = (v, u) in
Ef with cr(e') = f(e).

Unblocking example
flow f: residual network Nf:
a

1/1 0/1

0/1 /1

Recap - properties

» Invariance: For every flow f and st-cut (S, T)
fout(S) — fin(S) = v(f)
> Weak duality: For every flow f and st-cut (S, T)
v(f)<c(S, T)
Equality v(f) = ¢(S, T) holds iff

o (Veec ENSx T)f(e) =c(e)

o (Vee ENT x S)f(e)=0.
» Strong duality (today):

f)= min_c(S,T
f?gve)(fy() St—Cl.';Tt”(r.]s,T) C(’)

Residual Network
Consider a flow f in N = (V,E,c,s, t).
Definition
The residual network N¢ = (V/, Ef, ¢f, s, t) has:
» For each e € E with f(e) < c(e), an edge e in Ef with
cr(e) = c(e) — f(e).
» For each e = (u,v) € E with f(e) > 0, an edge € = (v, u) in
Ef with cr(e') = f(e).

Unblocking example

Path Augmentation

Schema
1. Start with f = 0.
2. While there is an st-path in Ny

» Pick such a path P.
» f < f+ flow along P of value mingep(cr(e))

3. Return f.

Soundness

flow f residual network Nj: If the algorithm produces an output, it is correct.
ow f: :
a » f always is a valid flow.
11 /1 » If there is no st-path in N¢ then v(f) is maximized.
s t
o M Termination
b
Soundness Construction of Minimum Cut
T Suppose that there is no st-path in Nf.
eorem

The following are equivalent:

(1) f has maximum value.

(2) There is no st-path in N¢.

(3) v(f) equals the capacity of some st-cut.

Proof
(1) = (2) Contrapositive follows by path augmentation.
(2) = (3) Next slide.
(3) = (1) Follows from weak duality.

Corollary: Strong duality

f) = i S, T
maxv(f) = min <(5:T)

S ={v e V: there exists an sv-path in N¢}.

> (S, T)with T=V\Sisan stcut in N.

oses
oteT
> (Vec ENS X T)f(e) =c(e)
o Consider e = (u,v) € E with u € S and f(e) < c(e).
o Then (u,v) € Efsov eES.
> (Vee ENT xS)f(e)=0

o Consider e = (u,v) € E with v € S and f(e) > 0.
o Thene =(v,u)e Efsoues.

. (8, T) is an st-cut with ¢(S, T) = v(f).
By weak duality () is maximized and ¢(S, T) minimized.
Construction of (S, T) from f runs in linear time.

vvyy

Termination and Running Time

» Depend on the choice of augmenting path.

» There exist instances and choices without termination.

Integral capacities
If all capacities are integral, termination is guaranteed no matter
how augmenting paths are picked.
> # augmentations < F = maxfow £((f))
» If each augmenting path is picked using linear-time graph
traversal, running time is O((n+ m) - F).
» Running time bounded by polynomial in:

o size parameters (n and m)
o value of numbers involved (capacities): F <> . ¢ c(e)

Referred to as pseudopolynomial running time.

Slow convergence

Bad choices
Every augmentation through edge between a and b.
Good choices
» Augmenting path of maximum residual capacity
» Augmenting path with smallest number of edges

Better Algorithms
Augmentation along path of maximum residual capacity
» # augmentations = O(m - log F) for integral instances
» Finding one path: O(n+ m) time
» Overall running time: O((n+ m)m - log F)

» Running time is polynomial: bounded by polynomial in size
parameters and bitlength of numbers involved.

Augmentation along path with smallest number of edges
> # augmentations = O(nm) for all instances
» Finding one path: O(n+ m) time (BFS)
» Overall running time: O(nm(n+ m))

» Running time is strongly polynomial: bounded by polynomial
in size parameters only.

Other approaches: O(nm) time for all instances

Recap - notions

Integral network
» digraph (V, E)
» edge capacities c: E — N
» source s € V with indegree 0
» sink t € V with outdegree 0

Integral flow
A mapping f : E — N satisfying
» [capacity constraints] (Ve € E) f(e) < c(e)
» [conservation constraints] (Vv € V' \ {s, t}) fin(v) = four(v)
where fi,(v) = Zuev:ei(u,‘,)eE f(e) and
fout(v) = 2ueviez(vu)ce F(€):

st-Cut
A partition (S, T) of V suchthatse Sand t € T.

Bipartite Matching

Definition
A matching M in a graph G = (V, E) is a subset M C E such that
each v € V appears in at most one e € M.

Computational problem
Input: bipartite graph G = (V/, E) with bipartition (L, R):
ECLxRwhere LNR=10
Output: matching M such that |M| is maximized

Reduction to max flow
» Model e € M as one unit of flow through e.
» Integral network N such that
matching M in G bijection integral flow f in N
M= u(f)

> Resulting algorithm runs in time O(nm).

Bipartite Matching — duality

Capacity of a cut in N
> (S, T)isfinite iff ENSx T =0

iff G(LNS)C RNS, 1)
where G(A) = {v: (u e A)(u,v) € E}.
> If ¢(S, T) is finite then ¢(S, T) = |[LNT|+|RNS|. 2)

Matching obstacle
» Suppose not every u € L can be matched.
> u(f) < |L| for every flow f in N.
» ¢(S, T) < |L| for every min cut (S, T) in N. 3)
» Consider A=LNS.

@) @ ®)
|G(A)| < |[RNS| = ¢(S, T)—|LNT| < |L|—|LNT| = |LNS| = |A]|

v

Any A C L with |G(A)| < |A| is obstacle for matching all of L.

Marriage theorem

Definition
A matching M in G = (V, E) is perfect if every v € V appears in
some e € M.

Marriage theorem [Hall]
A bipartite graph G = (V, E) with bipartition (L, R) where
|L| = |R| has a perfect matching iff
(VA C L)|G(A)| > |A.
Proof

= Follows from definition of perfect matching.

<: Contrapositive follows from matching obstacle construction.

Edge-Disjoint Paths

Computational problem
Input: digraph G = (V,E); s, t e V

Output: set C of edge-disjoint st-paths in G such that |C| is
maximized

Reduction to max flow
» Model each path from s to t as one unit of flow.
» Integral network N = (V,E\ (V x {s}U{t} x V),c=1,s,1)

set C of edge-disjoint st-paths in G +— integral flow f in N
Icr = wv(f)

» Resulting algorithm runs in time O(nm).

Edge-Disjoint Paths — duality

Capacity of a cut in N
> (S, T)=|ENS x T|

» Removing ENS x T from G ensures no st-path remains.

Edge connectivity duality [Menger]
The maximum number of edge-disjoint st-paths equals the
minimum number of edges to be removed so no st-path remains.
Proof

» (= max number of edge-disjoint st-paths

» r = min number of edges to be removed so no st-path

> maXfiow f(l’(f)) ={<r<ming (S,T)(C(57 T))

» By duality, LHS = RHS so ¢ = r.

Survey Design

Computational problem

Input: n customers i € [n]
m products j € [m]
S; C [m]: products that customer i € [n] can survey
¢i € N: max number of surveys for customer i € [n]
pj € N: min number of surveys of product j € [m]
Output: set D C [n] x [m] such that
o (V(i,j) S D)j €S
o (Vieln)[{jelm:(ij)eD} <c
o (Velm)|{ie[m:(ij)eD}=p

Model
Represent each (i,) € D as a unit of flow that passes through
customer i and product j.

Survey Design — reduction to max flow

CUyTo MELeS

PROoDLLTS
{

Survey Design — analysis

» Minimal survey D satisfies

(Vj € [m) [{i € [n] : (i.J) € D}|=pj-

» Integral network N such that

minimal survey D bijection integral flow f with v(f) = Z pj
Jj€lm]
D = middle edges that carry flow

» Resulting algorithm runs in time

O((n+m)(n+m+3 e 15i1))-

Image segmentation

Computational problem
Input: grid of pixels i € [n]
fi € [0,00): “likelihood" that i is foreground
b;i € [0,00): “likelihood” that i is background
¢ €]0,00): penalty for separating neighboring pixels

Output: partition of [n] into foreground F and background B
maximizing

Do+ bj—c-{(i)eFxB:inj}
ieF jeB
Model

» Vertex for each pixel, source s, sink t
> S=FU{s}and T = BU{t}

Image Segmentation — rewriting objective

n’_]an Zﬁ+2bj— Z c

icF jeB inoj
(iJ)EFxB
=-min| > =D fi-> b
’ inj ieF jeB

(iJ)EFxB

=-min| > =Y fi+d - b+ b
F.B inj ie[n] ieB Jjeln] JeF

(ij)eFxB

=S 6 b—min | ST e+ Y 6+ by
P = R WP B jeF

(ij)eFxB

Image Segmentation — reduction to min cut
» Need to find partition of [n] into F and B minimizing

(*)i Z C+Zfi+2bj.

inj icB jeF
(ij)eFxB

» Construct network N such that (x) = ¢(S, T) where
S=FU{s}and T = BU{t}.

> Resulting algorithm runs in time O(n?).

Project Selection

Computational problem
Input: n projects i € [n]

m tools j € [m]
T; C [m]: tools needed to realize project i € [n]
vi € [0,00): value of project i € [n] if realized
¢j € [0,00): one-time cost of tool j € [m] if bought

Output: Set of projects | C [n] to realize and set of tools
J C [m] to buy maximizing >-;c; vi — 3 e €
such that (Vie I) T; C J.

Model
> Vertex for each project i € [n] & tool j € [m]; source s, sink t

» Project i € [n] is realized iff i € S.
» Side of st-cut determines whether tool j € [m] is bought.

Project Selection — rewriting objective
n?,&.‘lx (Z Vi — Z Cj)
iel jed

jed iel

:_r?bn (ZCJ’—ZV{)
:_Tij‘ (ch—Zvﬁ- Z v;)

jed i€[n] ie[n)\/

ie[n] jed ienl\/

:ZV"_TL” (ch-i- Z Vi)

Project Selection — reduction to min cut

> Need to find | C [n] and J C [m] with (Vi€) T; C J

minimizing
=Yg+ > v

jed ie[n\/

» Construct network N such that (x) = ¢(S, T) where [are the
projects in S.

» Let J be the tools in S.

» Enforce condition (Vi € I) T; C J by including edges (i,)
with c(i,j) = oo for each i € [n] and j € T;

» Resulting algorithm runs in time
O((n+m)(n+m+3 i Til)):

Project Selection — reduction to min cut

PRO yg%_Tg ToolS

