Network

Definition

A network N consists of:

- ightharpoonup digraph (V, E)
- ▶ edge capacities $c: E \to [0, \infty)$
- ▶ source $s \in V$, which has indegree 0, and
- ▶ sink $t \in V$, which has outdegree 0.

Flow

Definition

A flow is a mapping $f: E \to [0, \infty)$ satisfying:

- ▶ [capacity constraints] $(\forall e \in E) f(e) \leq c(e)$
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Value of a flow: $\nu(f) \doteq f_{\mathsf{out}}(s)$

Cut

Definition

An st-cut is a partition (S, T) of V such that $s \in S$ and $t \in T$.

Note

- ▶ (S, T) is a partition of V if $S \cup T = V$ and $S \cap T = \emptyset$.
- ▶ (S, T) can alternately be written as (S, \overline{S}) where $\overline{S} \doteq V \setminus S$.
- ▶ Term "cut" is sometimes also used to denote the set of edges that cross the cut, i.e., $(E \cap S \times T) \cup (E \cap T \times S)$.

Invariance Property

Statement

For every flow f and st-cut (S, T) in a network N = (V, E, c, s, t)

$$f_{\text{out}}(S) - f_{\text{in}}(S) = \nu(f),$$

where $f_{\text{out}}(S) \doteq \sum_{e \in E \cap S \times T} f(e)$ and $f_{\text{in}}(S) \doteq \sum_{e \in E \cap T \times S} f(e)$.

Proof of Invariance Property

$$\nu(f) \stackrel{:}{=} f_{out}(s) - f_{in}(s)
0 = f_{out}(v) - f_{in}(v) \quad v \in S \setminus \{s\}$$

$$\nu(f) = \sum_{v \in S} f_{out}(v) - \sum_{v \in S} f_{in}(v)
= \sum_{v \in S} \sum_{e \doteq (v,u) \in E} f(e) - \sum_{v \in S} \sum_{e \doteq (u,v) \in E} f(e)
\stackrel{(*)}{=} \sum_{e^* \in E} c(e^*) f(e^*)
= \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times S} f(e)
= f_{out}(S) - f_{in}(S)$$

$$\stackrel{(*)}{=} type \text{ of } e^* \in E \mid c(e^*) \\
S \times T \mid 1 - 0 = 1 \\
S \times S \mid 1 - 1 = 0$$

 $\begin{array}{c|c}
T \times S & 0 - 1 = -1 \\
T \times T & 0 - 0 = 0
\end{array}$

Cut

Definition

An st-cut is a partition (S, T) of V such that $s \in S$ and $t \in T$.

Capacity of an st-cut

 $c(S,T) \doteq \sum_{e \in E \cap S \times T} c(e)$

Weak duality

Statement

For every flow f and st-cut (S,T) in a network N=(V,E,c,s,t)

$$\nu(f) \leq c(S, T)$$
.

Proof of Weak duality

$$\nu(f) = \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times S} f(e)$$

$$\leq \sum_{e \in E \cap S \times T} c(e) - \sum_{e \in E \cap T \times S} 0$$

$$\stackrel{.}{=} c(S, T)$$

Note

Equality $\nu(f) = c(S, T)$ holds iff

- $(\forall e \in E \cap S \times T) f(e) = c(e)$
- $(\forall e \in E \cap T \times S) f(e) = 0.$

Max Flow and Min Cut

Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that $\nu(f)$ is maximized

Min cut

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that c(S, T) is minimized

Weak duality

$$\max_{\text{flow } f} \nu(f) \leq \min_{\text{st-cut } (S,T)} c(S,T)$$

We'll show next lecture that equality always holds (strong duality).

Path Augmentation - first attempt

Algorithm

- 1. Start with $f \equiv 0$.
- 2. While there is an *st*-path *P* along which more flow can be pushed, additionally push as much flow along *P* as possible.
- 3. Return f.

Issue

Bad prior choices may block further progress.

Residual Network

Consider a flow f in N = (V, E, c, s, t).

Definition

The residual network $N_f = (V, E_f, c_f, s, t)$ has:

- ▶ For each $e \in E$ with f(e) < c(e), an edge e in E_f with $c_f(e) \doteq c(e) f(e)$.
- ▶ For each $e = (u, v) \in E$ with f(e) > 0, an edge $e' \doteq (v, u)$ in E_f with $c_f(e') \doteq f(e)$.

Unblocking example

flow f:

residual network N_f :

Recap - properties

▶ Invariance: For every flow f and st-cut (S, T)

$$f_{\text{out}}(S) - f_{\text{in}}(S) = \nu(f)$$

ightharpoonup Weak duality: For every flow f and st-cut (S, T)

$$\nu(f) < c(S, T)$$

Equality $\nu(f) = c(S, T)$ holds iff

- $\circ (\forall e \in E \cap S \times T) f(e) = c(e)$
- $(\forall e \in E \cap T \times S) f(e) = 0.$
- ► Strong duality (today):

$$\max_{\mathsf{flow}\ f} \nu(f) = \min_{\mathsf{st-cut}\ (S,T)} c(S,T)$$

Residual Network

Consider a flow f in N = (V, E, c, s, t).

Definition

The residual network $N_f = (V, E_f, c_f, s, t)$ has:

- ▶ For each $e \in E$ with f(e) < c(e), an edge e in E_f with $c_f(e) \doteq c(e) f(e)$.
- ► For each $e = (u, v) \in E$ with f(e) > 0, an edge $e' \doteq (v, u)$ in E_f with $c_f(e') \doteq f(e)$.

Unblocking example

flow f:

residual network N_f:

Path Augmentation

Schema

- 1. Start with $f \equiv 0$.
- 2. While there is an st-path in N_f
 - ▶ Pick such a path P
 - ▶ $f \leftarrow f + \text{flow along } P \text{ of value } \min_{e \in P} (c_f(e))$
- **3**. Return *f* .

Soundness

If the algorithm produces an output, it is correct.

- ► f always is a valid flow.
- ▶ If there is no st-path in N_f then $\nu(f)$ is maximized.

Termination

Soundness

Theorem

The following are equivalent:

- (1) f has maximum value.
- (2) There is no st-path in N_f .
- (3) $\nu(f)$ equals the capacity of some *st*-cut.

Proof

- $(1) \Rightarrow (2)$ Contrapositive follows by path augmentation.
- $(2) \Rightarrow (3)$ Next slide.
- $(3) \Rightarrow (1)$ Follows from weak duality.

Corollary: Strong duality

$$\max_{\mathsf{flow}\ f} \nu(f) = \min_{\mathsf{st\text{-}cut}\ (S,T)} c(S,T)$$

Construction of Minimum Cut

Suppose that there is no st-path in N_f .

 $S \doteq \{v \in V : \text{ there exists an } sv\text{-path in } N_f\}.$

- ▶ (S, T) with $T \doteq V \setminus S$ is an *st*-cut in *N*.
 - \circ $s \in S$
 - \circ $t \in T$
- $(\forall e \in E \cap S \times T) f(e) = c(e)$
 - Consider $e = (u, v) \in E$ with $u \in S$ and f(e) < c(e).
 - Then $(u, v) \in E_f$ so $v \in S$.
- $(\forall e \in E \cap T \times S) f(e) = 0$
 - Consider $e = (u, v) \in E$ with $v \in S$ and f(e) > 0.
 - Then $e' \doteq (v, u) \in E_f$ so $u \in S$.
- $ightharpoonup :: (S, T) \text{ is an } st\text{-cut with } c(S, T) = \nu(f).$
- ▶ By weak duality $\nu(f)$ is maximized and c(S, T) minimized.
- ightharpoonup Construction of (S, T) from f runs in linear time.

Termination and Running Time

- ▶ Depend on the choice of augmenting path.
- ▶ There exist instances and choices without termination.

Integral capacities

If all capacities are integral, termination is guaranteed no matter how augmenting paths are picked.

- ▶ # augmentations $\leq F \doteq \max_{f \mid \text{ow } f}(\nu(f))$
- ▶ If each augmenting path is picked using linear-time graph traversal, running time is $O((n+m) \cdot F)$.
- Running time bounded by polynomial in:
 - o size parameters (n and m)
 - o value of numbers involved (capacities): $F \leq \sum_{e \in E} c(e)$

Referred to as pseudopolynomial running time.

Slow convergence

Bad choices

Every augmentation through edge between a and b.

Good choices

- ▶ Augmenting path of maximum residual capacity
- ► Augmenting path with smallest number of edges

Better Algorithms

Augmentation along path of maximum residual capacity

- \blacktriangleright # augmentations = $O(m \cdot \log F)$ for integral instances
- Finding one path: O(n+m) time
- ▶ Overall running time: $O((n+m)m \cdot \log F)$
- Running time is polynomial: bounded by polynomial in size parameters and bitlength of numbers involved.

Augmentation along path with smallest number of edges

- \blacktriangleright # augmentations = O(nm) for all instances
- Finding one path: O(n+m) time (BFS)
- ▶ Overall running time: O(nm(n+m))
- Running time is strongly polynomial: bounded by polynomial in size parameters only.

Other approaches: O(nm) time for all instances

Recap - notions

Integral network

- ightharpoonup digraph (V, E)
- ▶ edge capacities $c: E \to \mathbb{N}$
- ▶ source $s \in V$ with indegree 0
- ▶ sink $t \in V$ with outdegree 0

Integral flow

A mapping $f: E \to \mathbb{N}$ satisfying

- ▶ [capacity constraints] $(\forall e \in E) f(e) \leq c(e)$
- ▶ [conservation constraints] $(\forall v \in V \setminus \{s, t\}) f_{in}(v) = f_{out}(v)$ where $f_{in}(v) \doteq \sum_{u \in V: e \doteq (v, v) \in E} f(e)$ and $f_{out}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$.

st-Cut

A partition (S, T) of V such that $s \in S$ and $t \in T$.

Bipartite Matching

Definition

A matching M in a graph G=(V,E) is a subset $M\subseteq E$ such that each $v\in V$ appears in at most one $e\in M$.

Computational problem

Input: bipartite graph G = (V, E) with bipartition (L, R): $E \subset L \times R$ where $L \cap R = \emptyset$

Output: matching M such that |M| is maximized

Reduction to max flow

- ▶ Model $e \in M$ as one unit of flow through e.
- ► Integral network *N* such that

matching
$$M$$
 in G $\stackrel{\text{bijection}}{\longleftrightarrow}$ integral flow f in N $|M| = \nu(f)$

ightharpoonup Resulting algorithm runs in time O(nm).

Bipartite Matching - duality

Capacity of a cut in N

▶ c(S, T) is finite iff $E \cap S \times T = \emptyset$ iff $G(L \cap S) \subseteq R \cap S$, where $G(A) \doteq \{v : (\exists u \in A) (u, v) \in E\}$.

▶ If c(S, T) is finite then $c(S, T) = |L \cap T| + |R \cap S|$. (2)

Matching obstacle

- ▶ Suppose not every $u \in L$ can be matched.
- $\triangleright \ \nu(f) < |L|$ for every flow f in N.
- ightharpoonup c(S,T)<|L| for every min cut (S,T) in N. (3)
- ▶ Consider $A \doteq L \cap S$.

$$|G(A)| \stackrel{(1)}{\leq} |R \cap S| \stackrel{(2)}{=} c(S, T) - |L \cap T| \stackrel{(3)}{<} |L| - |L \cap T| = |L \cap S| = |A|$$

▶ Any $A \subseteq L$ with |G(A)| < |A| is obstacle for matching all of L.

Marriage theorem

Definition

A matching M in G = (V, E) is perfect if every $v \in V$ appears in some $e \in M$.

Marriage theorem [Hall]

A bipartite graph G = (V, E) with bipartition (L, R) where |L| = |R| has a perfect matching iff

$$(\forall A \subseteq L) |G(A)| \ge |A|.$$

Proof

- ⇒: Follows from definition of perfect matching.
- ←: Contrapositive follows from matching obstacle construction.

Edge-Disjoint Paths

Computational problem

Input: digraph G = (V, E); $s, t \in V$

Output: set C of edge-disjoint st-paths in G such that |C| is maximized

Reduction to max flow

- ▶ Model each path from s to t as one unit of flow.
- ▶ Integral network $N \doteq (V, E \setminus (V \times \{s\} \cup \{t\} \times V), c \equiv 1, s, t)$

set C of edge-disjoint st-paths in $G \longleftrightarrow$ integral flow f in N $|C| = \nu(f)$

Resulting algorithm runs in time O(nm).

Edge-Disjoint Paths - duality

Capacity of a cut in N

- $ightharpoonup c(S,T) = |E \cap S \times T|$
- ▶ Removing $E \cap S \times T$ from G ensures no st-path remains.

Edge connectivity duality [Menger]

The maximum number of edge-disjoint *st*-paths equals the minimum number of edges to be removed so no *st*-path remains.

Proof

- $ightharpoonup \ell \doteq \max \text{ number of edge-disjoint } \textit{st}\text{-paths}$
- $ightharpoonup r \doteq \min \text{ number of edges to be removed so no } st\text{-path}$
- ▶ By duality, LHS = RHS so $\ell = r$.

Survey Design

Computational problem

Input: n customers $i \in [n]$ m products $j \in [m]$

 $S_i \subseteq [m]$: products that customer $i \in [n]$ can survey $c_i \in \mathbb{N}$: max number of surveys for customer $i \in [n]$ $p_i \in \mathbb{N}$: min number of surveys of product $j \in [m]$

Output: set $D \subset [n] \times [m]$ such that

 $\circ (\forall (i,j) \in D) j \in S_i$

 $\circ (\forall i \in [n]) | \{j \in [m] : (i,j) \in D\}| \leq c_i$

 $\circ (\forall j \in [m]) |\{i \in [m] : (i,j) \in D\}| \geq p_i$

Model

Represent each $(i,j) \in D$ as a unit of flow that passes through customer i and product j.

Survey Design - reduction to max flow

Survey Design - analysis

Minimal survey D satisfies

$$(\forall j \in [m]) | \{i \in [n] : (i,j) \in D\}| = p_j.$$

▶ Integral network N such that

D = middle edges that carry flow

► Resulting algorithm runs in time $O((n+m)(n+m+\sum_{i\in[n]}|S_i|)).$

Image segmentation

Computational problem

Input: grid of pixels $i \in [n]$

 $f_i \in [0,\infty)$: "likelihood" that i is foreground $b_i \in [0,\infty)$: "likelihood" that i is background $c \in [0,\infty)$: penalty for separating neighboring pixels

Output: partition of [n] into foreground F and background B maximizing

$$\sum_{i \in F} f_i + \sum_{j \in B} b_j - \mathbf{c} \cdot |\{(i, j) \in F \times B : i \sim j\}|$$

Model

- ► Vertex for each pixel, source s, sink t
- $ightharpoonup S = F \cup \{s\} \text{ and } T = B \cup \{t\}$

Image Segmentation - rewriting objective

$$\begin{aligned} \max_{F,B} \left(\sum_{i \in F} f_i + \sum_{j \in B} b_j - \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c \right) \\ &= -\min_{F,B} \left(\sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c - \sum_{i \in F} f_i - \sum_{j \in B} b_j \right) \\ &= -\min_{F,B} \left(\sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c - \sum_{i \in [n]} f_i + \sum_{i \in B} f_i - \sum_{j \in [n]} b_j + \sum_{j \in F} b_j \right) \\ &= \sum_{i \in [n]} f_i + \sum_{j \in [n]} b_j - \min_{F,B} \left(\sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j \right) \end{aligned}$$

Image Segmentation - reduction to min cut

▶ Need to find partition of [n] into F and B minimizing

$$(*) \doteq \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j.$$

► Construct network N such that (*) = c(S, T) where $S = F \cup \{s\}$ and $T = B \cup \{t\}$.

▶ Resulting algorithm runs in time $O(n^2)$.

Project Selection

Computational problem

Input: n projects $i \in [n]$ m tools $j \in [m]$

 $T_i \subseteq [m]$: tools needed to realize project $i \in [n]$ $v_i \in [0,\infty)$: value of project $i \in [n]$ if realized $c_j \in [0,\infty)$: one-time cost of tool $j \in [m]$ if bought

Output: Set of projects $I\subseteq [n]$ to realize and set of tools $J\subseteq [m]$ to buy maximizing $\sum_{i\in I}v_i-\sum_{j\in J}c_j$ such that $(\forall i\in I)$ $T_i\subseteq J$.

Model

- ▶ Vertex for each project $i \in [n]$ & tool $j \in [m]$; source s, sink t
- ▶ Project $i \in [n]$ is realized iff $i \in S$.
- ▶ Side of *st*-cut determines whether tool $j \in [m]$ is bought.

Project Selection - rewriting objective

$$\begin{aligned} & \max_{I,J} \left(\sum_{i \in I} v_i - \sum_{j \in J} c_j \right) \\ & = -\min_{I,J} \left(\sum_{j \in J} c_j - \sum_{i \in I} v_i \right) \\ & = -\min_{I,J} \left(\sum_{j \in J} c_j - \sum_{i \in [n]} v_i + \sum_{i \in [n] \setminus I} v_i \right) \\ & = \sum_{i \in [n]} v_i - \min_{I,J} \left(\sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i \right) \end{aligned}$$

Project Selection - reduction to min cut

▶ Need to find $I \subseteq [n]$ and $J \subseteq [m]$ with $(\forall i \in I)$ $T_i \subseteq J$ minimizing

$$(*) \doteq \sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i.$$

- ▶ Construct network N such that (*) = c(S, T) where I are the projects in S.
- Let *J* be the tools in *S*.
- ▶ Enforce condition $(\forall i \in I) T_i \subseteq J$ by including edges (i,j) with $c(i,j) = \infty$ for each $i \in [n]$ and $j \in T_i$
- ► Resulting algorithm runs in time $O((n+m)(n+m+\sum_{i\in[n]}|T_i|)).$

